- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Recap of weeks 1-2

- Colouring paths

Model of computing:
 Send, receive, update

- All nodes in parallel:
- send messages to their neighbours
- receive messages from neighbours
- update their state
- Stopping state = final output
- can send/receive, but not update any more

Example:
 Colouring paths

- 2-colouring paths:
- possible in time $O(n)$
- not possible in time o(n)
- 3-colouring paths:
- possible in time $O\left(\log ^{\star} n\right)$
- not possible in time $o\left(\log ^{\star} n\right)$

Assuming "small" unique identifiers

Algorithm design techniques

- Symmetry breaking: use e.g. unique identifiers or randomness to break symmetry

Algorithm design techniques

- Independence: non-adjacent nodes can act simultaneously in parallel without conflicts

Algorithm design techniques

- Independence: non-adjacent nodes can act simultaneously in parallel without conflicts
- Colouring \rightarrow independence: each colour class is an independent set

Algorithm design techniques

- Divide and conquer: split in smaller subproblems, solve recursively (in parallel)

Algorithm design techniques

- Composition and reductions:
- use "subroutines"
- prove that a solution to problem X can be used to find a solution to problem Y
- example: colourings \leftrightarrow independent sets

Algorithm design techniques

- Simulate sequential algorithms: elect leader, process nodes one by one

Algorithm design techniques

- Fast colour reduction

$c_{0}=123=01111011_{2}$ (my colour)
$c_{1}=47=00101111_{2}$ (successor's colour)
$\boldsymbol{i}=2$ (bits numbered $0,1,2, \ldots$ from right)
$\boldsymbol{b}=0$ (in my colour bit number i was 0)
$\boldsymbol{c}=\mathbf{2 \cdot 2} \mathbf{+ 0} \mathbf{= 4}$ (my new colour)

Proving lower bounds: Locality

- State at time T only depends on initial information within distance T

Proving lower bounds: Locality

- Same T-neighbourhood, same output after T rounds

Example:
 Colouring paths

- 2-colouring paths:
- possible in time $O(n)$
- not possible in time o(n)
- 3-colouring paths:
- possible in time $O\left(\log ^{\star} n\right)$

Richard Cole and Uzi Vishkin (1986)

- not possible in time $o\left(\log ^{\star} n\right)<$ Nathan Linial (1992)

Week 3

- Graph-theoretic foundations

Graph $G=(V, E)$

$\boldsymbol{V}=$ set of nodes (finite, non-empty) $E=$ set of edges (unordered pairs of nodes)

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

$\boldsymbol{V}=$ set of nodes (finite, nonempty)
$E=$ set of edges (unordered pairs of nodes)

$$
\begin{aligned}
G & =(V, E) \\
V & =\{1,2,3,4\} \\
E & =\{\{1,2\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

$\boldsymbol{V}=$ set of nodes (finite, nonempty)
$E=$ set of edges (unordered pairs of nodes)

$$
\begin{align*}
& G=(V, E) \tag{1}\\
& V=\{1,2,3,4\} \\
& E=\varnothing
\end{align*}
$$

Graph $G=(V, E)$

$\boldsymbol{V}=$ set of nodes (a.k.a. "vertices")
$E=$ set of edges
Usually nodes are denoted with u, v (if more nodes needed: $s, t, u, v, u^{\prime}, v^{\prime}, v_{1}, v_{2}$, etc.), edges are denoted with $e, e^{\prime}, e_{1}, e_{2}$, etc.

Convention: $n=|V|, m=|E|$

Graph $G=(V, E)$

u and v are "adjacent nodes"
$=$ nodes u and v are "neighbours"
$=$ there is an edge $\{u, v\}$

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

e_{1} and e_{2} are "adjacent edges"
= they share an endpoint
= their intersection is non-empty

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

Node v is "incident" to edge e
$=v$ is an endpoint of e
$=v$ is a member of e

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

Node of "degree" k
= node adjacent to k nodes
$=$ node incident to \boldsymbol{k} edges

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Graph $G=(V, E)$

"k-regular graph"
= all nodes have degree k
$=$ all nodes have \boldsymbol{k} neighbours

$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\}\}
\end{aligned}
$$

Subgraph

Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a "subgraph" of $G=(V, E)$: $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$

Subgraph

Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a "subgraph" of $G=(V, E)$: $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$

Subgraph

Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a "subgraph" of $G=(V, E)$: $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$

Subgraph

Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a "subgraph" of $G=(V, E)$: $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$

Induced subgraph

Subgraph "induced" by nodes V '
$=$ all nodes of V ' and all edges that connect them

Induced subgraph

Subgraph "induced" by edges E '
$=$ all edges of E ' and all of their endpoints

Induced subgraph

This is not a subgraph induced by any set of nodes - why?

Induced subgraph

This is not a subgraph induced by any set of edges - why?

Walks, paths, and connectivity

"Walk" = alternating sequence of incident nodes and edges

$$
w=(5,\{5,1\}, 1,\{1,4\}, 4,\{4,5\}, 5,\{5,6\}, 6)
$$

Walks, paths, and connectivity

"Path" = walk visiting each node at most once "Length" of a path = number of edges

$$
w=(1,\{1,4\}, 4,\{4,5\}, 5,\{5,6\}, 6)
$$

Walks, paths, and connectivity

"Distance" = length of a shortest path

$$
\text { w: }(1,\{1,5\}, 5,\{5,6\}, 6)
$$

Walks, paths, and connectivity

"Distance" = length of a shortest path (infinite if no such path exists)

$\operatorname{dist}(1,6)=\infty$

Walks, paths, and connectivity

"Connected component" C:
there is a path between any two nodes of C

Walks, paths, and connectivity

Graph is "connected" if only 1 connected component

Walks, paths, and connectivity

"Isolated node" = node of degree 0

Walks, paths, and connectivity

ball $(v, r)=$ "radius-r neighbourhood of v "
$=$ nodes at distance at most r from node v

Walks, paths, and connectivity

ball $(v, r)=$ "radius-r neighbourhood of v "
$=$ nodes at distance at most r from node v

Walks, paths, and connectivity

ball $(v, r)=$ "radius-r neighbourhood of v "
$=$ nodes at distance at most r from node v

Walks, paths, and connectivity

ball $(v, r)=$ "radius-r neighbourhood of v "
$=$ nodes at distance at most r from node v

Walks, paths, and connectivity

"Cycle" = closed walk that visits each node and each edge at most once (length ≥ 3)

Walks, paths, and connectivity

"Acyclic graph" = graph without any cycles

Walks, paths, and connectivity

"Tree" = connected acyclic graph "Forest" = acyclic graph

Isomorphism

"Isomorphism" from $G_{1}=\left(V_{1}, E_{1}\right)$ to $G_{2}=\left(V_{2}, E_{2}\right)$: bijection $f: V_{1} \rightarrow V_{2}$ that preserves adjacency

$$
G_{1}:
$$

Isomorphism

"Isomorphism" from $G_{1}=\left(V_{1}, E_{1}\right)$ to $G_{2}=\left(V_{2}, E_{2}\right)$: bijection $f: V_{1} \rightarrow V_{2}$ that preserves adjacency

G_{1} :

Isomorphism

Graphs are "isomorphic" if there exists an isomorphism form one to another
G_{1} :

Isomorphism

Graphs are "isomorphic" if there exists an isomorphism form one to another

Graph problems

"Independent set": non-adjacent nodes

Graph problems

"Vertex cover": at least one endpoint of each edge (all edges are "covered" with these nodes)

Graph problems

"Dominating set": all other nodes have a neighbour in this set

Graph problems

"Matching": non-adjacent edges

Graph problems

"Vertex colouring": adjacent nodes have different colours

Graph problems

"Vertex colouring": each colour class is an independent set

Graph problems

"Edge colouring":
adjacent edges have different colours

Graph problems

"Edge colouring": each colour class is a matching

Graph problems

- More definitions in the textbook:
- edge cover, edge dominating set
- domatic partition, edge domatic partition
- weak colouring
- factorisation ...

Maximisation problems

- maximal = cannot add anything
- maximum = largest possible size
- x-approximation $=$ at least $1 / x$ times maximum

Matching

Maximum matching

Maximal matching

2-approximation

Matching

Maximum matching

Maximal matching

2-approximation

Minimisation problems

- minimal = cannot remove anything
- minimum = smallest possible size
- x-approximation $=$ at most x times minimum

Vertex cover (VC)

Minimal VC

Minimum VC

2-approximation

Approximation

- Approximations are always feasible solutions!
- "2-approximation of minimum vertex cover"
- vertex cover
- ≤ 2 times as large as minimum vertex cover

Graph theory and distributed algorithms

- Network \approx graph: node \approx computer, edge \approx link
- Graph theory used to:
- define: model of computing, what we want to solve, what we assume ...
- prove: correctness of algorithms, time complexity, impossibility results ...
- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

