
• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

Week 4

– PN model: port numbering

Port-numbering model

Port-numbering model
• Simple and restrictive

• anonymous nodes, deterministic algorithms

• All other models are extensions of PN model:
• Chapter 5: add unique identifiers
• Chapter 6: add bandwidth restrictions
• Chapter 7: add randomness

Port-numbered  
network

!

!!

!
!

1 2 3
!

1

!

1 2

!

1 2

=

Port-numbered  
network

!

!!

!
!

1 2 3
!

1

!

1 2

!

1 2

=

c

db

a
b

1 2 3
d
1

a
1 2

c
1 2

Underlying
graph

Port-numbered
network

G = (V, E) N = (V, P, p)

V = {a, b, c, d}
E = {{a,b}, {a,c},
E = {{b,c}, {b,d}}

V = {a, b, c, d}
P = {(a,1), (a,2), (b,1), (b,2),
P = {(b,3), (c,1), (c,2), (d,1)}
p(a,1) = (c,1), p(a,2) = (b,1), …

c

db

a
b

1 2 3
d
1

a
1 2

c
1 2

Underlying
graph

Port-numbered
network

G = (V, E) N = (V, P, p)

V = {a, b, c, d}
E = {{a,b}, {a,c},
E = {{b,c}, {b,d}}

V = {a, b, c, d}
P = {(a,1), (a,2), (b,1), (b,2),
P = {(b,3), (c,1), (c,2), (d,1)}
p(a,1) = (c,1), p(a,2) = (b,1), …

c

db

a
b

1 2 3
d
1

a
1 2

c
1 2

Underlying
graph

Port-numbered
network

G = (V, E) N = (V, P, p)

V = {a, b, c, d}
E = {{a,b}, {a,c},
E = {{b,c}, {b,d}}

V = {a, b, c, d}
P = {(a,1), (a,2), (b,1), (b,2),
P = {(b,3), (c,1), (c,2), (d,1)}
p(a,1) = (c,1), p(a,2) = (b,1), …

b

a

c

db

a

1 2 3
d
1

1 2

c
1 2

Underlying
graph

Port-numbered
network

G = (V, E) N = (V, P, p)

V = {a, b, c, d}
E = {{a,b}, {a,c},
E = {{b,c}, {b,d}}

V = {a, b, c, d}
P = {(a,1), (a,2), (b,1), (b,2),
P = {(b,3), (c,1), (c,2), (d,1)}
p(a,1) = (c,1), p(a,2) = (b,1), …

Distributed algorithm  
in PN model
• Algorithm = state machine

• Input, States, Output, Msg: sets

• initd, sendd, received: 
functions for each degree d = 0, 1, 2, …

Distributed algorithm  
in PN model
• Input = set of local inputs

• States = set of states

• Output = set of stopping states

• Msg = set of possible messages

Distributed algorithm  
in PN model
• initd: Input → States  

 how to initialise the state machine

• sendd: States → Msgd 
 how to construct outgoing messages

• received: States × Msgd → States 
 how to process incoming messages

Distributed algorithm  
in PN model
• initd(x) = y 

 local state at time 0 if local input is x

• sendd(x) = (m1, m2, …, md) 
 what messages to send if local state is x

• received(x, m1, m2, …, md) = y 
 new state after receiving these messages

Distributed algorithm  
in PN model
• Execution = sequence of state vectors 
x0, x1, x2, …

• xt(u) = state of node u at time t

• x0(u) = initd(f(u))
• f(u) is the local input of u
• d = degree of u

Distributed algorithm  
in PN model
• Assume p(u, i) = (v, j)

• mt(u, i) = message received by u from port i 
= message sent by v to port j 
= component j of vector sendd(xt−1(v))

• xt(u) = received(xt−1(u), mt(u, 1), …, mt(u, d))

vu
ji

Distributed algorithm  
in PN model
• Current state + send → outgoing messages

• Outgoing messages + p → incoming messages

• Incoming messages + receive → new state

Distributed algorithm  
in PN model
• For any algorithm A and any network N: 

execution x0, x1, x2, … of A in N

• Stops in time T if xT(v) ∈ Output for all v
• xT(v) is the local output of v

“A solves problem X 
on graph family F”
• Take any graph G from graph family F

• Take any port-numbered network N  
such that G is the underlying graph of N

• If we run A in N, then A stops and  
outputs a valid solution of problem X

“A solves problem X 
on family F in time T”
• Take any graph G from graph family F

• Take any port-numbered network N  
such that G is the underlying graph of N

• If we run A in N, then A stops in time T and 
outputs a valid solution of problem X

“A solves X given Y 
on family F”
• Take any graph G from graph family F

• Take any port-numbered network N  
such that G is the underlying graph of N

• If we run A in N with any valid input f 
then A stops and outputs a valid solution  
of problem X

Algorithm P3C: 
3-colouring paths
• Local maxima pick a new colour from {1,2,3}

15 27112 20 37 131

15 273312 20 37 1342

Algorithm P3C: 
3-colouring paths
• “Algorithm P3C solves problem X given Y 
“on graph family F in time O(|V|)”

• X = 3-colouring

• Y = colouring (with any number of colours)

• F = path graphs

Algorithm P3C: 
3-colouring paths
• Input = {1, 2, …}

• States = {1, 2, …}

• Output = {1, 2, 3}

• Msg = {1, 2, …}

Algorithm P3C: 
3-colouring paths
• init0(x) = x

• init1(x) = x

• init2(x) = x

Algorithm P3C: 
3-colouring paths
• send0(x) = ()

• send1(x) = (x)

• send2(x) = (x, x)

Algorithm P3C: 
3-colouring paths
• receive0(x) = 1 if x ∉ Output

• receive0(x) = x otherwise

Algorithm P3C: 
3-colouring paths
• receive1(x, y) = min({1, 2} \ {y}) 

if x ∉ Output and x > y

• receive1(x, y) = x otherwise

Algorithm P3C: 
3-colouring paths
• receive2(x, y, z) = min({1, 2, 3} \ {y, z}) 

if x ∉ Output and x > y and x > z

• receive2(x, y, z) = x otherwise

Key question
• What can be solved in PN model 

without any additional input?
• no colouring, unique identifiers, etc.
• no randomness

• Example: 3-approximation 
of minimum vertex cover

Algorithm VC3: 
Small vertex covers
• Original graph G: without any colouring

• Virtual graph G’: 2-coloured

• Find a maximal matching M’ in G’

• Use M’ to find a 3-approximation of 
a minimum vertex cover in G

3

42

1

3

42

1

3

42

1

G

G’

Construct
virtual
graph G’

3

42

1

3

42

1

3

42

1

G

G’
3

4

2

1
3

4

2

1=

Construct
virtual
graph G’

3

42

1

3

42

1

3

42

1

G

G’
3

4

2

1
3

4

2

1=

Find maximal
matching M’
in graph G’

M’

3

42

1

3

42

1

3

42

1

G

G’
3

4

2

1
3

4

2

1=

Map back to
original graph

M’

M

3

42

1

3

42

1

3

42

1

G

G’
3

4

2

1
3

4

2

1=

Vertex cover =
all nodes
incident to M

M’

M

3

42

1

3

42

1

3

42

1

G

G’
3

4

2

1
3

4

2

1=

Vertex cover =
all nodes
incident to M

M’

M

3

42

1

3

42

1

3

42

1

G

G’

Why
vertex
cover?

M’

M

3

42

1

3

42

1

3

42

1

G

G’

Edge not
covered
→ M’ not
maximal

M’

M

3

42

1

3

42

1

3

42

1

G

G’

Why within
factor 3 of
minimum
vertex cover?

M’

M

3

42

1

3

42

1

3

42

1

G

G’

Virtual node:
incident to
at most 1
edge of M’M’

M

3

42

1

3

42

1

3

42

1

G

G’

Original node:
incident to
at most 2
edges of M

Virtual node:
incident to
at most 1
edge of M’M’

M

3

42

1

G

Original node:
incident to
at most 2
edges of M

M = paths
and/or cycles

OPT has to
cover these!

M

3

42

1

G

M

Optimum

Algorithm outputs

3/2 4/2 5/3 2/1 3/1 4/2

Sum over all cycles & paths of M

Optimum

Approximation ratio

≤ 3·OPT for paths≤ 2·OPT for cycles

3/2 4/2 5/3 2/1 3/1 4/2

Algorithm VC3: 
Small vertex covers
• We can find 3-approximation of 

a minimum vertex cover in any graph

• … assuming that we can find 
a maximal matching in 2-coloured graphs!

• Easy to solve: algorithm BMM

Algorithm BMM: 
Maximal matching
• Blue nodes send proposals to their  

orange neighbours one by one
• using port numbers

• Orange nodes accept 
the first proposal that they get

• using port numbers to break ties

Algorithm BMM: 
Maximal matching
• Input: 2-coloured graph

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Unmatched blue nodes 

send proposals to port 1

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Orange nodes accept the first proposal 

that they get (giving priority to small ports)

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Unmatched blue nodes 

send proposals to port 2

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Orange nodes accept the first proposal 

that they get (giving priority to small ports)

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Continue until all blue nodes 

matched or rejected

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• All nodes get ≤ 1 partners → matching

1 2 11 2

1 2 1 2

3

Algorithm BMM: 
Maximal matching
• Maximality: blue node unmatched only if all 

orange neighbours reject (= already matched)

1 2

1

1 2

1 2 1 2 3

Algorithm BMM: 
Maximal matching
• Maximality: orange node unmatched only if 

no proposals (= blue neighbours are matched)

1 2 11 2

1 2 1 2

3

Summary
• Algorithm BMM: maximal matching 

in 2-coloured graphs

• Algorithm VC3: 3-approximation of  
minimum vertex covering in any graph

• VC3 uses BMM as a subroutine:  
virtual 2-coloured graph

Summary
• There are non-trivial problems 

that can be solved in the PN model
• without unique identifiers, colouring, etc.

• However, algorithm design much 
easier if we assume unique IDs

• our topic next week

• Weeks 1–2: informal introduction
• network = path

• Week 3: graph theory

• Weeks 4–7: models of computing
• what can be computed (efficiently)?

• Weeks 8–11: lower bounds
• what cannot be computed (efficiently)?

• Week 12: recap

! !!!
!

