- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Week 10

Ramsey theory

Avoiding cliques and independent sets

- Can you construct graphs such that:
 - there are N nodes
 - there is no clique of size n
 - there is no independent set of size n
- For n = 3 and N = 3, 4, 5, 6, ...?For <math>n = 4 and N = 4, 5, 6, 7, ...?

Avoiding monochromatic sets

- Can you construct complete graphs such that:
 - there are N nodes
 - each edge coloured blue or orange
 - there is no monochromatic set of size n
- For n = 3 and N = 3, 4, 5, 6, ...?For <math>n = 4 and N = 4, 5, 6, 7, ...?

Monochromatic subsets

- Y = set with N elements, c colours,
 each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour

Ramsey's theorem

- Y = set with N elements, c colours,
 each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour
- For all c, k, n: if N is large enough, there
 is always a monochromatic subset of size n

Ramsey numbers

- Y = set with N elements, c colours,
 each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour
- For all c, k, n: if $N \ge R_c(n; k)$, there is always a monochromatic subset of size n

Ramsey's theorem

For all c, k, n there are numbers R_c(n; k) s.t.:
 if we have N ≥ R_c(n; k) elements and we
 label each k-subset with one of c colours,
 there is a monochromatic subset of size n

Application

- We can show that $R_2(3; 2) = 6$
- Complete graph with 6 nodes,
 edges (= 2-subsets) labelled with 2 colours
- There is always a monochromatic subset of size 3

Application

- We can show that $R_2(3; 2) = 6$
- A graph with 6 nodes, for each pair of nodes (= 2-subsets) edge may or may not exist (= 2 "colours")
- There is always a clique or an independent set of size 3

Ramsey's theorem

For all c, k, n there are numbers R_c(n; k) s.t.:
 if we have N ≥ R_c(n; k) elements and we
 label each k-subset with one of c colours,
 there is a monochromatic subset of size n

Proof...

 $R_c(n; 1)$?

 $R_c(n; 2)$?

 $R_c(n; 3)$?

• • •

Almost monochromatic

- Y = set with N elements, c colours,
 each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour

• X almost monochromatic: subsets with the same minimum have the same colour

Almost monochromatic

- If we have $N \ge R_c(n; k)$ elements there is a monochromatic subset of size n
- If we have $N \ge \bar{R}_c(n; k)$ elements there is an almost monochromatic subset of size n

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3;3)$$

 $\bar{R}_c(4;3) \le 1 + R_c(M;2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)+1$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

 $R_c(n; 3) \le \bar{R}_c(M; 3)$

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n; 3)$?

$$\bar{R}_c(3;3) = 3$$

$$M = \bar{R}_c(3; 3)$$

 $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

• • •

$R_c(n; 1)$?

$R_c(n; 1) \leq c \cdot (n-1)+1$

Lemma 10.3

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

$$R_c(n; 3) \le \bar{R}_c(M; 3)$$

 $\bar{R}_c(2;2) = 2$ trivial

rivial
$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(2; 2)$$
 $M = \bar{R}_c(3; 3)$
 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$ $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

$$M = R_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

$R_c(n; 1)$?

 $R_c(n; 2)$?

 $R_c(n; 3)$?

 $\bar{R}_c(n; 3)$?

$$R_c(n;\,1) \leq c \cdot (n-1) + 1$$

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

$$R_c(n; 3) \le \bar{R}_c(M; 3)$$

$$\bar{R}_c(2;2)=2$$

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3) = 3$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 3)$$

 $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

• • •

$R_c(n; 1)$?

$R_c(n; 2)$?

$$R_c(n; 3)$$
?

$$R_c(n; 1) \leq c \cdot (n-1) + 1$$

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

$$R_c(n; 3) \le \bar{R}_c(M; 3)$$

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n; 3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3; 3)$$

 $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

• • •

$R_c(n; 1)$?

 $R_c(n; 1) \le c \cdot (n-1) + 1$

Lemma 10.6

$R_c(n; 2)$?

 $M = R_c(n; 1)$ $R_c(n; 2) \le \bar{R}_c(M; 2)$

$R_c(n; 3)$?

 $M = R_c(n; 1)$ $R_c(n; 3) \le \bar{R}_c(M; 3)$

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3;3)$$

 $\bar{R}_c(4;3) \le 1 + R_c(M;2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)+1$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

 $R_c(n; 3) \le \bar{R}_c(M; 3)$

- $c \cdot (n-1) + 1$ elements
- c-labelling of elements
- all labels have < n element: contradiction
- at least one label with n elements

 $R_c(n; 1)$?

 $R_c(n; 1) \leq c \cdot (n-1) + 1$

Lemma 10.3

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3;3)$$

 $\bar{R}_c(4;3) \le 1 + R_c(M;2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)+1$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

 $R_c(n; 3) \le \bar{R}_c(M; 3)$

 $\bar{R}_c(n; 3)$?

 $\bar{R}_c(2;2)=2$ trivial

 $\bar{R}_c(3;3) = 3$

- k-subsets are labelled
- need an (almost) monochromatic subset of size k = n
- any such set is (almost) monochromatic
- we only need k = n elements

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3;3)$$

 $\bar{R}_c(4;3) \le 1 + R_c(M;2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)+1$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

 $R_c(n; 3) \le \bar{R}_c(M; 3)$

$\bar{R}_c(n; 3)$?

Lemma 10.4

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

•

$$M = \bar{R}_c(3; 3)$$

 $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

Lemma 10.4

$$M = \bar{R}_c(n-1; k)$$

 $\bar{R}_c(n; k) \le 1 + R_c(M; k-1) = N$

- M: monochromatic for subsets containing 1
- *n*-1: almost monochromatic for other subsets
- n: almost monochromatic for all subsets

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

$\bar{R}_c(n;3)$?

$$\bar{R}_c(3;3)=3$$

$$M = \bar{R}_c(3;3)$$

 $\bar{R}_c(4;3) \le 1 + R_c(M;2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)+1$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

 $R_c(n; 3) \le \bar{R}_c(M; 3)$

 $R_c(n; 2)$?

 $R_c(n; 3)$?

Lemma 10.6

 $M = R_c(n; 1)$ $R_c(n; 2) \le \bar{R}_c(M; 2)$ $M = R_c(n; 1)$ $R_c(n; 3) \le \bar{R}_c(M; 3)$

- M: almost monochromatic
- colour of element i:
 common colour of subsets A with min(A) = i
- n: elements with same colour → monochromatic

Lemma 10.6

$$M = R_c(n; 1)$$

$$R_c(n; k) \le \bar{R}_c(M; k) = N$$

$$\bar{R}_c(2;2)=2$$

$$M = \bar{R}_c(2; 2)$$

 $\bar{R}_c(3; 2) \le 1 + R_c(M; 1)$

$$M = \bar{R}_c(3; 2)$$

 $\bar{R}_c(4; 2) \le 1 + R_c(M; 1)$

. . .

c(11, Z):

$$\bar{R}_c(3;3) = 3$$

 $\bar{R}_c(n; 3)$?

$$M = \bar{R}_c(3; 3)$$

 $\bar{R}_c(4; 3) \le 1 + R_c(M; 2)$

$$M = \bar{R}_c(4; 3)$$

 $\bar{R}_c(5; 3) \le 1 + R_c(M; 2)$

. . .

$R_c(n; 1)$?

$$R_c(n; 1) \leq c \cdot (n-1)$$

$R_c(n; 2)$?

$$M = R_c(n; 1)$$

$$R_c(n; 2) \le \bar{R}_c(M; 2)$$

$$M = R_c(n; 1)$$

$$R_c(n; 3) \le \bar{R}_c(M; 3)$$

Summary

- For all c, k, n there are numbers R_c(n; k) s.t.:
 if we have N ≥ R_c(n; k) elements and we
 label each k-subset with one of c colours,
 there is a monochromatic subset of size n
 - application for k = 2, c = 2:
 any graph with N nodes contains
 an independent set or a clique of size n

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap