[CS-E5020
Distributed
Algorithms

Jukka Suomela
Aalto University
Autumn 2015

iki.fi/suo/da-2015

WIiIN|-= WIiN (=

WIiIN |- WIiIN |-

http://iki.fi/suo/da-2015

Distributed Algorithms

Algorithms for computer networks

;\@\
E/\\ \ /\ T
N\ /\i”@\\ﬂ
w /0 -

Distributed Algorithms

Identical computers in an unknown network,
all running the same algorithm

| —

A\ U
AR
\ / /_\ \g

Distributed Algorithms

Initially each computer only aware of
its immediate neighbourhood

N

a

Distributed Algorithms

Nodes can exchange messages
with their neighbours to learn more...

SN
w N =

Distributed Algorithms

Finally, each computer has to stop and
produce its own local output

1\2\1
AR A
\ / A
1\2\1\2/ \1

\

2
~4

Distributed Algorithms

Focus on graph problems:
network topology = input graph

E\E\i_ -
@/\\i\\i/\i *—\ =
W\ =
@\E/\\i / \

Distributed Algorithms

Focus on graph problems:
local outputs = solution (here: graph colouring)

1\2\1
AR A
\ / A
1\2\1\2/ \1

\

2
~4

Distributed Algorithms

Typical research question:
“How fast can we solve graph problem X?”

Time = number of communication rounds

e Weeks 1-2: informal introduction

-

» network = path o W

4 |

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

Week 1

- Warm-up: positive results

Running example:
3-colouring a path

Given a path:

Output a proper 3-colouring, e.g.:
1—-2—1—-3—2 = @O0 0O

2—1—2—1—2 = 09009090

Model of computing:
Send, receive, update

e All nodes in parallel:

» send messages to their neighbours
e receive messages from neighbours
« update their state

« Stopping state = final output

 can send/receive, but not update any more

Challenge:
Symmetry breaking

 Identical nodes, everything deterministic and
synchronised: cannot break symmetry

g™ —M g sameinitial state
.- same messages sent
... same messages received
bes—M b same new state
1—1 same output

Challenge:
Symmetry breaking

 Identical nodes, everything deterministic and
synchronised: cannot break symmetry

o Solutions:

« assume unique identifiers
» use randomised algorithms

Algorithm P3C:
Using unique IDs

e Unique IDs = proper colouring
with large number of colours

e Goal: reduce the number of colours

13— 19—O—2)—G)—1)—13

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

) 19—O—2)—GD)—E)—13
Vs
)19~~~

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

D~V 1——2)—G)—(U—3
Vs
(O~ (V22—

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

e ldea: local maxima pick a new colour

Ve

Algorithm P3C:
Using unique IDs

» Inform neighbours of your current colour

o If your colour > colours of your neighbours:

» pick a free colour from {1, 2, 3}
that is not used by any neighbour

e Stopping states ={1, 2, 3}

Performance

e P3C: worst case O(n)

e We can do better!

Algorithm P3CRana:
Using randomness

e Initialise: state = unhappy, colour=1

e While state = unhappy:

 pick a new random colour from {1, 2, 3}
» compare colours with neighbours
o if different, set state = happy

Performance

e P3C: worst case O(n)
« P3CRand: O(log n) with high probability

e We can do better!

« and we do not even need randomness

Algorithm P3CBit:
Fast colour reduction

e Unique IDs = proper colouring
with large number of colours

e Idea: reduce the number of colours
from 2" to 2k in one step

Algorithm P3CBit:
Fast colour reduction

e Unique IDs = proper colouring
with large number of colours

e Idea: reduce the number of colours
from 2" to 2k in one step

e Note: we will assume a directed path!
(general case left as an exercise)

-

Algorithm P3CBit:
Fast colour reduction

« Example: 128-bit unique IDs
e 2128 5 2.128 =28 colours
e 28 5 2-8=2%colours
e 24 5 2-4=23colours
e 2* 5> 2-3=6colours

« From 2" to 6 colours in 4 steps! How?

Algorithm P3CBit:
Fast colour reduction

Co = my current colour as a k-bit string
c1 = successor’s colour as a k-bit string

I = index of a bit that differs between ¢y and ¢
b =value of bitiin co

¢ =2i+ b =my new colour

ie{0,..,k-1}, be{0,1}, ce10,...,2k-1}

Algorithm P3CBit:
Fast colour reduction

Co=123=01111011, (my colour) 9
c1= 47=00101111, (successor’s colour) A *

i =2 (bitsnumbered0, 1, 2, ... from right) @

b =0 (in my colour bit numberwas 0)
v

c=2-2+0=4 (my new colour) '1

k =38, reducing from 2% =256 to 2-8 = 16 colours

Algorithm P3CBit:
Fast colour reduction

¢o=123=01111011, (my colour) (L
c1= 47=00101111, (successor’s colour) . @
/’Y\

Successor will pick one of these colours:
14+0, 12+0, 10+1, 8+0, 6+1, 4+1, 2+1, 0+1

None of these conflict with my choice:
4+0

Algorithm P3CBit:
Fast colour reduction

i = index of a bit that differs between ¢p and c;
b =value of bitiin ¢o
¢ =2i+ b =my new colour

Successor picks different/ »> different ¢
Successor picks same | > different b > differentc

My new colour # my successor’s new colour

Algorithm P3CBit:
Fast colour reduction

Co = my current colour as a k-bit string
c1 = successor’s colour as a k-bit string

I = index of a bit that differs between ¢y and ¢
b =value of bitiin co

¢ =2i+ b =my new colour

ie{0,..,k-1}, be{0,1}, ce10,...,2k-1}

Performance

e P3C: worst case O(n)

» assuming unique IDs
« P3CRand: O(log n) with high probability

e P3CBIit: O(log™ n)

 assuming unique IDs are polynomialin n

Performance

e P3CBit: O(log™ n)

 assuming unique IDs are polynomialin n

e Next week: this is optimal!

» no deterministic distributed algorithm
can 3-colour a path in time o(log™* n)

