- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap

Recap of weeks 1-2

Colouring paths

Model of computing: Send, receive, update

All nodes in parallel:

- send messages to their neighbours
- receive messages from neighbours
- update their state

Stopping state = final output

can send/receive, but not update any more

Example: Colouring paths

2-colouring paths:

- possible in time O(n)
- not possible in time o(n)

3-colouring paths:

- possible in time O(log* n)
- not possible in time o(log* n)

Assuming some unique identifiers

Assuming "small" unique identifiers

 Symmetry breaking: use e.g. unique identifiers or randomness to break symmetry

 Independence: non-adjacent nodes can act simultaneously in parallel without conflicts

- Independence: non-adjacent nodes can act simultaneously in parallel without conflicts
- Colouring → independence: each colour class is an independent set

• **Divide and conquer:** split in smaller subproblems, solve recursively (in parallel)

Composition and reductions:

- use "subroutines"
- prove that a solution to problem X
 can be used to find a solution to problem Y
- example: colourings ← independent sets

• Simulate sequential algorithms: elect leader, process nodes one by one

Fast colour reduction

Proving lower bounds: Locality

 State at time T only depends on initial information within distance T

Proving lower bounds: Locality

Same T-neighbourhood,
 same output after T rounds

Example: Colouring paths

- 2-colouring paths:
 - possible in time O(n)
 - not possible in time o(n)
- 3-colouring paths:
 - possible in time O(log* n)
 - not possible in time o(log* n)

Richard Cole and Uzi Vishkin (1986)

Nathan Linial (1992)

Week 3

- Graph-theoretic foundations

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \{\{1,2\}, \{3,4\}\}$

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \emptyset$

G: (1)

 $(2) \qquad (4)$

V = set of nodes (a.k.a. "vertices")

E = set of edges

Usually nodes are denoted with u, v (if more nodes needed: s, t, u, v, u, v, u, v, v₁, v₂, etc.), edges are denoted with e, e, e₁, e₂, etc.

Convention: n = |V|, m = |E|

u and v are "adjacent nodes"

- = nodes u and v are "neighbours"
- = there is an edge $\{u, v\}$

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$

- e₁ and e₂ are "adjacent edges"
- = they share an endpoint
- = their intersection is non-empty

$$G = (V, E)$$
 $G: 1$ $V = \{1, 2, 3, 4\}$ $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$

Node v is "incident" to edge e

- = v is an endpoint of e
- = v is a member of e

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$

- Node of "degree" k
- = node adjacent to k nodes
- = node incident to k edges

$$G = (V, E)$$

 $V = \{1, 2, 3, 4\}$
 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}\}$

- "k-regular graph"
- = all nodes have degree k
- = all nodes have k neighbours

$$G = (V, E)$$
 $G:$ ($V = \{1, 2, 3, 4\}$) $E = \{\{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}\}$

Subgraph "induced" by nodes V'

= all nodes of V' and all edges that connect them

Subgraph "induced" by edges E'

= all edges of E' and all of their endpoints

This is *not* a subgraph induced by any set of nodes — why?

This is *not* a subgraph induced by any set of edges — why?

"Walk" = alternating sequence of incident nodes and edges

$$W = (5, \{5,1\}, 1, \{1,4\}, 4, \{4,5\}, 5, \{5,6\}, 6)$$

"Path" = walk visiting each node at most once "Length" of a path = number of *edges*

$$W = (1, \{1,4\}, 4, \{4,5\}, 5, \{5,6\}, 6)$$

"Distance" = length of a shortest path

$$W = (1, \{1,5\}, 5, \{5,6\}, 6)$$

$$dist(1, 6) = 2$$

"Distance" = length of a *shortest path* (infinite if no such path exists)

"Connected component" C: there is a path between any two nodes of C

Graph is "connected" if only 1 connected component

"Isolated node" = node of degree 0

ball(v, r) = "radius-r neighbourhood of v" = nodes at distance at most r from node v

$ball(4, 0) = {4}$

ball
$$(4, 1) = \{4, 1, 5\}$$

ball $(4, 2) = \{4, 1, 5, 2\}$
ball $(4, 3) = V$

ball(v, r) = "radius-r neighbourhood of v" = nodes at distance at most r from node v

ball(v, r) = "radius-r neighbourhood of v" = nodes at distance at most r from node v

ball(v, r) = "radius-r neighbourhood of v" = nodes at distance at most r from node v

"Cycle" = closed walk that visits each node and each edge at most once (length ≥ 3)

"Acyclic graph" = graph without any cycles

"Tree" = connected acyclic graph
"Forest" = acyclic graph

"Isomorphism" from $G_1 = (V_1, E_1)$ to $G_2 = (V_2, E_2)$: bijection $f: V_1 \rightarrow V_2$ that preserves adjacency

"Isomorphism" from $G_1 = (V_1, E_1)$ to $G_2 = (V_2, E_2)$: bijection $f: V_1 \rightarrow V_2$ that preserves adjacency

Graphs are "isomorphic" if there exists an isomorphism form one to another

Graphs are "isomorphic" if there exists an isomorphism form one to another

"Independent set": non-adjacent nodes

"Vertex cover": at least one endpoint of each edge (all edges are "covered" with these nodes)

"Dominating set": all other nodes have a neighbour in this set

"Matching": non-adjacent edges

"Vertex colouring": adjacent nodes have different colours

"Vertex colouring": each colour class is an independent set

"Edge colouring": adjacent edges have different colours

"Edge colouring": each colour class is a matching

- More definitions in the textbook:
 - edge cover, edge dominating set
 - domatic partition, edge domatic partition
 - weak colouring
 - factorisation ...

Maximisation problems

- maximal = cannot add anything
- maximum = largest possible size
- x-approximation =
 at least 1/x times maximum

Matching

Maximal matching

Maximum matching

2-approximation

Matching

Maximal matching

Maximum matching

2-approximation

Minimisation problems

- minimal = cannot remove anything
- minimum = smallest possible size
- x-approximation =
 at most x times minimum

Vertex cover (VC)

Minimum VC

Minimal VC

2-approximation

Approximation

- Approximations are always feasible solutions!
- "2-approximation of minimum vertex cover"
 - vertex cover
 - ≤ 2 times as large as minimum vertex cover

Graph theory and distributed algorithms

- Network ≈ graph: node ≈ computer, edge ≈ link
- Graph theory used to:
 - define: model of computing,
 what we want to solve, what we assume ...
 - prove: correctness of algorithms,
 time complexity, impossibility results ...

- Weeks 1–2: informal introduction
 - network = path

- Week 3: graph theory
- Weeks 4–7: models of computing
 - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
 - what cannot be computed (efficiently)?
- Week 12: recap