Competitive Programming 2020

Graphs, matchings, flows, cuts

Today's program

-12:15: Lecture (Zoom)
-13:00: Practice contest (CSES)

- multiple problems to choose from
- try to solve at least 2 problems
- try to solve first on your own
- if no progress: help available starting at 14:00
-16:00: Post-contest wrap-up (Zoom)

graph
wether graph

bipartite graph

complete bipartite graph

rooted tree
$\cdot x[i]=$ list of neighbors of node i
$\cdot x[i]=$ list of successors of node $i, y[i]=$ list of predecessors of node i
$\cdot x[i]=$ list of edges incident to node i, with their weights
$\cdot x[i]=$ list of neighbors of node i
$\cdot x[i]=$ list of successors of node $i, y[i]=$ list of predecessors of node i
$\cdot x[i]=$ list of edges incident to node i, with their weights
$\cdot x[i][j]=$ does there exist edge $\{i, j\}$?
$\cdot x[i][j]=$ does there exist directed edge (i, j) ?
$\cdot x[i][j]=$ weight of the edge $(i, j), 0=$ no edge
$\cdot x[i]=$ list of neighbors of node i
$\cdot x[i]=$ list of successors of node $i, y[i]=$ list of predecessors of node i
$\cdot x[i]=$ list of edges incident to node i, with their weights
$\cdot x[i][j]=$ does there exist edge $\{i, j\}$?
$\cdot x[i][j]=$ does there exist directed edge (i, j) ?
$\cdot x[i][j]=$ weight of the edge $(i, j), 0=n o$ edge
- list of (i, j) pairs
- list of (i, j, w) triples
- set of (i, j) pairs
- map $(i, j) \rightarrow$ w

What is the largest matching?
How many white-black pairs can you form?

What is the largest matching?
How many white-black pairs can you form?

What is the largest matching?
How many white-black pairs can you form?

How many edge-disjoint paths from s to t can you find?

What is the largest flow from s to t ?

What is the largest matching?
How many white-black paiirs can you form?

How many edge-disjoint paths from s to t can you find?

What is the largest flow from s to t ?

How many edge-disjoint paths from s to t can you find?

What is the largest flow from s to t ?

What is the smallest number of edges you need to delete so that there is no route from s to t ?

Where is the smallest cut?

How many edge-disjoint paths from s to t can you find?

What is the largest flow from s to t ?

What is the smallest number of edges you need to delete so that there is no route from s to t ?

Where is the smallest cut?

S

Pick augmenting paths more carefully:

- Find any path (DFS) - "Ford-Fulkerson"
- Find heavy path (DFS) - "scaling"
- Find short path (BFS) - "Edmonds-Karp"

DFS = depth-first search

- when visiting a node,
recursively visit its neighbors

BFS = breadth-first search

- when visiting a node, add its neighbors to a queue

In both cases: remember what you have already visited - don't visit them many times

