e Weeks 1-2: informal introduction

. network =path ™ —m—%__ =

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

Recap of weeks 1-2

— Colouring paths

Model of computing:
Send, receive, update

e All nodes in parallel:

» send messages to their neighbours
e receive messages from neighbours
« update their state

« Stopping state = final output

 can send/receive, but not update any more

Fxample:
Colouring paths

« 2-colouring paths:

» possible in time O(n) Assuming
some unique
 not possible in time o(n) identifiers
e 3-colouring paths:
Assuming

. possible in time O(log* n) “small” unique

» not possible in time o(log* n) identifiers

Algorithm
design techniques

 Symmetry breaking: use e.g. unique identifiers
or randomness to break symmetry

OO O-0O0-O0-0O-0-0
e
(18—~~~

Algorithm
design techniques

» Independence: non-adjacent nodes can
act simultaneously in parallel without conflicts

Algorithm
design techniques

» Independence: non-adjacent nodes can
act simultaneously in parallel without conflicts

e Colouring » independence: each colour
classis an independent set

Algorithm
design techniques

e Divide and conquer: splitin smaller
subproblems, solve recursively (in parallel)

Algorithm
design techniques

« Composition and reductions:

e Use “subroutines”

 prove that a solution to problem X
can be used to find a solution to problem Y

« example: colourings <> independent sets

Algorithm
design techniques

« Simulate sequential algorithms:
elect leader, process nodes one by one

L nOnOnOnOn®n®n®
e
O -O-OC

Algorithm
design techniques

e Fast colour reduction

¥ €=123=01111011; (my colour)

4 @ c1 = 47 00101111, (successor’s colour)
(bits numbered 0, 1, 2, ... from right)
T b 0 (in my colour bltnumberiwas 0)

L } €=22+0=4 (my new colour)

Proving lower bounds:
Locality

o State at time T only depends on
initial information within distance T

Proving lower bounds:
Locality

« Same T-neighbourhood,
same output after T rounds

¢ | @--+-O-E—®
" @D r-O-O-O—®

Fxample:
Colouring paths

o 2-colouring paths:
 possible in time O(n)
 not possible in time o(n)

) 3-colourmg paths: J Richard Cole and
» possible in time O(log* n) — Uz Vishkin (1986)

» not possible in time o(log* n) ﬁ Nathan Linial (1992)

Week 3

— Graph-theoretic foundations

Graph G=(V, E)

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

G = (V, E) G:
V=11, 2, 3, 4}
E=1{11,2},11,3},12,3},13,4} }

Graph G=(V, E)

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

G=(V,E) G: (1)

V=1{1, 2, 3, 4}
E={{1,2},{3,4}} @

Graph G=(V, E)

V = set of nodes (finite, non-empty)
E = set of edges (unordered pairs of nodes)

(Va E) G: @
{l: 2: 3) 4} @ @
2 @

G
V
E

Graph G=(V, E)

V = set of nodes (a.k.a. “vertices”)
E = set of edges

Usually nodes are denoted with u, v
(if more nodes needed: s, t, u, v, U’, V', v1, v2, etc.),
edges are denoted with e, €’, e1, e,, etc.

Convention: n=|V|, m=|E|

Graph G=(V, E)

u and v are “adjacent nodes”
= nodes u and v are “neighbours”
=thereis an edge {u, v}

G=(V, E) G:
V=1{1,2, 3,4}

o
E={{1,2},{1,3L, {23,341} (2

Graph G=(V, E)

e; and e; are “adjacent edges”
= they share an endpoint
= their intersection is non-empty

G=(V, E) G: (1

V=1{1,2,3,4) 3)—(@)

E={{1,2},{1,3},{2,3}, {3,4}} 2

Graph G=(V, E)

Node vis “incident” to edge e
=vis an endpoint of e
=vis amemberofe

G = (V, E) G:
V=11, 2, 3, 4}
E=1{11,2},11,3},12,3}, 13,4} }

Graph G=(V, E)

Node of “degree” k
= node adjacent to k nodes
= node incident to k edges

deg(1)

G =(V, E)
V=11,2,3,4} .9
E=111,2},11,3}, 12,3}, 13,4} }

Graph G=(V, E)

“k-regular graph”
= all nodes have degree k
= all nodes have k neighbours

G=(V, E) G: (1)
V={1,2,3,4}

®

E=111,2},12,3}, 13,4}, 11,4}] (2)

Subgraph

Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):
V’CVandE’CE

G’:

Subgraph

Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):
V’CVandE’CE

Subgraph

Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):
V’CVandE’CE

Subgraph

Graph G’ = (V’, E’) is a “subgraph” of G = (V, E):
V’CVandE’CE

Induced subgraph

Subgraph “induced” by nodes /’
= all nodes of IV’ and all edges that connect them

Induced subgraph

Subgraph “induced” by edges E’
= all edges of E’ and all of their endpoints

Induced subgraph

This is not a subgraph induced
by any set of nodes — why?

. h

Induced subgraph

This is not a subgraph induced
by any set of edges — why?

Walks, paths, and
connectivity

“Walk” = alternating sequence of incident
nodes and edges

W — (5) {5)1}) l) {1)4}) 4) {4)5}) 5) {5)6}) 6)
G:

2

3

O—

Walks, paths, and
connectivity

“Path” = walk visiting each node at most once
“Length” of a path = number of edges

W — (l) {1)4}) 4) {4)5}) 5) {5)6}) 6)
G:

2

3

O—

Walks, paths, and
connectivity

“Distance” = length of a shortest path

W - (l, {135}) 5) {5)6}) 6)
3

dist(1,6) =2

Walks, paths, and
connectivity

“Distance” = length of a shortest path
(infinite if no such path exists)

2
y @ dist(1, 6) =

Walks, paths, and
connectivity

‘“Connected component” C:
there is a path between any two nodes of C

NP

Walks, paths, and
connectivity

Graph is “connected” if only 1 connected
component

Walks, paths, and
connectivity

“Isolated node” = node of degree 0

Walks, paths, and
connectivity

ball(v, r) = “radius-r neighbourhood of v”
= nodes at distance at most r from node v

ball(4, 0) = {4}
ball(4,1) =14, 1, 5)
ball(4,2)=1{4, 1, 5, 2}
ball(4,3) =V

Walks, paths, and
connectivity

ball(v, r) = “radius-r neighbourhood of v”
= nodes at distance at most r from node v

ball(4, 0) = {4}
ball(4, 1) = {4, 1, 5}
ball(4,2) ={4, 1, 5, 2}
ball(4,3) =V

Walks, paths, and
connectivity

ball(v, r) = “radius-r neighbourhood of v”
= nodes at distance at most r from node v

ball(4, 0) = {4}

ball(4, 1) = {4, 1, 5}
ball(4,2) = {4, 1, 5, 2}
ball(4,3) =V

Walks, paths, and
connectivity

ball(v, r) = “radius-r neighbourhood of v”
= nodes at distance at most r from node v

. ball(4, 0) = {4}

> ball(4,1)={4, 1, 5}
 ball(4,2)=1{4, 1,5, 2}
i ball(4,3)=V

Walks, paths, and
connectivity

“Cycle” = closed walk that visits each node
and each edge at most once (length = 3)

Walks, paths, and
connectivity

“Acyclic graph” = graph without any cycles

® ® ©

Walks, paths, and
connectivity

“Tree” = connected acyclic graph
“Forest” = acyclic graph

G:@ (2 @
® ® G

Isomorphism

“Isomorphism” from G; = (V1, E1) to G, = (V2, E)):
bijection f: V; » V, that preserves adjacency

Isomorphism

“Isomorphism” from G; = (V1, E1) to G, = (V2, E)):
bijection f: V; » V, that preserves adjacency

Isomorphism

Graphs are “isomorphic” if there exists
an isomorphism form one to another

Isomorphism

Graphs are “isomorphic” if there exists
an isomorphism form one to another

b (5] [K

Graph problems

“Independent set”: non-adjacent nodes

Graph problems

‘“Vertex cover’’: at least one endpoint of each
edge (all edges are “covered” with these nodes)

Graph problems

“Dominating set”: all other nodes
have a neighbour in this set

Graph problems

“Matching”: non-adjacent edges

Graph problems

“Vertex colouring”:
adjacent nodes have different colours

Graph problems

“Vertex colouring”:
each colour class is an independent set

Graph problems

“Edge colouring”:
adjacent edges have different colours

Graph problems

“Edge colouring”:
each colour class is a matching

Graph problems

 More definitions in the textbook:

 edge cover, edge dominating set

« domatic partition, edge domatic partition
» weak colouring

» factorisation ...

Maximisation problems

o maximal = cannot add anything
o« maximum = largest possible size

e X-approximation =
at least 1/x times maximum

Matching Maximal matching

1 /@\E@ 1 2 3
O—5—® D—5)—
Maximum matching 2-approximation

G0 O—@—=G
INDNE - DNIN]

>/

Matching
O——©

1 2r—@3)

Maximal matching

Minimisation problems

o minimal = cannot remove anything
e« minimum = smallest possible size

e X-approximation =
at most x times minimum

Vertex cover (VC) Minimum VC

2-approximation

Approximation

« Approximations are always feasible solutions!

o “2-approximation of minimum vertex cover”

o Vertex cover
» <2 times as large as minimum vertex cover

Graph theory and
distributed algorithms

» Network = graph: node =~ computer, edge = link

o Graph theory used to:

. define: model of computing,
what we want to solve, what we assume ...

» prove: correctness of algorithms,
time complexity, impossibility results ...

e Weeks 1-2: informal introduction

. network =path ™ —m—%__ =

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

