e Weeks 1-2: informal introduction

-

» network = path o W

4 |

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

Mid-term exams

e Mid-term exams:

» Thursday, 22 October 2015, 9:00am
» Thursday, 10 December 2015, 9:00am

» Register on time (one week before) in Oodi

Week 5

— LOCAL model:
unique identitiers

LOCAL model

e ldea: nodes have unique names
« Names arbitrary but fairly short

e IPv4 addresses, IPv6 addresses,
MAC addresses, IMEl numbers...

LOCAL model

« LOCAL model =
PN model + unique identifiers

o Assumption: unique identifiers
are given as local inputs

LOCAL model

e Algorithm has to work correctly
for any port numbering and
for any unique identifiers

e Adversarial setting:

» you design algorithms
 adversary picks graph, port numbering, IDs

LOCAL model

e Fixed constantc

e In a network with n nodes,
identifiers are a subset of {1, 2, ..., n‘}

e Equivalently: unique identifiers
can be encoded with O(log n) bits

PN vs. LOCAL

 PN: few problems can be solved

« LOCAL: all problems can be solved
(on connected graphs)

PN vs. LOCAL

« PN: “what can be computed?”

« LOCAL: “what can be computed efficiently?”

Solving everything

» All nodes learn everything about the graph
« O(diam(G)) rounds
e All nodes solve the problem locally
(e.g., by brute force)

e 0 rounds

Gathering everything

e E(v, r) = “edges within distance r from v”’
= one endpoint at distance at mostr-1 from v

E(7, 1)

Gathering everything

e E(v, r) = “edges within distance r from v”’
= one endpoint at distance at mostr-1 from v

E(7, 2)

Gathering everything

e E(v, r) = “edges within distance r from v”’
= one endpoint at distance at mostr-1 from v

E(7, 3)

D=2~
SRS

[

Gathering everything

e E(v, r) = “edges within distance r from v”’
= one endpoint at distance at mostr-1 from v

E(7, 4)

02036
S

[

Gathering everything

e« Each node v can learn E(v, 1) in 1 round

» send own ID to all neighbours

1 2 E(7) l) = { {3) 7}) {6) 7}) {7) 8} }

O
D@+

Gathering everything

e« Each node v can learn E(v, 1) in 1 round

» send own ID to all neighbours

E(L,1) E@E,1) E(5,1) E(T,1) E9,1

| [

E2,1) E(4,1) E6,1) @8 1)

Gathering everything

e Given E(v, r), we can learn E(v,r+1)in 1 round

» send E(v, r) to all neighbours, take union

(L, 1) . E(3 1) E(5,1) E(T,1) E(9 1)

_

E(4 1) E(6, 1) E(

ONORONOY : "oEGEONG

Gathering everything

e Given E(v, r), we can learn E(v,r+1)in 1 round
» send E(v, r) to all neighbours, take union
E(5, 2)
E(l 1) | E(3 1) E(5, 1) E(7,1) | E(9 1)

_

E(4 1) E(6,1) 1) E(8,

ONORONOY : "oEGEONG

Gathering everything

e One of the following holds:
e E(v,r)ZE(v,r+1): learn something new
e E(v,r)=E(v,r+1)=E: we can stop

 Proofidea:

o if E(v, r) Z E, there are unseen edges adjacent
to E(v, r), and they will be in E(v, r + 1)

Fxample:
Graph colouring

« We can solve everything in O(diam(G)) time
« What can be solved much faster?

 Example: graph colouring with A + 1 colours

» can be solved in O(A + log* n) rounds
» today: howtodoitin O(A%+ log* n) rounds?

Fxample:
Graph colouring

e Setting: LOCAL model, n nodes,
any graph of maximum degree A

e We assume that n and A are known

» if not known: guess some n and A,

colour what you can, increase n and 4, ...

Directed

pseudoforest e
O\O/O\O
e Directed graph, outdegree <1 3

/O

« Each node has Q /O\o
at most one ‘“successor’’ Ci
O\o/
» Easy to 3-colour in time O(log* n), 2)

we will use this as subroutine "o

Directed
pseudoforest

« Colouring directed pseudoforests
almost as easy as colouring directed paths

e Recall path-colouring algorithm P3CBIt...

Algorithm P3CBit:
Fast colour reduction

Co=123=01111011, (my colour) 9
c1= 47=00101111, (successor’s colour) A *

i =2 (bitsnumbered0, 1, 2, ... from right) @

b =0 (in my colour bit numberwas 0)
v

c=2-2+0=4 (my new colour) '1

k =38, reducing from 2% =256 to 2-8 = 16 colours

Directed
pseudoforest

« Colouring directed pseudoforests
almost as easy as colouring directed paths

e Recall path-colouring algorithm P3CBit:

« nodes only look at their successor
« my new colour # successor’s new colour
» works equally well in directed pseudoforests!

Algorithm DPBIt:
Fast colour reduction

Co=123=01111011, (my colour)

c1= 47=00101111, (successor’s colour)
i =2 (bitsnumbered0, 1, 2, ... from right)
b =0 (in my colour bit number i was 0)

c=2:2+0=4 (my new colour)

k =38, reducing from 2% =256 to 2-8 = 16 colours

Directed
pseudoforests

» Unique identifiers = n°?) colours

o Iterate DPBIt for O(log* n) steps
to reduce the number of colours to 6

e Iterate DPGreedy for 3 steps
to reduce the number of colours to 3

Algorithm DPGreeady:
Slow colour reduction

1. Shift: predecessors have the same colour

2. Recolour local maxima
\o<0<o<o|

'\/o\o 5 ,{ @x%/\g
o/l /2 /2

Directed
pseudoforests

» Unique identifiers = n°?) colours

o Iterate DPBIt for O(log* n) steps
to reduce the number of colours to 6

e Iterate DPGreedy for 3 steps
to reduce the number of colours to 3

Algorithm BDColour:
Fast graph colouring

« Unique identifiers » orientation

» Port numbers -» partition edges
in A directed pseudoforests

 3-colour pseudoforests in time O(log* n)

« Merge pseudoforests in time O(A?)

Algorithm BDColour:
Fast graph colouring

« Unique identifiers » orientation

 edges directed from smaller to larger ID

NN

Algorithm BDColour:
Fast graph colouring

 Port numbers > partition edges
in A directed pseudoforests

» kth outgoing edge > kth pseudoforest

Algorithm BDColour:
Fast graph colouring

 3-colour pseudoforests in time O(log* n)

o allin parallel

e each node has A roles

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours

« add first forest: trivial

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
o add first forest: trivial

R

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
o add first forest: trivial

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours

« add one forest > 3(A + 1) colours

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours - reduce

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours - reduce

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours - reduce

AN

Algorithm BDColour:
Fast graph colouring

« Merge pseudoforests in time O(A?)

» maintain colouring with A + 1 colours
« add one forest > 3(A + 1) colours - reduce

 Each merge + reduce takes O(A) rounds

e« There are O(A) such steps

Algorithm BDColour:
Fast graph colouring

« Unique identifiers » orientation

» Port numbers -» partition edges
in A directed pseudoforests

 3-colour pseudoforests in time O(log* n)

« Merge pseudoforests in time O(A?)

Summary:;
LOCAL model

« Unique identifiers
» Everything can be computed

« What can be computed fast?

» example: graph colouring

summary:
LOCAL model

« Unique identifiers

» Everything can be computed

 cheating with large messages
» what if we can only use small messages?
» this is covered next week...

e Weeks 1-2: informal introduction

-

» network = path o W

4 |

e« Week 3: graph theory

o Weeks 4-7: models of computing

« what can be computed (efficiently)?

e Weeks 8-11: lower bounds

« what cannot be computed (efficiently)?

e Week 12: recap

