
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!



Recap of weeks 1–2

– Colouring paths



Model of computing: 
Send, receive, update
• All nodes in parallel: 

• send messages to their neighbours 
• receive messages from neighbours 
• update their state 

• Stopping state = final output 
• can send/receive, but not update any more



Example: 
Colouring paths
• 2-colouring paths: 

• possible in time O(n) 
• not possible in time o(n) 

• 3-colouring paths: 
• possible in time O(log* n) 
• not possible in time o(log* n)

Assuming 
“small” unique 

identifiers

Assuming 
some unique 

identifiers



Algorithm 
design techniques
• Symmetry breaking: use e.g. unique identifiers  

or randomness to break symmetry
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Algorithm 
design techniques
• Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts

15 27188 20 11 29

15 118 20 11 29



Algorithm 
design techniques
• Independence: non-adjacent nodes can 

act simultaneously in parallel without conflicts 

• Colouring → independence: each colour  
class is an independent set 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Algorithm 
design techniques
• Divide and conquer: split in smaller 

subproblems, solve recursively (in parallel)
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Algorithm 
design techniques
• Composition and reductions: 

• use “subroutines” 
• prove that a solution to problem X 

can be used to find a solution to problem Y 
• example: colourings  ←→  independent sets



Algorithm 
design techniques
• Simulate sequential algorithms: 

elect leader, process nodes one by one

L
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Algorithm 
design techniques
• Fast colour reduction

 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour) 
 i  = 2  (bits numbered 0, 1, 2, … from right) 
 b  = 0  (in my colour bit number i was 0) 
 c  = 2·2 + 0 = 4  (my new colour)

47

1234



Proving lower bounds: 
Locality
• State at time T only depends on 

initial information within distance T

T = 2

T = 1

T = 0



Proving lower bounds: 
Locality
• Same T-neighbourhood, 

same output after T rounds

3 421 7 5 6
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Example: 
Colouring paths
• 2-colouring paths: 

• possible in time O(n) 
• not possible in time o(n) 

• 3-colouring paths: 
• possible in time O(log* n) 
• not possible in time o(log* n)

Richard Cole and  
Uzi Vishkin (1986)

Nathan Linial (1992)



Week 3

– Graph-theoretic foundations



Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)
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E = { {1,2}, {1,3}, {2,3}, {3,4} }
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Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)

3
2

1
4

G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {3,4} }

G:



Graph G = (V, E)
V = set of nodes (finite, non-empty) 
E = set of edges (unordered pairs of nodes)
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E = ∅
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Graph G = (V, E)
V = set of nodes (a.k.a. “vertices”) 
E = set of edges 

Usually nodes are denoted with u, v 
(if more nodes needed: s, t, u, v, u’, v’, v1, v2, etc.),  
edges are denoted with e, e’, e1, e2, etc. 

Convention:  n = |V|,  m = |E|



Graph G = (V, E)
u and v are “adjacent nodes” 
= nodes u and v are “neighbours” 
= there is an edge {u, v}
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Graph G = (V, E)
e1 and e2 are “adjacent edges” 
= they share an endpoint 
= their intersection is non-empty
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E = { {1,2}, {1,3}, {2,3}, {3,4} }
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Graph G = (V, E)
Node v is “incident” to edge e  
= v is an endpoint of e 
= v is a member of e
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E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:



Graph G = (V, E)
Node of “degree” k 
= node adjacent to k nodes 
= node incident to k edges
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G = (V, E)
V = {1, 2, 3, 4}
E = { {1,2}, {1,3}, {2,3}, {3,4} }

G:
deg(1) = 2



Graph G = (V, E)
“k-regular graph” 
= all nodes have degree k 
= all nodes have k neighbours
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Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E
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Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E
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Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E
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Subgraph
Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):  
V’ ⊆ V and E’ ⊆ E

3
2

1
4

G:



Induced subgraph
Subgraph “induced” by nodes V’ 
= all nodes of V’ and all edges that connect them
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Induced subgraph
Subgraph “induced” by edges E’  
= all edges of E’ and all of their endpoints
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Induced subgraph
This is not a subgraph induced 
by any set of nodes — why?
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Induced subgraph
This is not a subgraph induced 
by any set of edges — why?
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Walks, paths, and 
connectivity
“Walk” = alternating sequence of incident  
nodes and edges
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w = (5, {5,1}, 1, {1,4}, 4, {4,5}, 5, {5,6}, 6)



Walks, paths, and 
connectivity
“Path” = walk visiting each node at most once  
“Length” of a path = number of edges
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Walks, paths, and 
connectivity
“Distance” = length of a shortest path
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w = (1, {1,5}, 5, {5,6}, 6)

dist(1, 6) = 2



Walks, paths, and 
connectivity
“Distance” = length of a shortest path 
(infinite if no such path exists)
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dist(1, 6) = ∞



Walks, paths, and 
connectivity
“Connected component” C: 
there is a path between any two nodes of C
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Walks, paths, and 
connectivity
Graph is “connected” if only 1 connected 
component
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Walks, paths, and 
connectivity
“Isolated node” = node of degree 0
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Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v
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Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v
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Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v
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Walks, paths, and 
connectivity
ball(v, r) = “radius-r neighbourhood of v” 
= nodes at distance at most r from node v
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ball(4, 2) = {4, 1, 5, 2}
ball(4, 3) = V



Walks, paths, and 
connectivity
“Cycle” = closed walk that visits each node  
and each edge at most once (length ≥ 3)
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Walks, paths, and 
connectivity
“Acyclic graph” = graph without any cycles
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Walks, paths, and 
connectivity
“Tree” = connected acyclic graph 
“Forest” = acyclic graph
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Isomorphism
“Isomorphism” from G1 = (V1, E1) to G2 = (V2, E2):  
bijection f: V1 → V2 that preserves adjacency
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Isomorphism
“Isomorphism” from G1 = (V1, E1) to G2 = (V2, E2):  
bijection f: V1 → V2 that preserves adjacency
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Isomorphism
Graphs are “isomorphic” if there exists 
an isomorphism form one to another
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Isomorphism
Graphs are “isomorphic” if there exists 
an isomorphism form one to another



Graph problems
“Independent set”: non-adjacent nodes
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Graph problems
“Vertex cover”: at least one endpoint of each 
edge (all edges are “covered” with these nodes)
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Graph problems
“Dominating set”: all other nodes  
have a neighbour in this set
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Graph problems
“Matching”: non-adjacent edges
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Graph problems
“Vertex colouring”: 
adjacent nodes have different colours
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Graph problems
“Vertex colouring”: 
each colour class is an independent set
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Graph problems
“Edge colouring”: 
adjacent edges have different colours
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Graph problems
“Edge colouring”: 
each colour class is a matching
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Graph problems
• More definitions in the textbook: 

• edge cover, edge dominating set 
• domatic partition, edge domatic partition 
• weak colouring 
• factorisation …



Maximisation problems
• maximal = cannot add anything 

• maximum = largest possible size 

• x-approximation = 
at least 1/x times maximum
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Matching Maximal matching

Maximum matching 2-approximation
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Minimisation problems
• minimal = cannot remove anything 

• minimum = smallest possible size 

• x-approximation = 
at most x times minimum
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Approximation
• Approximations are always feasible solutions! 

• “2-approximation of minimum vertex cover” 
• vertex cover 
• ≤ 2 times as large as minimum vertex cover



Graph theory and 
distributed algorithms
• Network ≈ graph: node ≈ computer, edge ≈ link 

• Graph theory used to: 
• define: model of computing, 

what we want to solve, what we assume … 
• prove: correctness of algorithms, 

time complexity, impossibility results …



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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