- Weeks 1-2: informal introduction

- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Week 10

- Ramsey theory

Avoiding cliques and independent sets

- Can you construct graphs such that:
- there are N nodes
- there is no clique of size n
- there is no independent set of size n
- For $n=3$ and $N=3,4,5,6, \ldots$?

For $n=4$ and $N=4,5,6,7, \ldots$?

Avoiding monochromatic sets

- Can you construct complete graphs such that:
- there are N nodes
- each edge coloured blue or orange
- there is no monochromatic set of size n
- For $n=3$ and $N=3,4,5,6, \ldots$? For $n=4$ and $N=4,5,6,7, \ldots$?

Monochromatic subsets

- $Y=$ set with N elements, c colours, each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour

Ramsey's theorem

- $Y=$ set with N elements, c colours, each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour
- For all $\boldsymbol{c}, \boldsymbol{k}, \boldsymbol{n}$: if \boldsymbol{N} is large enough, there is always a monochromatic subset of size n

Ramsey numbers

- $Y=$ set with N elements, c colours, each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour
- For all c, k, n if $N \geq R_{c}(n ; k)$, there is always a monochromatic subset of size n

Ramsey's theorem

- For all $c, \boldsymbol{k}, \boldsymbol{n}$ there are numbers $R_{c}(n ; k)$ s.t.: if we have $N \geq R_{c}(n ; k)$ elements and we label each k-subset with one of c colours, there is a monochromatic subset of size n

Application

- We can show that $R_{2}(3 ; 2)=6$
- Complete graph with 6 nodes, edges (= 2-subsets) labelled with 2 colours
- There is always a monochromatic subset of size 3

Application

- We can show that $R_{2}(3 ; 2)=6$
- A graph with 6 nodes,
for each pair of nodes (= 2-subsets) edge may or may not exist (= 2 "colours")
- There is always a clique or an independent set of size 3

Ramsey's theorem

- For all $c, \boldsymbol{k}, \boldsymbol{n}$ there are numbers $R_{c}(n ; k)$ s.t.: if we have $N \geq R_{c}(n ; k)$ elements and we label each k-subset with one of c colours, there is a monochromatic subset of size n
- Proof...

$R_{c}(n ; 1)$?

$R_{c}(n ; 2)$?
$R_{c}(n ; 3)$?

Almost monochromatic

- $Y=$ set with N elements, c colours, each k-subset of Y labelled with a colour
- X monochromatic: all k-subsets of X labelled with the same colour
- \boldsymbol{X} almost monochromatic: subsets with the same minimum have the same colour

Almost monochromatic

- If we have $N \geqq R_{c}(n ; k)$ elements there is a monochromatic subset of size n
- If we have $N \geq \bar{R}_{c}(n ; k)$ elements there is an almost monochromatic subset of size n

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?

$$
R_{c}(n ; 1) \leq c \cdot(n-1)+1
$$

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$

$$
R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
$$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?
$R_{d}(n ; 1) \leq c \cdot(n-1)+1$ Lemma 10.3

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$\bar{R}_{c}(n ; 2)$?

$\bar{R}_{c}(2 ; 2)=2$ trivial $\quad \bar{R}_{c}(3 ; 3)=3$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 2)$?
$R_{c}(n ; 1) \leq c \cdot(n-1)+1$

$$
\begin{aligned}
& M=R_{c}(n ; 1) \\
& R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
\end{aligned}
$$

$\bar{R}_{c}(n ; 3)$?

$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$\bar{R}_{c}(n ; 2)$?
 $\bar{R}_{c}(n ; 3)$?
 $$
\bar{R}_{c}(2 ; 2)=2
$$
 $\bar{R}_{c}(3 ; 3)=3$

$$
\begin{aligned}
& M=\bar{R}_{c}(2 ; 2) \\
& \bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
\end{aligned}
$$

$$
\begin{aligned}
& M=\bar{R}_{c}(3 ; 3) \\
& \bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)
\end{aligned}
$$

Lemma 10.4

$$
\begin{aligned}
& M=\bar{R}_{c}(3 ; 2) \\
& \bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
\end{aligned}
$$

$R_{c}(n ; 1)$?
$R_{c}(n ; 1) \leq c \cdot(n-1)+1$
$M=R_{c}(n ; 1)$
$R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)$
$R_{c}(n ; 2)$?
$R_{c}(n ; 3)$?
$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2) \quad M=\bar{R}_{c}(4 ; 3)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?
$R_{c}(n ; 1) \leq c \cdot(n-1)+1$
Lemma 10.6
$\bar{R}_{c}(n ; 3)$?
$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$$
\begin{aligned}
& M=R_{c}(n ; 1) \\
& R_{c}(n ; 3) \leq R_{c}(M ; 3)
\end{aligned}
$$

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?

$$
R_{c}(n ; 1) \leq c \cdot(n-1)+1
$$

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$

$$
R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
$$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

- Pigeonhole principle
- $c \cdot(n-1)+1$ elements
- c-labelling of elements
- all labels have < n element: contradiction
- at least one label with n elements
$R_{c}(n ; 1)$?
$R_{c}(n ; 1) \leq c \cdot(n-1)+1$
Lemma 10.3

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?

$$
R_{c}(n ; 1) \leq c \cdot(n-1)+1
$$

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$

$$
R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
$$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

```
\mp@subsup{\overline{R}}{c}{}(n;2)?
    \mp@subsup{\overline{R}}{c}{}(n;3)?
\mp@subsup{\overline{R}}{c}{}(2;2)=2 trivial }\mp@subsup{\overline{R}}{c}{}(3;3)=
```

- k-subsets are labelled
- need an (almost) monochromatic subset of size $k=n$
- any such set is (almost) monochromatic
- we only need $k=n$ elements

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?

$$
R_{c}(n ; 1) \leq c \cdot(n-1)+1
$$

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$

$$
R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
$$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$\bar{R}_{c}(n ; 2) ?$
 $\bar{R}_{c}(n ; 3)$?

$$
\begin{aligned}
& M=\bar{R}_{c}(2 ; 2) \\
& \bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
\end{aligned}
$$

$$
\begin{aligned}
& M=\bar{R}_{c}(3 ; 3) \\
& \bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)
\end{aligned}
$$

Lemma 10.4

$$
\begin{aligned}
& M=\bar{R}_{c}(3 ; 2) \\
& \bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
\end{aligned}
$$

$$
\begin{aligned}
& M=\bar{R}_{c}(4 ; 3) \\
& \bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)
\end{aligned}
$$

Lemma 10.4

$$
\begin{aligned}
& M=\bar{R}_{c}(n-1 ; k) \\
& \bar{R}_{c}(n ; k) \leq 1+R_{c}(M ; k-1)=N
\end{aligned}
$$

- M: monochromatic for subsets containing 1
- $\boldsymbol{n} \mathbf{- 1}$: almost monochromatic for other subsets
- \boldsymbol{n} : almost monochromatic for all subsets

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?

$$
R_{c}(n ; 1) \leq c \cdot(n-1)+1
$$

$R_{c}(n ; 2)$?

$M=R_{c}(n ; 1)$

$$
R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)
$$

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$

$R_{c}(n ; 3)$?

$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

$R_{c}(n ; 2)$?

$R_{c}(n ; 3)$?
$M=R_{c}(n ; 1)$
$R_{c}(n ; 2) \leq R_{c}(M ; 2)$
$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

- M: almost monochromatic
- colour of element i :
common colour of subsets A with $\min (A)=i$
- \boldsymbol{n} : elements with same colour \rightarrow monochromatic

Lemma 10.6

$$
\begin{aligned}
& M=R_{c}(n ; 1) \\
& R_{c}(n ; k) \leq \bar{R}_{c}(M ; k)=N
\end{aligned}
$$

$\bar{R}_{c}(n ; 2)$?

$$
\bar{R}_{c}(2 ; 2)=2
$$

$$
M=\bar{R}_{c}(2 ; 2)
$$

$$
\bar{R}_{c}(3 ; 2) \leq 1+R_{c}(M ; 1)
$$

$$
M=\bar{R}_{c}(3 ; 2)
$$

$$
\bar{R}_{c}(4 ; 2) \leq 1+R_{c}(M ; 1)
$$

$R_{c}(n ; 1)$?
$R_{c}(n ; 1) \leq c \cdot(n-1)$
$M=R_{c}(n ; 1)$
$R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)$
$M=R_{c}(n ; 1)$
$R_{c}(n ; 2) \leq \bar{R}_{c}(M ; 2)$

$R_{c}(n ; 2)$?

$\bar{R}_{c}(n ; 3)$?

$\bar{R}_{c}(3 ; 3)=3$
$M=\bar{R}_{c}(3 ; 3)$
$\bar{R}_{c}(4 ; 3) \leq 1+R_{c}(M ; 2)$
$M=\bar{R}_{c}(4 ; 3)$
$\bar{R}_{c}(5 ; 3) \leq 1+R_{c}(M ; 2)$
$M=R_{c}(n ; 1)$
$R_{c}(n ; 3) \leq \bar{R}_{c}(M ; 3)$

Summary

- For all $c, \boldsymbol{k}, \boldsymbol{n}$ there are numbers $R_{c}(n ; k)$ s.t.: if we have $N \geq R_{c}(n ; k)$ elements and we label each \boldsymbol{k}-subset with one of \boldsymbol{c} colours, there is a monochromatic subset of size n
- application for $k=2, c=2$: any graph with N nodes contains an independent set or a clique of size n
- Weeks 1-2: informal introduction

- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

