
• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Recap of weeks 1–2

– Colouring paths

Model of computing: 
Send, receive, update
• All nodes in parallel:

• send messages to their neighbours
• receive messages from neighbours
• update their state

• Stopping state = final output
• can send/receive, but not update any more

Example: 
Colouring paths
• 2-colouring paths:

• possible in time O(n)
• not possible in time o(n)

• 3-colouring paths:
• possible in time O(log* n)
• not possible in time o(log* n)

Assuming 
“small” unique

identifiers

Assuming 
some unique

identifiers

Algorithm 
design techniques
• Symmetry breaking: use e.g. unique identifiers  

or randomness to break symmetry

15 27188 20 11 29

Algorithm 
design techniques
• Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts

15 27188 20 11 29

15 118 20 11 29

Algorithm 
design techniques
• Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts

• Colouring → independence: each colour  
class is an independent set 

3 112 2 2 23

Algorithm 
design techniques
• Divide and conquer: split in smaller

subproblems, solve recursively (in parallel)

15 27188 20 11 29

15 27188 20 11 29

Algorithm 
design techniques
• Composition and reductions:

• use “subroutines”
• prove that a solution to problem X 

can be used to find a solution to problem Y
• example: colourings ←→ independent sets

Algorithm 
design techniques
• Simulate sequential algorithms: 

elect leader, process nodes one by one

L

3 …21 4

Algorithm 
design techniques
• Fast colour reduction

 c0 = 123 = 011110112 (my colour) 
 c1 = 47 = 001011112 (successor’s colour) 
 i = 2 (bits numbered 0, 1, 2, … from right) 
 b = 0 (in my colour bit number i was 0) 
 c = 2·2 + 0 = 4 (my new colour)

47

1234

Proving lower bounds:
Locality
• State at time T only depends on 

initial information within distance T

T = 2

T = 1

T = 0

Proving lower bounds:
Locality
• Same T-neighbourhood, 

same output after T rounds

3 421 7 5 6

3 521 4 6G:

H:

Example: 
Colouring paths
• 2-colouring paths:

• possible in time O(n)
• not possible in time o(n)

• 3-colouring paths:
• possible in time O(log* n)
• not possible in time o(log* n)

Richard Cole and  
Uzi Vishkin (1986)

Nathan Linial (1992)

Week 3

– Graph-theoretic foundations

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {3,4} }

G:

Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = ∅

G:

Graph G = (V, E)
V = set of nodes (a.k.a. “vertices”) 
E = set of edges

Usually nodes are denoted with u, v 
(if more nodes needed: s, t, u, v, u’, v’, v1, v2, etc.),  
edges are denoted with e, e’, e1, e2, etc.

Convention: n = |V|, m = |E|

Graph G = (V, E)
u and v are “adjacent nodes” 
= nodes u and v are “neighbours” 
= there is an edge {u, v}

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
e1 and e2 are “adjacent edges” 
= they share an endpoint 
= their intersection is non-empty

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
Node v is “incident” to edge e  
= v is an endpoint of e 
= v is a member of e

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:

Graph G = (V, E)
Node of “degree” k 
= node adjacent to k nodes 
= node incident to k edges

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:
deg(1) = 2

Graph G = (V, E)
“k-regular graph” 
= all nodes have degree k 
= all nodes have k neighbours

32

1 4G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {2,3}, {3,4}, {1,4} }

G:

Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E

3
2

1G’:
3

2

1
4

G:

Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E

3
2

1
4

G’:
3

2

1
4

G:

Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E

2

1
4

G’:
3

2

1
4

G:

Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E

3
2

1
4

G:

Induced subgraph
Subgraph “induced” by nodes V’ 
= all nodes of V’ and all edges that connect them

3
2

1
4

G:

Induced subgraph
Subgraph “induced” by edges E’  
= all edges of E’ and all of their endpoints

3
2

1
4

G:

Induced subgraph
This is not a subgraph induced 
by any set of nodes — why?

3
2

1
4

G:

Induced subgraph
This is not a subgraph induced 
by any set of edges — why?

3
2

1
4

G:

Walks, paths, and 
connectivity
“Walk” = alternating sequence of incident  
nodes and edges

54

1

6

G: 2 3

w = (5, {5,1}, 1, {1,4}, 4, {4,5}, 5, {5,6}, 6)

Walks, paths, and 
connectivity
“Path” = walk visiting each node at most once  
“Length” of a path = number of edges

54

1

6

G: 2 3

w = (1, {1,4}, 4, {4,5}, 5, {5,6}, 6)

Walks, paths, and 
connectivity
“Distance” = length of a shortest path

54

1

6

G: 2 3

w = (1, {1,5}, 5, {5,6}, 6)

dist(1, 6) = 2

Walks, paths, and 
connectivity
“Distance” = length of a shortest path 
(infinite if no such path exists)

54

1

6

G: 2 3

dist(1, 6) = ∞

Walks, paths, and 
connectivity
“Connected component” C: 
there is a path between any two nodes of C

54

1

6

G: 2 3

Walks, paths, and 
connectivity
Graph is “connected” if only 1 connected
component

54

1

6

G: 2 3

Walks, paths, and 
connectivity
“Isolated node” = node of degree 0

54

1

6

G: 2 3

Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v

54

1

6

G: 2 3
ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V

Walks, paths, and 
connectivity
“Cycle” = closed walk that visits each node  
and each edge at most once (length ≥ 3)

54

1

6

G: 2 3

Walks, paths, and 
connectivity
“Acyclic graph” = graph without any cycles

54

1

6

G: 2 3

Walks, paths, and 
connectivity
“Tree” = connected acyclic graph 
“Forest” = acyclic graph

54

1

6

G: 2 3

Isomorphism
“Isomorphism” from G1 = (V1, E1) to G2 = (V2, E2):  
bijection f: V1 → V2 that preserves adjacency

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
“Isomorphism” from G1 = (V1, E1) to G2 = (V2, E2):  
bijection f: V1 → V2 that preserves adjacency

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
Graphs are “isomorphic” if there exists 
an isomorphism form one to another

54

1

6

2 3
d

fc ba

e

G1: G2:

Isomorphism
Graphs are “isomorphic” if there exists 
an isomorphism form one to another

Graph problems
“Independent set”: non-adjacent nodes

54

1

6

2 3

Graph problems
“Vertex cover”: at least one endpoint of each
edge (all edges are “covered” with these nodes)

54

1

6

2 3

Graph problems
“Dominating set”: all other nodes  
have a neighbour in this set

54

1

6

2 3

Graph problems
“Matching”: non-adjacent edges

54

1

6

2 3

Graph problems
“Vertex colouring”: 
adjacent nodes have different colours

54

1

6

2 3

Graph problems
“Vertex colouring”: 
each colour class is an independent set

54

1

6

2 3

Graph problems
“Edge colouring”: 
adjacent edges have different colours

54

1

6

2 3

Graph problems
“Edge colouring”: 
each colour class is a matching

54

1

6

2 3

Graph problems
• More definitions in the textbook:

• edge cover, edge dominating set
• domatic partition, edge domatic partition
• weak colouring
• factorisation …

Maximisation problems
• maximal = cannot add anything

• maximum = largest possible size

• x-approximation = 
at least 1/x times maximum

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Matching Maximal matching

Maximum matching 2-approximation

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Matching Maximal matching

Maximum matching 2-approximation

Minimisation problems
• minimal = cannot remove anything

• minimum = smallest possible size

• x-approximation = 
at most x times minimum

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

54

1

6

2 3

Vertex cover (VC) Minimum VC

Minimal VC 2-approximation

Approximation
• Approximations are always feasible solutions!

• “2-approximation of minimum vertex cover”
• vertex cover
• ≤ 2 times as large as minimum vertex cover

Graph theory and 
distributed algorithms
• Network ≈ graph: node ≈ computer, edge ≈ link

• Graph theory used to:
• define: model of computing, 

what we want to solve, what we assume …
• prove: correctness of algorithms, 

time complexity, impossibility results …

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

