
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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!



Week 4

– PN model: port numbering



Port-numbering model



Port-numbering model
• Simple and restrictive 

• anonymous nodes, deterministic algorithms 

• All other models are extensions of PN model: 
• Chapter 5: add unique identifiers 
• Chapter 6: add bandwidth restrictions 
• Chapter 7: add randomness
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G = (V, E) N = (V, P, p)

V = {a, b, c, d}
E = {{a,b}, {a,c},
E = {{b,c}, {b,d}}

V = {a, b, c, d}
P = {(a,1), (a,2), (b,1), (b,2),
P = {(b,3), (c,1), (c,2), (d,1)}
p(a,1) = (c,1),  p(a,2) = (b,1),  …
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Distributed algorithm  
in PN model
• Algorithm = state machine 

• Input, States, Output, Msg:  sets 

• initd, sendd, received: 
functions for each degree d = 0, 1, 2, …



Distributed algorithm  
in PN model
• Input = set of local inputs 

• States = set of states 

• Output = set of stopping states 

• Msg = set of possible messages



Distributed algorithm  
in PN model
• initd: Input → States  

 how to initialise the state machine        

• sendd: States → Msgd 
 how to construct outgoing messages    

• received: States × Msgd → States 
 how to process incoming messages



Distributed algorithm  
in PN model
• initd(x) = y 

 local state at time 0 if local input is x             

• sendd(x) = (m1, m2, …, md) 
 what messages to send if local state is x 

• received(x, m1, m2, …, md) = y 
 new state after receiving these messages



Distributed algorithm  
in PN model
• Execution = sequence of state vectors 
x0, x1, x2, … 

• xt(u) = state of node u at time t 

• x0(u) = initd(f(u)) 
• f(u) is the local input of u 
• d = degree of u



Distributed algorithm  
in PN model
• Assume p(u, i) = (v, j) 

• mt(u, i) = message received by u from port i 
= message sent by v to port j 
= component j of vector sendd(xt−1(v)) 

• xt(u) = received(xt−1(u), mt(u, 1), …, mt(u, d))

vu
ji



Distributed algorithm  
in PN model
• Current state + send → outgoing messages 

• Outgoing messages + p → incoming messages 

• Incoming messages + receive → new state



Distributed algorithm  
in PN model
• For any algorithm A and any network N: 

execution x0, x1, x2, … of A in N 

• Stops in time T if xT(v) ∈ Output for all v 
• xT(v) is the local output of v



“A solves problem X 
on graph family F”
• Take any graph G from graph family F 

• Take any port-numbered network N  
such that G is the underlying graph of N 

• If we run A in N, then A stops and  
outputs a valid solution of problem X



“A solves problem X 
on family F in time T”
• Take any graph G from graph family F 

• Take any port-numbered network N  
such that G is the underlying graph of N 

• If we run A in N, then A stops in time T and 
outputs a valid solution of problem X



“A solves X given Y 
on family F”
• Take any graph G from graph family F 

• Take any port-numbered network N  
such that G is the underlying graph of N 

• If we run A in N with any valid input f 
then A stops and outputs a valid solution  
of problem X



Algorithm P3C: 
3-colouring paths
• Local maxima pick a new colour from {1,2,3}

15 27112 20 37 131

15 273312 20 37 1342



Algorithm P3C: 
3-colouring paths
• “Algorithm P3C solves problem X given Y 
“on graph family F in time O(|V|)” 

• X = 3-colouring 

• Y = colouring (with any number of colours) 

• F = path graphs



Algorithm P3C: 
3-colouring paths
• Input = {1, 2, …} 

• States = {1, 2, …} 

• Output = {1, 2, 3}  

• Msg = {1, 2, …}



Algorithm P3C: 
3-colouring paths
• init0(x) = x 

• init1(x) = x 

• init2(x) = x



Algorithm P3C: 
3-colouring paths
• send0(x) = () 

• send1(x) = (x) 

• send2(x) = (x, x)



Algorithm P3C: 
3-colouring paths
• receive0(x) = 1 if x ∉ Output 

• receive0(x) = x otherwise



Algorithm P3C: 
3-colouring paths
• receive1(x, y) = min({1, 2} \ {y}) 

if x ∉ Output and x > y 

• receive1(x, y) = x otherwise



Algorithm P3C: 
3-colouring paths
• receive2(x, y, z) = min({1, 2, 3} \ {y, z}) 

if x ∉ Output and x > y and x > z 

• receive2(x, y, z) = x otherwise



Key question
• What can be solved in PN model 

without any additional input? 
• no colouring, unique identifiers, etc. 
• no randomness 

• Example: 3-approximation 
of minimum vertex cover



Algorithm VC3: 
Small vertex covers
• Original graph G: without any colouring 

• Virtual graph G’: 2-coloured 

• Find a maximal matching M’ in G’ 

• Use M’ to find a 3-approximation of 
a minimum vertex cover in G
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Optimum

Algorithm outputs

3/2 4/2 5/3 2/1 3/1 4/2



Sum over all cycles & paths of M

Optimum

Approximation ratio

≤ 3·OPT for paths≤ 2·OPT for cycles

3/2 4/2 5/3 2/1 3/1 4/2



Algorithm VC3: 
Small vertex covers
• We can find 3-approximation of 

a minimum vertex cover in any graph 

• … assuming that we can find 
a maximal matching in 2-coloured graphs! 

• Easy to solve: algorithm BMM



Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one 
• using port numbers 

• Orange nodes accept 
the first proposal that they get 

• using port numbers to break ties



Algorithm BMM: 
Maximal matching
• Input: 2-coloured graph
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Algorithm BMM: 
Maximal matching
• Unmatched blue nodes 

send proposals to port 1
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Algorithm BMM: 
Maximal matching
• Orange nodes accept the first proposal 

that they get (giving priority to small ports)

1 2 11 2

1 2 1 2

3



Algorithm BMM: 
Maximal matching
• Unmatched blue nodes 

send proposals to port 2
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Algorithm BMM: 
Maximal matching
• Orange nodes accept the first proposal 

that they get (giving priority to small ports)
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Algorithm BMM: 
Maximal matching
• Continue until all blue nodes 

matched or rejected
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Algorithm BMM: 
Maximal matching
• All nodes get ≤ 1 partners  →  matching
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Algorithm BMM: 
Maximal matching
• Maximality: blue node unmatched only if all 

orange neighbours reject (= already matched)
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Algorithm BMM: 
Maximal matching
• Maximality: orange node unmatched only if 

no proposals (= blue neighbours are matched)
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Summary
• Algorithm BMM: maximal matching 

in 2-coloured graphs 

• Algorithm VC3: 3-approximation of  
minimum vertex covering in any graph 

• VC3 uses BMM as a subroutine:  
virtual 2-coloured graph



Summary
• There are non-trivial problems 

that can be solved in the PN model 
• without unique identifiers, colouring, etc. 

• However, algorithm design much 
easier if we assume unique IDs 

• our topic next week



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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