
Competitive
Programming

2020
2Graphs, matchings, flows, cuts

Today’s program
• 12:15: Lecture (Zoom)
• 13:00: Practice contest (CSES)
•multiple problems to choose from
• try to solve at least 2 problems
• try to solve first on your own
• if no progress: help available starting at 14:00

• 16:00: Post-contest wrap-up (Zoom)

simple
undirected

graph

directed
graph

directed
acyclic graph

multigraph
bipartite

graph

complete
graph

tree
rooted

tree

complete
bipartite

graph

weighted
graph

· x[i] = list of neighbors of node i
· x[i] = list of successors of node i, y[i] = list of predecessors of node i
· x[i] = list of edges incident to node i, with their weights
· x[i][j] = does there exist edge {i, j} ?
· x[i][j] = does there exist directed edge (i, j) ?
· x[i][j] = weight of the edge (i, j), 0 = no edge
· list of (i, j) pairs
· list of (i, j, w) triples
· set of (i, j) pairs
· map (i, j) → w

· x[i] = list of neighbors of node i
· x[i] = list of successors of node i, y[i] = list of predecessors of node i
· x[i] = list of edges incident to node i, with their weights
· x[i][j] = does there exist edge {i, j} ?
· x[i][j] = does there exist directed edge (i, j) ?
· x[i][j] = weight of the edge (i, j), 0 = no edge
· list of (i, j) pairs
· list of (i, j, w) triples
· set of (i, j) pairs
· map (i, j) → w

· x[i] = list of neighbors of node i
· x[i] = list of successors of node i, y[i] = list of predecessors of node i
· x[i] = list of edges incident to node i, with their weights
· x[i][j] = does there exist edge {i, j} ?
· x[i][j] = does there exist directed edge (i, j) ?
· x[i][j] = weight of the edge (i, j), 0 = no edge
· list of (i, j) pairs
· list of (i, j, w) triples
· set of (i, j) pairs
· map (i, j) → w

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

t

t

t

t

s

s

s

s

How many edge-disjoint paths from
s to t can you find?

What is the largest flow from s to t?

What is the smallest number of edges
you need to delete so that there is no
route from s to t?

Where is the smallest cut?

What is the largest matching?

How many white–black pairs can
you form?

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

tt
ss

t
s

t
s

t
s

t
s

t
s

t
s

t
s

edge weights multiple parallel edges

≈

Pick augmenting paths more carefully:
· Find any path (DFS) — “Ford–Fulkerson”
· Find heavy path (DFS) — “scaling”
· Find short path (BFS) — “Edmonds–Karp”

DFS = depth-first search
•when visiting a node,

recursively visit its neighbors

BFS = breadth-first search
•when visiting a node,
add its neighbors to a queue

In both cases: remember what you have
already visited — don’t visit them many times

7
6

5

4

3

2

1

0

3
5

4

2

7

6

1

0

