
• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap

! !!!
!



Mid-term exams
• Mid-term exams: 

• Thursday, 22 October 2015, 9:00am 
• Thursday, 10 December 2015, 9:00am 

• Register on time (one week before) in Oodi



Week 5

– LOCAL model:  
unique identifiers



LOCAL model
• Idea: nodes have unique names 

• Names arbitrary but fairly short 

• IPv4 addresses, IPv6 addresses, 
MAC addresses, IMEI numbers…



LOCAL model
• LOCAL model = 

PN model + unique identifiers 

• Assumption: unique identifiers 
are given as local inputs



LOCAL model
• Algorithm has to work correctly 

for any port numbering and 
for any unique identifiers 

• Adversarial setting: 
• you design algorithms 
• adversary picks graph, port numbering, IDs



LOCAL model
• Fixed constant c 

• In a network with n nodes, 
identifiers are a subset of {1, 2, …, nc} 

• Equivalently: unique identifiers 
can be encoded with O(log n) bits



PN vs. LOCAL
• PN: few problems can be solved 

• LOCAL: all problems can be solved 
(on connected graphs)



PN vs. LOCAL
• PN: “what can be computed?” 

• LOCAL: “what can be computed efficiently?”



Solving everything
• All nodes learn everything about the graph 

• O(diam(G)) rounds 

• All nodes solve the problem locally 
(e.g., by brute force) 

• 0 rounds



Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9
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Gathering everything
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Gathering everything
• E(v, r) = “edges within distance r from v” 

= one endpoint at distance at most r − 1 from v

6 854 7 9
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Gathering everything
• Each node v can learn E(v, 1) in 1 round 

• send own ID to all neighbours

6 854 7 9

321 E(7, 1) = { {3, 7}, {6, 7}, {7, 8} }



Gathering everything
• Each node v can learn E(v, 1) in 1 round 

• send own ID to all neighbours
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Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round 

• send E(v, r) to all neighbours, take union
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Gathering everything
• Given E(v, r), we can learn E(v, r + 1) in 1 round 

• send E(v, r) to all neighbours, take union

3 521 4 6 7 8 9

E(6, 1)E(4, 1)
E(5, 1)

E(2, 1)
E(3, 1)E(1, 1) E(7, 1) E(9, 1)

E(8, 1)

E(5, 2)



Gathering everything
• One of the following holds: 

• E(v, r) ≠ E(v, r + 1):  learn something new 
• E(v, r) = E(v, r + 1) = E:  we can stop 

• Proof idea: 
• if E(v, r) ≠ E, there are unseen edges adjacent 

to E(v, r), and they will be in E(v, r + 1)



Example: 
Graph colouring
• We can solve everything in O(diam(G)) time 

• What can be solved much faster? 

• Example: graph colouring with Δ + 1 colours 
• can be solved in O(Δ + log* n) rounds 
• today: how to do it in O(Δ2 + log* n) rounds?



Example: 
Graph colouring
• Setting: LOCAL model, n nodes, 

any graph of maximum degree Δ 

• We assume that n and Δ are known 
• if not known: guess some n and Δ, 

colour what you can, increase n and Δ, …



Directed 
pseudoforest
• Directed graph, outdegree ≤ 1 

• Each node has 
at most one “successor” 

• Easy to 3-colour in time O(log* n), 
we will use this as subroutine



Directed 
pseudoforest
• Colouring directed pseudoforests 

almost as easy as colouring directed paths 

• Recall path-colouring algorithm P3CBit…



Algorithm P3CBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour) 
 i  = 2  (bits numbered 0, 1, 2, … from right) 
 b  = 0  (in my colour bit number i was 0) 

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234



Directed 
pseudoforest
• Colouring directed pseudoforests 

almost as easy as colouring directed paths 

• Recall path-colouring algorithm P3CBit: 
• nodes only look at their successor 
• my new colour ≠ successor’s new colour 
• works equally well in directed pseudoforests!



Algorithm DPBit: 
Fast colour reduction
 c0  =  123  = 011110112  (my colour) 
 c1  =  47  = 001011112  (successor’s colour) 
 i  = 2  (bits numbered 0, 1, 2, … from right) 
 b  = 0  (in my colour bit number i was 0) 

 c  = 2·2 + 0 = 4  (my new colour)  

k = 8, reducing from 28 = 256 to 2·8 = 16 colours

47

1234



Directed 
pseudoforests
• Unique identifiers = nO(1) colours 

• Iterate DPBit for O(log* n) steps  
to reduce the number of colours to 6 

• Iterate DPGreedy for 3 steps  
to reduce the number of colours to 3



Algorithm DPGreedy: 
Slow colour reduction
1. Shift: predecessors have the same colour 
2. Recolour local maxima
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Directed 
pseudoforests
• Unique identifiers = nO(1) colours 

• Iterate DPBit for O(log* n) steps  
to reduce the number of colours to 6 

• Iterate DPGreedy for 3 steps  
to reduce the number of colours to 3



Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation 

• Port numbers → partition edges 
in Δ directed pseudoforests 

• 3-colour pseudoforests in time O(log* n) 

• Merge pseudoforests in time O(Δ2)



Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation 

• edges directed from smaller to larger ID
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Algorithm BDColour: 
Fast graph colouring
• Port numbers → partition edges 

in Δ directed pseudoforests 
• kth outgoing edge → kth pseudoforest
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Algorithm BDColour: 
Fast graph colouring
• 3-colour pseudoforests in time O(log* n) 

• all in parallel 
• each node has Δ roles

9

5

2

7

1

2

1

3

2

2

2

3

1

2

2

2



Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add first forest: trivial

1

2

1

3

1

2

1

3

2

2

2

3

1

2

2

2



Algorithm BDColour: 
Fast graph colouring
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add first forest: trivial
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours → reduce
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours → reduce

2

3

1

4

1

2

2

2



Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours → reduce
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Algorithm BDColour: 
Fast graph colouring
• Merge pseudoforests in time O(Δ2) 

• maintain colouring with Δ + 1 colours 
• add one forest → 3(Δ + 1) colours → reduce 

• Each merge + reduce takes O(Δ) rounds 

• There are O(Δ) such steps



Algorithm BDColour: 
Fast graph colouring
• Unique identifiers → orientation 

• Port numbers → partition edges 
in Δ directed pseudoforests 

• 3-colour pseudoforests in time O(log* n) 

• Merge pseudoforests in time O(Δ2)



Summary:  
LOCAL model
• Unique identifiers 

• Everything can be computed 

• What can be computed fast? 
• example: graph colouring



Summary:  
LOCAL model
• Unique identifiers 

• Everything can be computed 
• cheating with large messages 
• what if we can only use small messages? 
• this is covered next week…



• Weeks 1–2: informal introduction 
• network = path 

• Week 3: graph theory 

• Weeks 4–7: models of computing 
• what can be computed (efficiently)? 

• Weeks 8–11: lower bounds 
• what cannot be computed (efficiently)? 

• Week 12: recap
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