- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

Week 4

- PN model: port numbering

Port-numbering model

Port-numbering model

- Simple and restrictive
- anonymous nodes, deterministic algorithms
- All other models are extensions of PN model:
- Chapter 5: add unique identifiers
- Chapter 6: add bandwidth restrictions
- Chapter 7: add randomness

Port-numbered network

Port-numbered network

Underlying graph

$\mathrm{V}=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\}$,
$\{b, c\},\{b, d\}\}$

Port-numbered network

$$
N=(V, P, p)
$$

$V=\{a, b, c, d\}$
$P=\{(a, 1),(a, 2),(b, 1),(b, 2)$, (b,3), (c,1), (c,2), (d,1)\}
$p(a, 1)=(c, 1), p(a, 2)=(b, 1), \ldots$

Underlying graph

$$
V=\{a, b, c, d\}
$$

$$
E=\{\{a, b\},\{a, c\},
$$

$$
\{b, c\},\{b, d\}\}
$$

Port-numbered network

$V=\{a, b, c, d\}$
$P=\{(a, 1),(a, 2),(b, 1),(b, 2)$, (b,3), (c,1), (c,2), (d,1)\}
$p(a, 1)=(c, 1), p(a, 2)=(b, 1), \ldots$

Underlying graph

$\mathrm{V}=\{a, b, c, d\}$
$E=\{\{a, b\},\{a, c\}$,
$\{b, c\},\{b, d\}\}$

Port-numbered network

$$
N=(V, P, p)
$$

$V=\{a, b, c, d\}$
$P=\{(a, 1),(a, 2),(b, 1),(b, 2)$, (b,3), (c,1), (c,2), (d,1)\}
$p(a, 1)=(c, 1), p(a, 2)=(b, 1), \ldots$

Underlying graph

$$
\mathrm{V}=\{a, b, c, d\}
$$

$$
E=\{\{a, b\},\{a, c\}
$$

$$
\{b, c\},\{b, d\}\}
$$

Port-numbered network

$$
N=(V, P, p)
$$

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& P=\{(a, 1),(a, 2),(b, 1),(b, 2), \\
& \quad(b, 3),(c, 1),(c, 2),(d, 1)\} \\
& p(a, 1)=(c, 1), p(a, 2)=(b, 1), \ldots
\end{aligned}
$$

Distributed algorithm in PN model

- Algorithm = state machine
- Input, States, Output, Msg: sets
- init $_{d}$, send ${ }_{d}$, receive ${ }_{d}$: functions for each degree $d=0,1,2, \ldots$

Distributed algorithm in PN model

- Input = set of local inputs
- States $=$ set of states
- Output = set of stopping states
- Msg = set of possible messages

Distributed algorithm in PN model

- init $_{d}$: Input \rightarrow States
how to initialise the state machine
- send_{d} : States \rightarrow Msg d
how to construct outgoing messages
- receive $_{d}$: States \times Msg $^{\boldsymbol{d}} \rightarrow$ States
how to process incoming messages

Distributed algorithm in PN model

- $\operatorname{init}_{d}(x)=y$
local state at time 0 if local input is x
- $\operatorname{send}_{d}(x)=\left(m_{1}, m_{2}, \ldots, m_{d}\right)$ what messages to send if local state is x
- $\operatorname{receive}_{d}\left(x, m_{1}, m_{2}, \ldots, m_{d}\right)=y$
new state after receiving these messages

Distributed algorithm in PN model

- Execution $=$ sequence of state vectors $X_{0}, X_{1}, X_{2}, \ldots$
- $x_{t}(u)=$ state of node u at time t
- $X_{0}(u)=\operatorname{init}_{d}(f(u))$
- $f(u)$ is the local input of u
- $d=$ degree of u

Distributed algorithm in PN model

- Assume $p(u, i)=(v, j)$

- $\boldsymbol{m}_{\boldsymbol{t}}(\boldsymbol{u}, \boldsymbol{i})=$ message received by u from port i
$=$ message sent by v to port j
$=$ component j of vector $\operatorname{send}_{d}\left(X_{t-1}(v)\right)$
- $x_{t}(u)=\operatorname{receive}_{d}\left(x_{t-1}(u), m_{t}(u, 1), \ldots, m_{t}(u, d)\right)$

Distributed algorithm in PN model

- Current state + send \rightarrow outgoing messages
- Outgoing messages $+p \rightarrow$ incoming messages
- Incoming messages + receive $\boldsymbol{\rightarrow}$ new state

Distributed algorithm in PN model

- For any algorithm A and any network N : execution $x_{0}, x_{1}, x_{2}, \ldots$ of A in N
- Stops in time T if $\boldsymbol{X}_{\boldsymbol{T}}(\boldsymbol{v}) \in$ Output for all \boldsymbol{v}
- $x_{T}(v)$ is the local output of v

"A solves problem X
 on graph family F "

- Take any graph G from graph family F
- Take any port-numbered network N such that \mathbf{G} is the underlying graph of \boldsymbol{N}
- If we run A in N, then A stops and outputs a valid solution of problem X

"A solves problem X
 on family F in time $T^{\prime \prime}$

- Take any graph G from graph family F
- Take any port-numbered network N such that \mathbf{G} is the underlying graph of \boldsymbol{N}
- If we run A in N, then A stops in time T and outputs a valid solution of problem X

${ }^{66}$ A solves X given Y
 on family F^{9}

- Take any graph G from graph family F
- Take any port-numbered network N such that G is the underlying graph of N
- If we run A in N with any valid input f then A stops and outputs a valid solution of problem X

Algorithm P3C:
 3-colouring paths

- Local maxima pick a new colour from \{1,2,3\}

Algorithm P3C:
3-colouring paths

- "Algorithm P3C solves problem X given Y on graph family F in time $O(|V|) "$
- $X=$ 3-colouring
- $\boldsymbol{Y}=$ colouring (with any number of colours)
- $F=$ path graphs

Algorithm P3C: 3-colouring paths

- Input $=\{1,2, \ldots\}$
- States $=\{1,2, \ldots\}$
- Output $=\{1,2,3\}$
- $\operatorname{Msg}=\{1,2, \ldots\}$

Algorithm P3C: 3-colouring paths

- $\operatorname{init}_{0}(x)=x$
- $\operatorname{init}_{1}(x)=x$
- $\operatorname{init}_{2}(x)=x$

Algorithm P3C:
 3-colouring paths

- $\operatorname{send}_{0}(x)=()$
- $\operatorname{send}_{1}(x)=(x)$
- $\operatorname{send}_{2}(x)=(x, x)$

Algorithm P3C: 3-colouring paths

- $\operatorname{receive}_{0}(x)=1$ if $x \notin$ Output
- $\operatorname{receive}_{0}(x)=x$ otherwise

Algorithm P3C:
3-colouring paths

- $\operatorname{receive}_{1}(x, y)=\min (\{1,2\} \backslash\{y\})$ if $x \notin$ Output and $x>y$
- $\operatorname{receive}_{1}(x, y)=x$ otherwise

Algorithm P3C:
3-colouring paths

- $\operatorname{receive}_{2}(x, y, z)=\min (\{1,2,3\} \backslash\{y, z\})$ if $x \notin$ Output and $x>y$ and $x>z$
- $\operatorname{receive}_{2}(x, y, z)=x$ otherwise

Key question

- What can be solved in PN model without any additional input?
- no colouring, unique identifiers, etc.
- no randomness
- Example: 3-approximation of minimum vertex cover

Algorithm VC3:
 Small vertex covers

- Original graph G: without any colouring
- Virrtuall graph G': 2-coloured
- Find a maximal matching M^{\prime} in \mathbf{G}^{\prime}
- Use M^{\prime} to find a 3-approximation of a minimum vertex cover in G

Construct virtual graph G'

Construct virtual graph \mathbf{G}^{\prime}

Find maximal matching M^{\prime} in graph \boldsymbol{G}^{\prime}

Map back to original graph

Vertex cover $=$ all nodes incident to M

Vertex cover = all nodes incident to M

Why vertex cover?

Edge not
 covered
 $\rightarrow M^{\prime}$ not maximal

Why within factor 3 of minimum vertex cover?

Virtual node: incident to at most 1 edge of M^{\prime}

Original node: incident to at most 2 edges of M

Virtual node: incident to at most 1 edge of M^{\prime}

Original node: incident to at most 2 edges of M

M = paths and/or cycles

OPT has to cover these!

Approximation ratio

Sum over all cycles \& paths of M

Algorithm VC3:
 Small vertex covers

- We can find 3-approximation of a minimum vertex cover in any graph
- ... assuming that we can find
a maximal matching in 2-coloured graphs!
- Easy to solve: algorithm BMM

Algorithm BMM: Maximal matching

- Blue nodes send proposals to their orange neighbours one by one
- using port numbers
- Orange nodes accept the first proposal that they get
- using port numbers to break ties

Algorithm BMM: Maximal matching

- Input: 2-coloured graph

Algorithm BMM: Maximal matching

- Unmatched blue nodes send proposals to port 1

Algorithm BMM: Maximal matching

- Orange nodes accept the first proposal that they get (giving priority to small ports)

Algorithm BMM: Maximal matching

- Unmatched blue nodes send proposals to port 2

Algorithm BMM: Maximal matching

- Orange nodes accept the first proposal that they get (giving priority to small ports)

Algorithm BMM: Maximal matching

- Continue until all blue nodes matched or rejected

Algorithm BMM: Maximal matching

- All nodes get ≤ 1 partners \rightarrow matching

Algorithm BMM: Maximal matching

- Maximality: blue node unmatched only if all orange neighbours reject (= already matched)

Algorithm BMM: Maximal matching

- Maximality: orange node unmatched only if no proposals (= blue neighbours are matched)

Summary

- Algorithm BMM: maximal matching in 2-coloured graphs
- Algorithm VC3: 3-approximation of minimum vertex covering in any graph
- VC3 uses BMM as a subroutine: virtual 2-coloured graph

Summary

- There are non-trivial problems that can be solved in the PN model
- without unique identifiers, colouring, etc.
- However, algorithm design much easier if we assume unique IDs
- our topic next week
- Weeks 1-2: informal introduction
- network = path 르르르르를
- Week 3: graph theory
- Weeks 4-7: models of computing
- what can be computed (efficiently)?
- Weeks 8-11: lower bounds
- what cannot be computed (efficiently)?
- Week 12: recap

