
ICS-E5020
Distributed 
Algorithms
Jukka Suomela 
Aalto University  
Autumn 2015

iki.fi/suo/da-2015

3
2
1

3
2
1

3
2
1

3
2
1

http://iki.fi/suo/da-2015

Distributed Algorithms
Algorithms for computer networks

!!
!

!

!
!

!

!!
!

!
!

!
!

Distributed Algorithms
Identical computers in an unknown network, 
all running the same algorithm

!!
!

!

!
!

!

!!
!

!
!

!
!

Distributed Algorithms
Initially each computer only aware of 
its immediate neighbourhood

!

!

!

! !

!
!

Distributed Algorithms
Nodes can exchange messages 
with their neighbours to learn more…

!!
!

!

!
!

!

!!
!

!
!

!
!

Distributed Algorithms
Finally, each computer has to stop and 
produce its own local output

!!
!

!

!
!

!

!!
!

!
!

!
!

12
21
3

3
1

23 2

1 12
2

Distributed Algorithms
Focus on graph problems: 
network topology = input graph

!!
!

!

!
!

!

!!
!

!
!

!
!

=

Distributed Algorithms
Focus on graph problems: 
local outputs = solution (here: graph colouring)

!!
!

!

!
!

!

!!
!

!
!

!
!

12
21
3

3
1

23 2

1 12
2
=

Distributed Algorithms
Typical research question:

“How fast can we solve graph problem X?”

Time = number of communication rounds

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Week 1

– Warm-up: positive results

Running example: 
3-colouring a path
Given a path:  
 
 
Output a proper 3-colouring, e.g.:

! !!! ! =

!!!! ! 2321 1 =
!!!! ! 2112 2 =

Model of computing: 
Send, receive, update
• All nodes in parallel:

• send messages to their neighbours
• receive messages from neighbours
• update their state

• Stopping state = final output
• can send/receive, but not update any more

Challenge:  
Symmetry breaking
• Identical nodes, everything deterministic and  

synchronised: cannot break symmetry

!!

!! 11

same initial state
! ! same messages sent
! ! same messages received

!! same new state

same output
…

aa

bb

Challenge:  
Symmetry breaking
• Identical nodes, everything deterministic and  

synchronised: cannot break symmetry

• Solutions:
• assume unique identifiers
• use randomised algorithms

Algorithm P3C: 
Using unique IDs
• Unique IDs = proper colouring  

with large number of colours

• Goal: reduce the number of colours

15 273312 20 37 1342

Algorithm P3C: 
Using unique IDs
• Idea: local maxima pick a new colour

15 27112 20 37 131

15 273312 20 37 1342

Algorithm P3C: 
Using unique IDs
• Idea: local maxima pick a new colour

15 2712 20 2 21

15 27112 20 37 131

Algorithm P3C: 
Using unique IDs
• Idea: local maxima pick a new colour

15 112 20 2 21

15 2712 20 2 21

Algorithm P3C: 
Using unique IDs
• Idea: local maxima pick a new colour

15 112 2 2 21

15 112 20 2 21

Algorithm P3C: 
Using unique IDs
• Idea: local maxima pick a new colour

3 112 2 2 21

15 112 2 2 21

Algorithm P3C: 
Using unique IDs
• Inform neighbours of your current colour

• If your colour > colours of your neighbours:
• pick a free colour from {1, 2, 3} 

that is not used by any neighbour

• Stopping states = {1, 2, 3}

Performance
• P3C: worst case O(n)

• We can do better!

Algorithm P3CRand:  
Using randomness
• Initialise: state = unhappy, colour = 1

• While state = unhappy:
• pick a new random colour from {1, 2, 3}
• compare colours with neighbours
• if different, set state = happy

Performance
• P3C: worst case O(n)

• P3CRand: O(log n) with high probability

• We can do better!
• and we do not even need randomness

Algorithm P3CBit: 
Fast colour reduction
• Unique IDs = proper colouring  

with large number of colours

• Idea: reduce the number of colours 
from 2k to 2k in one step

Algorithm P3CBit: 
Fast colour reduction
• Unique IDs = proper colouring  

with large number of colours

• Idea: reduce the number of colours 
from 2k to 2k in one step

• Note: we will assume a directed path! 
(general case left as an exercise)

15

27

20

37

42

Algorithm P3CBit: 
Fast colour reduction
• Example: 128-bit unique IDs

• 2128 → 2 · 128 = 28 colours
• 28 → 2 · 8 = 24 colours
• 24 → 2 · 4 = 23 colours
• 24 → 2 · 3 = 6 colours

• From 2128 to 6 colours in 4 steps! How?

Algorithm P3CBit: 
Fast colour reduction
 c0 = my current colour as a k-bit string  
 c1 = successor’s colour as a k-bit string  
 i = index of a bit that differs between c0 and c1 
 b = value of bit i in c0

 c = 2i + b = my new colour

 i ∈ {0, …, k − 1}, b ∈ {0, 1}, c ∈ {0, …, 2k − 1}

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0)

 c = 2·2 + 0 = 4 (my new colour)

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234

Algorithm P3CBit: 
Fast colour reduction
 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour)

Successor will pick one of these colours: 
14+0, 12+0, 10+1, 8+0, 6+1, 4+1, 2+1, 0+1

None of these conflict with my choice: 
4+0

47

1234

Algorithm P3CBit: 
Fast colour reduction
 i = index of a bit that differs between c0 and c1 
 b = value of bit i in c0  
 c = 2i + b = my new colour

Successor picks different i → different c 
Successor picks same i → different b → different c

My new colour ≠ my successor’s new colour

Algorithm P3CBit: 
Fast colour reduction
 c0 = my current colour as a k-bit string  
 c1 = successor’s colour as a k-bit string  
 i = index of a bit that differs between c0 and c1 
 b = value of bit i in c0

 c = 2i + b = my new colour

 i ∈ {0, …, k − 1}, b ∈ {0, 1}, c ∈ {0, …, 2k − 1}

Performance
• P3C: worst case O(n)

• assuming unique IDs

• P3CRand: O(log n) with high probability

• P3CBit: O(log* n)
• assuming unique IDs are polynomial in n

Performance
• P3CBit: O(log* n)

• assuming unique IDs are polynomial in n

• Next week: this is optimal!
• no deterministic distributed algorithm 

can 3-colour a path in time o(log* n)

