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Foreword

This book is an introduction to the theory of distributed al-
gorithms. The topics covered include:

• Models of computing: precisely what is a distributed
algorithm, and what do we mean when we say that a
distributed algorithm solves a certain computational prob-
lem?

• Algorithm design and analysis: which computational
problems can be solved with distributed algorithms, which
problems can be solved efficiently, and how to do it?

• Computability and computational complexity: which
computational problems cannot be solved at all with dis-
tributed algorithms, which problems cannot be solved
efficiently, and why is this the case?

No prior knowledge of distributed systems is needed. A ba-
sic knowledge of discrete mathematics and graph theory is
assumed, as well as familiarity with the basic concepts from
undergraduate-level courses on models on computation, com-
putational complexity, and algorithms and data structures.
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Mathematical
Preliminaries

In the analysis of distributed algorithms, we will encounter
power towers and iterated logarithms.

Power Tower

We write power towers with the notation

i2= 22·
·2

,

where there are i twos in the tower. Power towers grow very
fast; for example,

12= 2,
22= 4,
32= 16,
42= 65536,
52= 265536 > 1019728.
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Iterated Logarithm

The iterated logarithm of x , in notation log∗ x or log∗(x), is
defined recursively as follows:

log∗(x) =

¨

0 if x ≤ 1,

1+ log∗(log2 x) otherwise.

In essence, this is the inverse of the power tower function. For
all positive integers i, we have

log∗(i2) = i.

As power towers grow very fast, iterated logarithms grow very
slowly; for example,

log∗ 2= 1, log∗ 16= 3, log∗ 1010 = 5,

log∗ 3= 2, log∗ 17= 4, log∗ 10100 = 5,

log∗ 4= 2, log∗ 65536= 4, log∗ 101000 = 5,

log∗ 5= 3, log∗ 65537= 5, log∗ 1010000 = 5, . . .

xiii
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Informal Introduction
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Chapter 1

Warm-Up — Positive
Results

We will start this book with an informal introduction to dis-
tributed algorithms. We will formalise the model of comput-
ing later, starting with some graph-theoretic preliminaries in
Chapter 3, and then followed by the definitions of three models
of distributed computing in Chapters 4–6. However, in the first
two chapters the intuitive idea of computers that can exchange
messages with each others is sufficient.

1.1 Running Example: Colouring Paths

Imagine that we have n computers (or nodes as they are usually
called) that are connected to each other with communication
channels so that the network topology is a path:

The computers can exchange messages with their neighbours.
All computers run the same algorithm — this is the distributed
algorithm that we will design. The algorithm will decide what
messages a computer sends in each step, how it processes the
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messages that it receives, when it stops, and what it outputs
when it stops.

In this example, the task is to find a proper colouring of the
path with 3 colours. That is, each node has to output one of the
colours, 1, 2, or 3, so that neighbours have different colours —
here is an example of a proper solution:

12 22 33 13

1.2 Challenges of Distributed Algorithm

With a bird’s-eye view of the entire network, colouring a path
looks like a very simple task: just start from one endpoint and
assign colours 1 and 2 alternately. However, in a real-world
computer network we usually do not have all-powerful entities
that know everything about the network and can directly tell
each computer what to do.

Indeed, when we start a networked computer, it is typically
only aware of itself and the communication channels that it can
use. In our simple example, the endpoints of the path know
that they have one neighbour:

All other nodes along the path just know that they have two
neighbours:

3



For example, the second node along the path looks no different
from the third node, yet somehow they have to produce different
outputs.

Obviously, the nodes have to exchange messages with each
other in order to figure out a proper solution. Yet this turns out
to be surprisingly difficult even in the case of just n= 2 nodes:

If we have two identical computers connected to each other
with a single communication link, both computers are started
simultaneously, and both of them run the same deterministic
algorithm, how could they ever end up in different states?

The answer is that it is not possible, without some additional
assumptions. In practice, we could try to rely on some real-
world imperfections (e.g., the computers are seldom perfectly
synchronised), but in the theory of distributed algorithms we
often assume that there is some explicit way to break symmetry
between otherwise identical computers. In this chapter, we will
have a brief look at two common assumption:

• each computer has a unique name,
• each computer has a source of random bits.

In subsequent chapters we will then formalise these models, and
develop a theory that will help us understand precisely what
kind of tasks can be solved in each case, and how fast (the model
with unique names will be discussed in detail in Chapter 5, and
randomised algorithms will be discussed in Chapter 7).
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1.3 Colouring with Unique Identifiers

There are plenty of examples of real-world networks with glob-
ally unique identifiers: public IPv4 and IPv6 addresses are glob-
ally unique identifiers of Internet hosts, devices connected to an
Ethernet network have globally unique MAC addresses, mobile
phones have their IMEI numbers, etc. The common theme is
that the identifiers are globally unique, and the numbers can
be interpreted as natural numbers:

3312 3720 2715 1342

With the help of unique identifiers, it is now easy to design an
algorithm that colours a path. Indeed, the unique identifiers
already form a colouring with a large number of colours! All
that we need to do is to reduce the number of colours to 3.

We can use the following simple strategy. In each step, a
node is active if it is a “local maximum”, i.e., its current colour
is larger than the current colours of its neighbours:

3312 3720 2715 1342

The active nodes will then pick a new colour from the colour
palette {1,2,3}, so that it does not conflict with the current
colours of their neighbours. This is always possible, as each
node in a path has at most 2 neighbours, and we have 3 colours
in our colour palette:

112 3720 2715 131
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Then we simply repeat the same procedure until all nodes have
small colours. First find the local maxima:

112 3720 2715 131

And then recolour the local maxima with colours from {1, 2, 3}:

12 220 2715 21

Continuing this way we will eventually have a path that is
properly coloured with colours {1, 2,3}:

12 220 2715 21

12 220 115 21

12 220 115 21

12 22 115 21

12 22 115 21

12 22 13 21

Note that we may indeed be forced to use all three colours.
So far we have sketched an algorithm idea, but we still have

to show that we can actually implement this idea as a distributed
algorithm. Remember that there is no central control; nobody
has a bird’s-eye view of the entire network. Each node is an
independent computer, and all computers are running the same
algorithm. What would the algorithm look like?
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Repeat forever:

• Send message c to all neighbours.

• Receive messages from all neighbours.
Let M be the set of messages received.

• If c /∈ {1,2, 3} and c >max M :
Let c←min ({1, 2,3} \M).

Table 1.1: Algorithm P3C: 3-colouring a path.

Let us fix some notation. Each node maintains a variable c
that contains its current colour. Initially, c is equal to the unique
identifier of the node. Then computation proceeds as shown in
Table 1.1; we will call this algorithm P3C.

This shows a typical structure of a distributed algorithm:
an infinite send–receive–compute loop. A computer is seen as
a state machine; here c is the variable that holds the current
state of the computer. In this algorithm, we have three stopping
states: c = 1, c = 2, and c = 3. It is easy to verify that the
algorithm is indeed correct in the following sense:

(a) In any path graph, for any assignment of unique identifi-
ers, all computers will eventually reach a stopping state.

(b) Once a computer reaches a stopping state, it never changes
its state.

7



The second property is very important: each computer has to
know when it is safe to announce its output and stop.

Our algorithm may look a bit strange in the sense that com-
puters that have “stopped” are still sending messages. However,
it is fairly straightforward to rewrite the algorithm so that you
could actually turn off computers that have stopped. The ba-
sic idea is that nodes that are going to switch to a stopping
state first inform their neighbours about this. Each node will
memorise which of its neighbours have already stopped and
what where their final colours. Implementing this idea is left as
Exercise 1.2, and you will later see in Chapter 4 that this can
be done for any distributed algorithm. Hence, without loss of
generality, we can play by the following simple rules:

• The nodes are state machines that repeatedly send mes-
sages to their neighbours, receive messages from their
neighbours, and update their state — all nodes perform
these steps synchronously in parallel.

• Some of the states are stopping states, and once a node
reaches a stopping state, its no longer changes its state.

• Eventually all nodes have to reach stopping states, and
these states must form a correct solution to the problem
that we want to solve.

Note that here a “state machine” does not necessarily refer to a
finite-state machine. We can perfectly well have a state machine
with infinitely many states. Indeed, in the example of Table 1.1
the set of possible states was the set of all positive integers.
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1.4 Faster Colouring with Unique Identifiers

So far we have seen that with the help of unique identifiers, it is
possible to find a 3-colouring of a path. However, the algorithm
that we designed is not particularly efficient in the worst case.
To see this, consider a path in which the unique identifiers
happen to be assigned in an increasing order:

1312 3320 2715 4237

In such a graph, in each round there is only one node that is
active. In total, it will take Θ(n) rounds until all nodes have
stopped.

However, it is possible to colour paths much faster. The
algorithm is easier to explain if we have a directed path:

3312 3720 2715 1342

That is, we have a consistent orientation in the path so that each
node has at most one “predecessor” and at most one “successor”.
The orientations are just additional information that we will use
in algorithm design — nodes can always exchange information
along each edge in either direction. Once we have presented
the algorithm for directed paths, we will then generalise it to
undirected paths in Exercise 1.3.

1.4.1 Algorithm Overview

For the sake of concreteness, let us assume that the nodes are
labelled with 128-bit unique identifiers — for example, IPv6 ad-
dresses. In most real-world networks 2128 identifiers is certainly

9



more than enough, but the same idea can be easily generalised
to arbitrarily large identifiers if needed.

Again, we will interpret the unique identifiers as colours;
hence our starting point is a path that is properly coloured with
2128 colours. In the next section, we will present algorithm
called P3CBit that reduces the number of colours from 2x to 2x
in one round, for any positive integer x . Hence in one step we
can reduce the number of colours from 2128 to 2 ·128 = 256. In
just four iterations we can reduce the number of colours from
2128 to 6, as follows:

2128→ 2 · 128= 28,

28→ 2 · 8= 24,

24→ 2 · 4= 23,

23→ 2 · 3= 6.

Once we have found a 6-colouring, we can then apply the al-
gorithm of Table 1.1 to reduce the number of colours from 6 to
3. It is easy to see that this will take at most 3 rounds. Overall,
we have an algorithm that reduces the number of colours from
2128 to 3 in only 7 rounds — no matter how many nodes we
have in the path. Compare this with algorithm P3C, which may
take millions of rounds for paths with millions of nodes.

1.4.2 Algorithm for One Step

Let us now show how algorithm P3CBit reduces the number of
colours from 2x to 2x in one round; as the name suggests, we
will be doing some bit manipulations here. First, each node
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sends its current colour to its predecessor. After this step, each
node u knows two values:

• c0(u), the current colour of the node,
• c1(u), the current colour of its successor.

If a node does not have any successor, it just proceeds as if it
had a successor of some colour different from c0(u).

We can interpret both c0(u) and c1(u) as x-bit binary strings
that represent integers from range 0 to 2x−1. We know that the
current colour of node u is different from the current colour of
its successor, i.e., c0(u) 6= c1(u). Hence in the two binary strings
c0(u) and c1(u) there is at least one bit that differs. Define:

• i(u) ∈ {0,1, . . . , x − 1} is the index of the first bit that
differs between c0(u) and c1(u),

• b(u) ∈ {0,1} is the value of bit number i(u) in c0(u).

Finally, node u chooses

c(u) = 2i(u) + b(u)

as its new colour.

1.4.3 An Example

Let x = 8, i.e., nodes are coloured with 8-bit numbers. Assume
that we have a node u of colour 123, and u has a successor v of
colour 47; see Table 1.2 for an illustration. In binary, we have

c0(u) = 011110112,

c1(u) = 001011112.

11



node input output
u c0(u) c1(u) i(u) b(u) c(u)

· · · · · · · · · · · · · · · · · ·
↓
© 011110112 001011112 2 0 4
↓
© 001011112 011010112 2 1 5
↓
© 011010112 · · · · · · · · · · · ·
↓
· · · · · ·
· · · · · · · · · · · · · · · · · ·
↓
© 011110112 001011112 2 0 4
↓
© 001011112 011011112 6 0 12
↓
© 011011112 · · · · · · · · · · · ·
↓
· · · · · ·

Table 1.2: Algorithm P3CBit: reducing the number of colours
from 2x to 2x , for x = 8. There are two interesting cases: either
i(u) is the same for two neighbours (first example), or they are
different (second example). In the first case, the values b(u) will
differ, and in the second case, the values i(u) will differ. In both
cases, the final colours c(u) will be different.
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Counting from the least significant bit, node u can see that:

• bit number 0 is the same in both c0(u) and c1(u),
• bit number 1 is the same in both c0(u) and c1(u),
• bit number 2 is different in c0(u) and c1(u).

Hence we will set

i(u) = 2, b(u) = 0, c(u) = 2 · 2+ 0= 4.

That is, node picks 4 as its new colour. If all other nodes run the
same algorithm, this will be a valid choice — as we will argue
next, both the predecessor and the successor of u will pick a
colour that is different from 4.

1.4.4 Correctness

Clearly, the value c(u) is in the range {0, 1, . . . , 2x−1}. However,
it is not entirely obvious that these values actually produce a
proper 2x-colouring of the path. To see this, consider a pair
of nodes u and v so that v is the successor of u. By definition,
c1(u) = c0(v). We need to show that c(u) 6= c(v). There are two
cases — see Table 1.2 for an example:

(a) i(u) = i(v) = i: We know that b(u) is bit number i of
c0(u), and b(v) is bit number i of c1(u). By the definition
of i(u), we also know that these bits differ. Hence b(u) 6=
b(v) and c(u) 6= c(v).

(b) i(u) 6= i(v): No matter how we choose b(u) ∈ {0, 1} and
b(v) ∈ {0, 1}, we have c(u) 6= c(v).

13



We have argued that c(u) 6= c(v) for any pair of two adjacent
nodes u and v, and the value of c(u) is an integer between 0
and 2x −1 for each node u. Hence the algorithm finds a proper
2x-colouring in one round.

1.4.5 Iteration

The algorithm that we presented in this chapter can reduce the
number of colours from 2x to 2x in one round; put otherwise,
we can reduce the number of colours from x to O(log x) in one
round.

If we iterate the algorithm, we can reduce the number of
colours from x to 6 in O(log∗ x) rounds, after which we can
use algorithm P3C from Section 1.3 to reduce the number of
colours from 6 to 3 in 3 rounds — the details of the analysis
are left as Exercises 1.5 and 1.6.

1.5 Colouring with Randomised Algorithms

So far we have used unique identifiers to break symmetry. An-
other possibility is to use randomness. Here is a simple random-
ised distributed algorithm that finds a proper 3-colouring of a
path: nodes try to pick colours from the palette {1,2,3} uni-
formly at random, and they stop once they succeed in picking a
colour that is different from the colours of their neighbours.
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1.5.1 Algorithm

Let us formalise the algorithm that we sketched above; we will
call this algorithm P3CRand. Each node u has a flag s(u) ∈ {0, 1}
indicating whether it has stopped, and a variable c(u) ∈ {1, 2, 3}
that stores its current colour. If s(u) = 1, a node has stopped
and its output is c(u).

In each step, each node u with s(u) = 0 picks a new colour
c(u) ∈ {1,2,3} uniformly at random. Then each node sends
its current colour c(u) to its neighbours. If c(u) is different
from the colours of its neighbours, u will set s(u) = 1 and stop;
otherwise it tries again in the next round.

1.5.2 Analysis

It is easy to see that in each step, a node u will stop with prob-
ability at least 1/3: after all, no matter what its neighbours
do, there is at least one choice for c(u) ∈ {1, 2, 3} that does not
conflict with its neighbours.

Fix a positive constant C . Consider what happens if we run
the algorithm for

k = (C + 1) log3/2 n

steps, where n is the number of nodes in the network. Now the
probability that a given node u has not stopped after k steps is
at most

(1− 1/3)k =
1

nC+1
.
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By the union bound, the probability that there is a node that
has not stopped is at most 1/nC . Hence with probability at least
1− 1/nC , all nodes have stopped after k steps.

1.5.3 With High Probability

Let us summarise what we have achieved: for any given constant
C , there is an algorithm that runs for k = O(log n) rounds
and produces a proper 3-colouring of a path with probability
1− 1/nC . We say that the algorithm runs in time O(log n) with
high probability — here the phrase “high probability” means that
we can choose any constant C and the algorithm will succeed
at least with a probability of 1 − 1/nC . Note that even for
a moderate value of C , say, C = 10, the success probability
approaches 1 very rapidly as n increases.

1.6 Summary

In this chapter we have seen three different distributed al-
gorithms for 3-colouring paths:

• Algorithm P3C, Section 1.3: A deterministic algorithm
for paths with unique unique identifiers. Runs in O(n)
rounds, where n is the number of nodes.

• Algorithm P3CBit, Section 1.4: A deterministic algorithm
for directed paths with unique unique identifiers. Runs in
O(log∗ x) rounds, where x is the largest identifier.
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• Algorithm P3CRand, Section 1.5: A randomised algorithm
for paths without unique identifiers. Runs in O(log n)
rounds with high probability.

We will explore and analyse these algorithms and their variants
in more depth in the exercises.

1.7 Exercises

Exercise 1.1 (maximal independent sets). A maximal independ-
ent set is a set of nodes I that satisfies the following properties:

• for each node v ∈ I , none of its neighbours are in I ,
• for each node v /∈ I , at least one of its neighbours is in I .

Here is an example — the nodes labelled with a “1” form a
maximal independent set:

01 11 00 10

Your task is to design a distributed algorithm that finds a max-
imal independent set in any path graph, for each of the following
settings:

(a) a deterministic algorithm for paths with arbitrarily large
unique identifiers,

(b) a fast deterministic algorithm for directed paths with 128-
bit unique identifiers,

(c) a randomised algorithm that does not need unique iden-
tifiers.
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In part (a), use the techniques presented in Section 1.3, in part
(b), use the techniques presented in Section 1.4, and in part (c),
use the techniques presented in Section 1.5.

Exercise 1.2 (stopped nodes). Rewrite the greedy algorithm of
Table 1.1 so that stopped nodes do not need to send messages.
Be precise: explain your algorithm in detail so that you could
easily implement it.

Exercise 1.3 (undirected paths). Algorithm P3CBit finds a 3-
colouring very fast in any directed path. Design an algorithm
that is almost as fast and works in any path, even if the edges
are not directed.

. hint A

Exercise 1.4 (randomised and fast). Algorithm P3CRand finds
a 3-colouring in time O(log n) with high probability, and it does
not need any unique identifiers. Can you design a randomised
algorithm that finds a 3-colouring in time o(log n) with high
probability? You can assume that n is known.

. hint B

Exercise 1.5 (asymptotic analysis). Analyse algorithm P3CBit:

(a) Assume that we are given a colouring with x colours.
Show that we can find a 3-colouring in time O(log∗ x).

(b) Assume that we are given unique identifiers that are poly-
nomial in n, that is, there is a constant c = O(1) such that
the unique identifiers are a subset of {1, 2, . . . , nc}. Show
that we can find a 3-colouring in time O(log∗ n).
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? Exercise 1.6 (tight analysis). Analyse algorithm P3CBit: As-
sume that we are given a colouring with x colours, for any
integer x ≥ 6. Show that we can find a 6-colouring in time
log∗(x), and therefore a 3-colouring in time log∗(x) + 3.

. hint C

? Exercise 1.7 (oblivious algorithms). Algorithm P3C works
correctly even if we do not know how many nodes there are in
the network, or what is the range of unique identifiers — we
say that the algorithm is oblivious. Adapt algorithm P3CBit so
that it is also oblivious.

. hint D

1.8 Bibliographic Notes

Algorithm P3CBit was originally presented by Cole and Vishkin [6]
and further refined by Goldberg et al. [10]; in the literature, it is
commonly known as the “Cole–Vishkin algorithm”. Exercise 1.7
was inspired by Korman et al. [13].
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Chapter 2

Warm-Up — Negative
Results

The defining property of fast distributed algorithms is locality:
if we run a distributed algorithm for t time steps, the nodes
can only be aware of the information that is available within
distance at most t from them. In this chapter we will see why
this is the case, and what consequences it has.

2.1 Locality

Locality is easiest to understand through an example. Consider
the following network, familiar from the previous section:

3312 3720 2715 1342

Let us focus on the node number 15. Initially, there is only one
node in the network that is aware of the existence of such a
node — the node itself. Let us highlight the set of nodes that
are aware of node 15 at time t = 0:

3312 3720 2715 1342
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All other nodes are completely unaware of the existence of
node number 15. For example, for all that they know, we might
equally well have the following instance, in which we do not
have any node with identifier 15:

3312 3720 2711 1342

Now let us consider what happens at time t = 1, after
one communication round. In this round, all nodes can ex-
change messages with their neighbours, simultaneously in par-
allel. Nodes can send anything that they know to their neigh-
bours. In particular, node 15 can inform its neighbours about
its existence, so after one round, its neighbours 33 and 20 may
also be aware of it:

3312 3720 2715 1342

However, the crucial observation is that only these three nodes
can be aware of the existence of node 15. For example, consider
node 27. Before the first round, this node and its neighbours
were unaware of node 15; hence during the first round node
27 could not have learned anything about node 15 from any of
its neighbours.

By a similar reasoning, at time t = 2, after two communic-
ation rounds, the set of nodes that may be aware of node 15
consists of precisely those nodes that are within distance t = 2
from it:

3312 3720 2715 1342
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And at time t = 3 this information may have propagated up to
distance t = 3, but not any further:

3312 3720 2715 1342

Of course the same reasoning holds for any node, and for any
information related to the node. For example, here is a picture
that shows the nodes that are within distance 3 from node 13:

3312 3720 2715 1342

At time t = 3, precisely these nodes can be aware of the exist-
ence of node 13, and precisely these nodes can know that node
13 is a node of degree 1, i.e., it has got only one neighbour.

Naturally, if a node stops after time t, whatever output it
produces can only depend on what it knows, and as we have
seen, a node can only know information that is available at
distance t. This is the crux of locality in distributed computing:

• time and distance are interchangeable,

• in a fast algorithm, nodes have to make decisions based
on the information that is available near them.

2.2 Locality and 2-Colouring

Recall from Chapter 1 that there are very fast algorithms for
3-colouring paths. However, there is no need to settle for 3
colours — a path can be always coloured with 2 colours:
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21 22 11 21

2.2.1 Algorithm for 2-Colouring Paths

With some thought, we can also come up with a distributed
algorithm that finds a 2-colouring of a path with n nodes in
time O(n). An algorithm that works along these lines should
do the trick; let us call this algorithm P2C:

• First, the endpoints of the path (i.e., nodes of degree 1)
send their identifiers to their neighbours. Other nodes
forward this information until all nodes along the path
learn the identifiers of the endpoints. This takes n − 1
communication rounds.

3312 3720 2715 1342
12
13

12
13

12
13

12
13

12
13

12
13

12
13

12
13

• Now the endpoints know each other’s identifiers. We elect
the endpoint with the smaller identifier as the leader.

3312 3720 2715 1342
12
13

12
13

12
13

12
13

12
13

12
13

12
13

12
13

• Finally, the leader colours itself with colour 1, sends its
colour to its neighbour, and stops. The neighbour re-
sponds by picking colour 2, etc.; after n− 1 rounds, we
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have coloured all nodes with alternating colours 1 and 2,
and all nodes have stopped.

21 22 11 21

However, in comparison with algorithm P3CBit from Section 1.4,
this is very slow. Hence we can ask the following question: is
it really necessary to spend Ω(n) rounds in order to find a 2-
colouring of a path?

2.2.2 Lower Bound for 2-Colouring

To reach a contradiction, suppose that there is a deterministic
algorithm A that runs in time o(n). In particular, there is a
number n0 such that for any number of nodes n ≥ n0, the
running time of algorithm A is at most (n− 3)/2. Pick some
integer k ≥ n0/2, and consider two paths: path G contains 2k
nodes, numbered 1, 2, . . . , 2k, and path H contains 2k+1 nodes,
numbered

1,2, . . . , k, 2k+ 1, k+ 1, k+ 2, . . . , 2k.

Here is an example for k = 3:

21 64 53

21 57 43 6

G:

H:

By assumption, the running time t is at most k−1 rounds in both
cases. In particular, node number 1 is only aware of the first
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k nodes along the path, and it must produce its output based
on what it sees. As what it sees is the same in G and H, we
conclude that node 1 picks the same colour in both instances:

21 64 53

21 57 43 6

G:

H:

By a similar reasoning, node 2k (i.e., the last node of the path)
has the same neighbourhood up to distance t, and therefore it
also has to produces the same output in both cases:

21 64 53

21 57 43 6

G:

H:

However, now we reach a contradiction. In path H, in any
proper 2-colouring nodes 1 and 2k have the same colour — for
example, both of them are of colour 1, as shown in the following
picture:

21 22 11 1H:

If algorithm A works correctly, it follows that nodes 1 and 2k
must produce the same output in path H. However, then it
follows that nodes 1 and 2k produces the same output also in
G, too, but this cannot happen in any proper 2-colouring of G.
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?1 1? ??

21 22 11 1

G:

H:

We conclude that algorithm A fails to find a proper 2-colouring
in at least one of these instances.

In summary, we have shown that there is no deterministic
algorithm that finds a 2-colouring in time o(n), even if the
algorithm can use unique identifiers. On the other hand, there
is a deterministic algorithm that solves the problem in time O(n);
we conclude that the distributed computational complexity of
2-colouring paths is precisely Θ(n).

While we have focused on deterministic algorithms here,
we can use similar ideas to prove an analogous result for ran-
domised algorithms, too — this is left as an exercise.

2.3 Locality and 3-Colouring

In the previous section we saw that 2-colouring paths with
distributed algorithms takes Θ(n) rounds. In Chapter 1 we
saw that 3-colouring is possible much faster. Let us now study
precisely how much faster it is.

For the sake of concreteness, we will consider the following
case:

• we have a directed path with n nodes, so that each node
has at most one successor and at most one predecessor,

• the unique identifiers are a permutation of {1,2, . . . , n}.
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In this case algorithm P3CBit finds a 3-colouring in time O(log∗ n).
We will now show that this is optimal: any algorithm A that
solves this problem requires Ω(log∗ n) rounds.

2.3.1 Proof Overview

Fix any positive integer n. We will prove the claim as follows.

(a) We define the following concept: “k-ary c-colouring func-
tion”.

(b) We show that if A is a distributed algorithm that finds a 3-
colouring in time T , then there exists a k-ary 3-colouring
function for k = 2T + 1.

(c) We show that k + 1 ≥ log∗ n for any k-ary 3-colouring
function.

Now it follows that

2T + 2≥ log∗(n),

or put otherwise,

T ≥
1
2

log∗(n)− 1.
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2.3.2 Colouring Functions

Let k and c be positive integers. We say that a function f is a
k-ary c-colouring function if

f (x1, x2, . . . , xk) ∈ {1,2, . . . , c}
for all 1≤ x1 < x2 < . . .< xk ≤ n,

(2.1)

f (x1, x2, . . . , xk) 6= f (x2, x3, . . . , xk+1)

for all 1≤ x1 < x2 < . . .< xk+1 ≤ n.
(2.2)

For example, here is a 2-ary 3-colouring function for n= 5:

f (1, 2) = 1, f (1,3) = 2, f (1,4) = 2, f (1,5) = 2,

f (2,3) = 2, f (2,4) = 2, f (2,5) = 2,

f (3,4) = 1, f (3,5) = 1,

f (4,5) = 3.

You can verify that this is indeed a colouring function; prop-
erty (2.1) clearly holds, and property (2.2) can be verified by
considering all cases:

f (1, 2) 6= f (2, 3), f (1, 2) 6= f (2, 4), f (1, 2) 6= f (2, 5),

f (1,3) 6= f (3, 4), f (1, 3) 6= f (3, 5), f (1, 4) 6= f (4, 5),

f (2,3) 6= f (3, 4), f (2, 3) 6= f (3, 5), f (2, 4) 6= f (4, 5),

f (3,4) 6= f (4, 5).

2.3.3 From Algorithms to Colouring Functions

Now consider a distributed algorithm A that finds a 3-colouring
in time T . Let k = 2T + 1. We will show how to use A to
construct a k-ary 3-colouring function f .
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To this end, let 1 ≤ x1 < x2 < . . . < xk ≤ n. Construct a
path in which we have k consecutive nodes with unique iden-
tifiers x1, x2, . . . , xk, in this order — here is an illustration for
T = 2:

x1 x5x3 x4x2

f(x1, x2, x3, x4, x5)

Then apply algorithm A to find a colouring of this path, and
define that f (x1, x2, . . . , xk) is the output of node xT+1. Note
that the output of xT+1 only depends on the identifiers x1, x2, . . . ,
xk, so this is well-defined: we will get the same output, regard-
less of how we choose the unique identifiers of the remaining
n− k nodes.

Now we need to argue that f is indeed a colouring func-
tion. Property (2.1) clearly holds. To verify property (2.2), let
1 ≤ x1 < x2 < . . . < xk+1 ≤ n. Consider a path P in which
the identifiers are given in an increasing order — here is an
illustration for T = 2:

x1 x5x3 x4x2 x6

x1 x5x3 x4x2

x5x3 x4x2 x6

P:

P1:

P2:

f(x1, x2, x3, x4, x5)

f(x2, x3, x4, x5, x6)
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We have defined function f so that

• f (x1, x2, . . . , xk) = the output of node xT+1 in path P,

• f (x2, x3, . . . , xk+1) = the output of node xT+2 in path P.

Here it is crucial that the output of a node only depends on its
radius-T neighbourhood. Algorithm A finds a proper colouring
of any path; therefore the output of xT+1 has to be different
from the output of xT+2. We conclude that

f (x1, x2, . . . , xk) 6= f (x2, x3, . . . , xk+1).

Function f is indeed a k-ary 3-colouring function.

2.3.4 Observations

We have seen that colouring functions are closely related to
algorithms that colour paths. Before we continue, let us make
the following observations:

• Given a distributed algorithm that finds a 3-colouring of
a path in time T , we can construct a k-ary 3-colouring
function for k = 2T + 1.

• The converse is not necessarily true. A colouring function
only needs to colour properly path segments that have
unique identifiers given in an increasing order, while an
algorithm has to handle all kinds of paths (as well as all
corner cases, such as nodes near the endpoints of a path).

• A distributed algorithm implies a k-ary colouring function
for an odd k.
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• Colouring functions are well-defined also for even values
of k.

While we are interested in algorithms, it turns out that colouring
functions are easier to analyse. It is sufficient to show that
colouring functions for very small values of k do not exist —
then it follows that algorithms for very small values of T do not
exist, either.

2.3.5 Simple Base Case

We will now show that k-ary 3-colouring functions do not exist
if k is too small. We start with a trivial lemma that shows that
with k = 1 we cannot do much.

Lemma 2.1. If f is a 1-ary c-colouring function, then we must
have c ≥ n.

Proof. Note that a 1-ary c-colouring function is a mapping

f : {1,2, . . . , n} → {1,2, . . . , c}.

If c < n, there are collisions: we can find some x1 and x2 with
x1 < x2 and f (x1) = f (x2), which contradicts property (2.2).

2.3.6 Recursive Step

The key element of the proof is the following lemma. Inform-
ally, given any colouring function f , we can always construct
another colouring function g that is “faster” (smaller number
of arguments) but “worse” (larger number of colours).
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Lemma 2.2. If f is a k-ary c-colouring function, we can construct
a (k− 1)-ary 2c-colouring function g.

Proof. First, let h be a bijection from the subsets of {1, 2, . . . , c}
to the integers {1, 2, . . . , 2c}. For example,

h(∅) = 1, h({1}) = 2, h({2}) = 3, h({1, 2}) = 4, . . .

Second, define function g ′ as follows:

g ′(x1, x2, . . . , xk−1) =
�

f (x1, x2, . . . , xk−1, xk) : xk > xk−1

	

.

Finally, let g be h ◦ g ′, that is,

g(x1, x2, . . . , xk−1) = h(g ′(x1, x2, . . . , xk−1)).

We claim that this function g is indeed a (k − 1)-ary 2c-
colouring function. Clearly it takes k − 1 arguments and it
satisfies property (2.1). The interesting part is property (2.2).
Let 1 ≤ x1 < x2 < . . . < xk ≤ n. By way of contradiction,
suppose that

g(x1, x2, . . . , xk−1) = g(x2, x3, . . . , xk).

As h is a bijection, this implies

g ′(x1, x2, . . . , xk−1) = g ′(x2, x3, . . . , xk). (2.3)

Let α= f (x1, x2, . . . , xk). From the definition of g ′ we have

α ∈ g ′(x1, x2, . . . , xk−1).
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By assumption (2.3), this implies

α ∈ g ′(x2, x3, . . . , xk).

But then we must have some xk < xk+1 ≤ n such that

α= f (x2, x3, . . . , xk+1).

However, we also had

α= f (x1, x2, . . . , xk).

That is, f cannot be a colouring function.

2.3.7 Completing the Proof

Assume that f1 is a k-ary 3-colouring function. Certainly it
is also a k-ary 4-colouring function, and 4 = 22 (recall that
we use the notation i2 for power towers). We can now apply
Lemma 2.2 iteratively to obtain

• a (k− 1)-ary 32-colouring function A2,
• a (k− 2)-ary 42-colouring function A3, . . .
• a 1-ary k+12-colouring function Ak.

By Lemma 2.1, we must have k+12≥ n, which implies k+ 1≥
log∗ n.

This completes the proof. Recall that if A is a distributed
algorithm that finds a 3-colouring of any path in time T , then
there exists a k-ary 3-colouring function for k = 2T + 1. We
have now shown that

k+ 1= 2T + 2≥ log∗ n.
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2.4 Exercises

Exercise 2.1 (counting). Consider the following problem: count-
ing the number of nodes in a path. That is, we are given a path
with some unknown number of nodes. All nodes have to stop
and output n, the number of nodes in the path.

(a) Design a deterministic distributed algorithm that solves
the counting problem in time O(n). You can assume that
the nodes have unique identifiers.

(b) Prove that it is not possible to solve this problem in time
o(n).

Exercise 2.2 (known n). In Section 2.2 we saw that 2-colouring
a path with n nodes takes Ω(n) rounds. Show that the claim
holds even if n is known. That is, all nodes are initially aware
of their own identifier and of the exact number of nodes in the
path.

Exercise 2.3 (randomised algorithms). Show that there is no
randomised distributed algorithm that finds a 2-colouring in
time o(n) with probability at least 0.9.

Exercise 2.4 (maximal independent sets). Recall the definition
of a maximal independent set from Exercise 1.1. Prove that
it is not possible to find a maximal independent set with a
deterministic algorithm in time o(log∗ n). Show that this holds
even if we have unique identifiers from set {1, 2, . . . , n}.

Exercise 2.5 (large independent sets). An independent set is
a set of nodes I such that for each node v ∈ I , none of its

34



neighbours are in I . Consider a path with n nodes. Assume that
we have unique identifiers that are bounded by some polynomial
of n, that is, there is a constant c such that the unique identifiers
are from {1, 2, . . . , nc}.

(a) Show that it is trivial to find some independent set in O(1)
time with a deterministic distributed algorithm.

(b) Show that there exists an independent set with at least
n/2 nodes.

(c) Show that finding an independent set with at least n/2
nodes takes Θ(n) rounds.

(d) Design a deterministic distributed algorithm that finds
an independent set with at least n/10 nodes in time
O(log∗ n), with the help of unique identifiers. You can
assume that the identifiers are bounded by a polynomial
in n.

(e) Design a randomised distributed algorithm that finds an
independent set so that the expected number of nodes in
the output is at least n/10 and the running time of the
algorithm is O(1).

? Exercise 2.6 (tight bounds). Consider the following case: we
have a directed path with n nodes, and the unique identifiers are
a permutation of {1,2, . . . , n}. We have seen that 3-colouring
the path with a deterministic distributed algorithm takes at least

1
2

log∗(n)− 1
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rounds. On the other hand, the analysis of Exercise 1.6 shows
that colouring is possible in

log∗(n) +O(1)

rounds. Close the factor-2 gap between the bounds, and design
a distributed algorithm that finds a 3-colouring in

1
2

log∗(n) +O(1)

rounds.
. hint E

2.5 Bibliographic Notes

The negative result of Section 2.3 is due to Linial [15]; our
presentation follows a more streamlined version of the proof [14].
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Part II

Graphs

37



Chapter 3

Graph-Theoretic
Foundations

The study of distributed algorithms is closely related to graphs:
we will interpret a computer network as a graph, and we will
study computational problems related to this graph. In this
section we will give a summary of the graph-theoretic concepts
that we will use.

3.1 Terminology

A simple undirected graph is a pair G = (V, E), where V is the
set of nodes (vertices) and E is the set of edges. Each edge e ∈ E
is a 2-subset of nodes, that is, e = {u, v} where u ∈ V , v ∈ V ,
and u 6= v. Unless otherwise mentioned, we assume that V is a
non-empty finite set; it follows that E is a finite set. Usually, we
will draw graphs using circles and lines — each circle represents
a node, and a line that connects two nodes represents an edge.

3.1.1 Adjacency

If e = {u, v} ∈ E, we say that node u is adjacent to v, nodes u
and v are neighbours, node u is incident to e, and edge e is also
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vu e e1
e2

Figure 3.1: Node u is adjacent to node v. Nodes u and v are
incident to edge e. Edge e1 is adjacent to edge e2.

incident to u. If e1, e2 ∈ E, e1 6= e2, and e1 ∩ e2 6=∅ (i.e., e1 and
e2 are distinct edges that share an endpoint), we say that e1 is
adjacent to e2.

The degree of a node v ∈ V in graph G is

degG(v) =
�

�

�

u ∈ V : {u, v} ∈ E
	�

�.

That is, v has degG(v) neighbours; it is adjacent to degG(v)
nodes and incident to degG(v) edges. A node v ∈ V is isolated
if degG(v) = 0. Graph G is k-regular if degG(v) = k for each
v ∈ V .

3.1.2 Subgraphs

Let G = (V, E) and H = (V2, E2) be two graphs. If V2 ⊆ V and
E2 ⊆ E, we say that H is a subgraph of G. If V2 = V , we say that
H is a spanning subgraph of G.

If V2 ⊆ V and E2 = { {u, v} ∈ E : u ∈ V2, v ∈ V2 }, we say
that H = (V2, E2) is an induced subgraph; more specifically, H is
the subgraph of G induced by the set of nodes V2.

If E2 ⊆ E and V2 =
⋃

E2, we say that H is an edge-induced
subgraph; more specifically, H is the subgraph of G induced by
the set of edges E2.
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3.1.3 Walks

A walk of length ` from node v0 to node v` is an alternating
sequence

w= (v0, e1, v1, e2, v2, . . . , e`, v`)

where vi ∈ V , ei ∈ E, and ei = {vi−1, vi} for all i; see Figure 3.2.
The walk is empty if `= 0. We say that walk w visits the nodes
v0, v1, . . . , v`, and it traverses the edges e1, e2, . . . , e`. In general,
a walk may visit the same node more than once and it may
traverse the same edge more than once. A non-backtracking
walk does not traverse the same edge twice consecutively, that
is, ei−1 6= ei for all i. A path is a walk that visits each node at
most once, that is, vi 6= v j for all 0≤ i < j ≤ `. A walk is closed
if v0 = v`. A cycle is a non-empty closed walk with vi 6= v j and
ei 6= e j for all 1≤ i < j ≤ `; see Figure 3.3. Note that the length
of a cycle is at least 3.

3.1.4 Connectivity and Distances

For each graph G = (V, E), we can define a relation  on V as
follows: u  v if there is a walk from u to v. Clearly  is an
equivalence relation. Let C ⊆ V be an equivalence class; the
subgraph induced by C is called a connected component of G.

If u and v are in the same connected component, there is
at least one shortest path from u to v, that is, a path from u
to v of the smallest possible length. Let ` be the length of a
shortest path from u to v; we define that the distance between
u and v in G is distG(u, v) = `. If u and v are not in the same
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s

t

(a)

(b)

(c)

(d)

Figure 3.2: (a) A walk of length 5 from s to t. (b) A non-
backtracking walk. (c) A path of length 4. (d) A path of length 2;
this is a shortest path and hence distG(s, t) = 2.
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(a)

(b)

Figure 3.3: (a) A cycle of length 6. (b) A cycle of length 3; this
is a shortest cycle and hence the girth of the graph is 3.

connected component, we define distG(u, v) =∞. Note that
distG(u, u) = 0 for any node u.

For each node v and for a non-negative integer r, we define
the radius-r neighbourhood of v as follows (see Figure 3.4):

ballG(v, r) = {u ∈ V : distG(u, v)≤ r }.

A graph is connected if it consists of one connected compon-
ent. The diameter of graph G, in notation diam(G), is the length
of a longest shortest path, that is, the maximum of distG(u, v)
over all u, v ∈ V ; we have diam(G) =∞ if the graph is not
connected.

The girth of graph G is the length of a shortest cycle in G.
If the graph does not have any cycles, we define that the girth
is∞; in that case we say that G is acyclic.
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ballG(v, 1):

ballG(v, 2):

Figure 3.4: Neighbourhoods.
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A tree is a connected, acyclic graph. If T = (V, E) is a tree
and u, v ∈ V , then there exists precisely one path from u to v.
An acyclic graph is also known as a forest — in a forest each
connected component is a tree. A pseudotree has at most one
cycle, and in a pseudoforest each connected component is a
pseudotree.

A path graph is a graph that consists of one path, and a cycle
graph is a graph that consists of one cycle. Put otherwise, a path
graph is a tree in which all nodes have degree at most 2, and a
cycle graph is a 2-regular pseudotree. Note that any graph of
maximum degree 2 consists of disjoint paths and cycles, and
any 2-regular graph consists of disjoint cycles.

3.1.5 Isomorphism

An isomorphism from graph G1 = (V1, E1) to graph G2 = (V2, E2)
is a bijection f : V1→ V2 that preserves adjacency: {u, v} ∈ E1
if and only if { f (u), f (v)} ∈ E2. If an isomorphism from G1 to
G2 exists, we say that G1 and G2 are isomorphic.

If G1 and G2 are isomorphic, they have the same structure;
informally, G2 can be constructed by renaming the nodes of G1
and vice versa.

3.2 Packing and Covering

A subset of nodes X ⊆ V is

(a) an independent set if each edge has at most one endpoint
in X , that is, |e ∩ X | ≤ 1 for all e ∈ E,
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: Packing and covering problems; see Section 3.2.

(b) a vertex cover if each edge has at least one endpoint in X ,
that is, e ∩ X 6=∅ for all e ∈ E,

(c) a dominating set if each node v /∈ X has at least one
neighbour in X , that is, ballG(v, 1)∩ X 6=∅ for all v ∈ V .

A subset of edges X ⊆ E is

(d) a matching if each node has at most one incident edge in
X , that is, {t, u} ∈ X and {t, v} ∈ X implies u= v,

(e) an edge cover if each node has at least one incident edge
in X , that is,

⋃

X = V ,

(f) an edge dominating set if each edge e /∈ X has at least one
neighbour in X , that is, e ∩

�⋃

X
�

6=∅ for all e ∈ E.

See Figure 3.5 for illustrations.
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Independent sets and matchings are examples of packing
problems — intuitively, we have to “pack” elements into set X
while avoiding conflicts. Packing problems are maximisation
problems. Typically, it is trivial to find a feasible solution (for
example, an empty set), but it is more challenging to find a
large solution.

Vertex covers, edge covers, dominating sets, and edge dom-
inating sets are examples of covering problems — intuitively, we
have to find a set X that “covers” the relevant parts of the graph.
Covering problems are minimisation problems. Typically, it is
trivial to find a feasible solution if it exists (for example, the set
of all nodes or all edges), but it is more challenging to find a
small solution.

The following terms are commonly used in the context of
maximisation problems; it is important not to confuse them:

(a) maximal: a maximal solution is not a proper subset of
another feasible solution,

(b) maximum: a maximum solution is a solution of the
largest possible cardinality.

Similarly, in the context of minimisation problems, analogous
terms are used:

(a) minimal: a minimal solution is not a proper superset of
another feasible solution,

(b) minimum: a minimum solution is a solution of the smal-
lest possible cardinality.
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Using this convention, we can define the terms maximal inde-
pendent set, maximum independent set, maximal matching, max-
imum matching, minimal vertex cover, minimum vertex cover,
etc.

For example, Figure 3.5a shows a maximal independent set:
it is not possible to greedily extend the set by adding another
element. However, it is not a maximum independent set: there
exists an independent set of size 3. Figure 3.5d shows a match-
ing, but it is not a maximal matching, and therefore it is not a
maximum matching either.

Typically, maximal and minimal solutions are easy to find
— you can apply a greedy algorithm. However, maximum and
minimum solutions can be very difficult to find — many of these
problems are NP-hard optimisation problems.

A minimum maximal matching is precisely what the name
suggests: it is a maximal matching of the smallest possible
cardinality. We can define a minimum maximal independent set,
etc., in an analogous manner.

3.3 Labellings and Partitions

We will often encounter functions of the form

f : V → {1,2, . . . , k}.

There are two interpretations that are often helpful:

(i) Function f assigns a label f (v) to each node v ∈ V . De-
pending on the context, the labels can be interpreted as
colours, time slots, etc.
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(ii) Function f is a partition of V . More specifically, f defines
a partition V = V1 ∪ V2 ∪ · · · ∪ Vk where Vi = f −1(i) =
{ v ∈ V : f (v) = i }.

Similarly, we can study a function of the form

f : E→ {1,2, . . . , k}

and interpret it either as a labelling of edges or as a partition
of E.

Many graph problems are related to such functions. We say
that a function f : V → {1, 2, . . . , k} is

(a) a proper vertex colouring if f −1(i) is an independent set
for each i,

(b) a weak colouring if each non-isolated node u has a neigh-
bour v with f (u) 6= f (v),

(c) a domatic partition if f −1(i) is a dominating set for each i.

A function f : E→ {1, 2, . . . , k} is

(d) a proper edge colouring if f −1(i) is a matching for each i,

(e) an edge domatic partition if f −1(i) is an edge dominating
set for each i.

See Figure 3.6 for illustrations.
Usually, the term colouring refers to a proper vertex col-

ouring, and the term edge colouring refers to a proper edge
colouring. The value of k is the size of the colouring or the
number of colours. We will use the term k-colouring to refer
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Figure 3.6: Partition problems; see Section 3.3.
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to a proper vertex colouring with k colours; the term k-edge
colouring is defined in an analogous manner.

A graph that admits a 2-colouring is a bipartite graph. Equi-
valently, a bipartite graph is a graph that does not have an odd
cycle.

Graph colouring is typically interpreted as a minimisation
problem. It is easy to find a proper vertex colouring or a proper
edge colouring if we can use arbitrarily many colours; however,
it is difficult to find an optimal colouring that uses the smallest
possible number of colours.

On the other hand, domatic partitions are a maximisation
problem. It is trivial to find a domatic partition of size 1; how-
ever, it is difficult to find an optimal domatic partition with the
largest possible number of disjoint dominating sets.

3.4 Factors and Factorisations

Let G = (V, E) be a graph, let X ⊆ E be a set of edges, and let
H = (U , X ) be the subgraph of G induced by X . We say that X
is a d-factor of G if U = V and degH(v) = d for each v ∈ V .

Equivalently, X is a d-factor if X induces a spanning d-
regular subgraph of G. Put otherwise, X is a d-factor if each
node v ∈ V is incident to exactly d edges of X .

A function f : E → {1,2, . . . , k} is a d-factorisation of G if
f −1(i) is a d-factor for each i. See Figure 3.7 for examples.

We make the following observations:

(a) A 1-factor is a maximum matching. If a 1-factor exists, a
maximum matching is a 1-factor.
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Figure 3.7: (a) A 1-factorisation of a 3-regular graph. (b) A
2-factorisation of a 4-regular graph.
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(b) A 1-factorisation is an edge colouring.

(c) The subgraph induced by a 2-factor consists of disjoint
cycles.

A 1-factor is also known as a perfect matching.

3.5 Approximations

So far we have encountered a number of maximisation prob-
lems and minimisation problems. More formally, the definition
of a maximisation problem consists of two parts: a set of feasible
solutions S and an objective function g : S → R. In a maximisa-
tion problem, the goal is to find a feasible solution X ∈ S that
maximises g(X ). A minimisation problem is analogous: the
goal is to find a feasible solution X ∈ S that minimises g(X ).

For example, the problem of finding a maximum matching
for a graph G is of this form. The set of feasible solutions S
consists of all matchings in G, and we simply define g(M) = |M |
for each matching M ∈ S .

As another example, the problem of finding an optimal
colouring is a minimisation problem. The set of feasible solu-
tions S consists of all proper vertex colourings, and g( f ) is the
number of colours in f ∈ S .

Often, it is infeasible or impossible to find an optimal solu-
tion; hence we resort to approximations. Given a maximisation
problem (S , g), we say that a solution X is an α-approximation
if X ∈ S , and we have αg(X )≥ g(Y ) for all Y ∈ S . That is, X
is a feasible solution, and the size of X is within factor α of the
optimum.
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Similarly, if (S , g) is a minimisation problem, we say that
a solution X is an α-approximation if X ∈ S , and we have
g(X ) ≤ αg(Y ) for all Y ∈ S . That is, X is a feasible solution,
and the size of X is within factor α of the optimum.

Note that we follow the convention that the approximation
ratio α is always at least 1, both in the case of minimisation
problems and maximisation problems. Other conventions are
also used in the literature.

3.6 Directed Graphs and Orientations

Unless otherwise mentioned, all graphs in this book are undir-
ected. However, we will occasionally need to refer to so-called
orientations, and hence we need to introduce some terminology
related to directed graphs.

A directed graph is a pair G = (V, E), where V is the set of
nodes and E is the set of directed edges. Each edge e ∈ E is a
pair of nodes, that is, e = (u, v) where u, v ∈ V . Put otherwise,
E ⊆ V × V .

Intuitively, an edge (u, v) is an “arrow” that points from node
u to node v; it is an outgoing edge for u and an incoming edge for
v. The outdegree of a node v ∈ V , in notation outdegreeG(v),
is the number of outgoing edges, and the indegree of the node,
indegreeG(v), is the number of incoming edges.

Now let G = (V, E) be a graph and let H = (V, E′) be a
directed graph with the same set of nodes. We say that H is an
orientation of G if the following holds:
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(a) For each {u, v} ∈ E we have either (u, v) ∈ E′ or (v, u) ∈
E′, but not both.

(b) For each (u, v) ∈ E′ we have {u, v} ∈ E.

Put otherwise, in an orientation of G we have simply chosen
an arbitrary direction for each undirected edge of G. It follows
that

indegreeH(v) + outdegreeH(v) = degG(v)

for all v ∈ V .

3.7 Exercises

Exercise 3.1 (independence and vertex covers). Let I ⊆ V and
define C = V \ I . Show that

(a) if I is an independent set then C is a vertex cover and
vice versa,

(b) if I is a maximal independent set then C is a minimal
vertex cover and vice versa,

(c) if I is a maximum independent set then C is a minimum
vertex cover and vice versa,

(d) it is possible that C is a 2-approximation of minimum
vertex cover but I is not a 2-approximation of maximum
independent set,

(e) it is possible that I is a 2-approximation of maximum inde-
pendent set but C is not a 2-approximation of minimum
vertex cover.
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Exercise 3.2 (matchings). Show that

(a) any maximal matching is a 2-approximation of a max-
imum matching,

(b) any maximal matching is a 2-approximation of a min-
imum maximal matching,

(c) a maximal independent set is not necessarily a 2-approx-
imation of maximum independent set,

(d) a maximal independent set is not necessarily a 2-approx-
imation of minimum maximal independent set.

Exercise 3.3 (matchings and vertex covers). Let M be a max-
imal matching, and let C =

⋃

M , i.e., C consists of all endpoints
of matched edges. Show that

(a) C is a 2-approximation of a minimum vertex cover,

(b) C is not necessarily a 1.999-approximation of a minimum
vertex cover.

Would you be able to improve the approximation ratio if M was
a minimum maximal matching?

Exercise 3.4 (independence and domination). Show that

(a) a maximal independent set is a minimal dominating set,

(b) a minimal dominating set is not necessarily a maximal
independent set,

(c) a minimum maximal independent set is not necessarily a
minimum dominating set.
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Exercise 3.5 (graph colourings and partitions). Show that

(a) a weak 2-colouring always exists,

(b) a domatic partition of size 2 does not necessarily exist,

(c) if a domatic partition of size 2 exists, then a weak 2-
colouring is a domatic partition of size 2,

(d) a weak 2-colouring is not necessarily a domatic partition
of size 2.

Show that there are 2-regular graphs with the following prop-
erties:

(e) any 3-colouring is a domatic partition of size 3,

(f) no 3-colouring is a domatic partition of size 3.

Assume that G is a graph of maximum degree ∆; show that

(g) there exists a (∆+ 1)-colouring,

(h) a ∆-colouring does not necessarily exist.

Exercise 3.6 (isomorphism). Construct non-empty 3-regular
connected graphs G and H such that G and H have the same
number of nodes and G and H are not isomorphic. Just giving
a construction is not sufficient — you have to prove that G and
H are not isomorphic.

? Exercise 3.7 (matchings and edge domination). Show that

(a) a maximal matching is a minimal edge dominating set,
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(b) a minimal edge dominating set is not necessarily a max-
imal matching,

(c) a minimum maximal matching is a minimum edge dom-
inating set,

(d) any maximal matching is a 2-approximation of a min-
imum edge dominating set.

. hint F

? Exercise 3.8 (Petersen 1891). Show that any 2d-regular
graph G = (V, E) has an orientation H = (V, E′) such that

indegreeH(v) = outdegreeH(v) = d

for all v ∈ V . Show that any 2d-regular graph has a 2-factorisa-
tion.

3.8 Bibliographic Notes

The connection between maximal matchings and approxima-
tions of vertex covers (Exercise 3.3) is commonly attributed to
Gavril and Yannakakis — see, e.g., Papadimitriou and Steiglitz
[19]. The connection between minimum maximal matchings
and minimum edge dominating sets (Exercise 3.7) is due to Al-
lan and Laskar [1] and Yannakakis and Gavril [28]. Exercise 3.8
is a 120-year-old result due to Petersen [21]. The definition of
a weak colouring is from Naor and Stockmeyer [16].
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Part III

Models of Computing
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Chapter 4

PN Model: Port Numbering

Now that we have introduced the essential graph-theoretic
concepts, we are ready to define what a “distributed algorithm”
is. In this chapter, we will study one variant of the theme:
deterministic distributed algorithms in the “port-numbering
model”. We will use the abbreviation PN for the port-numbering
model, and we will also use the term “PN-algorithm” to refer
to deterministic distributed algorithms in the port-numbering
model. For now, everything will be deterministic — randomised
algorithms will be discussed in Chapter 7.

4.1 Introduction

The basic idea of the PN model is best explained through an
example. Suppose that I claim the following:

• A is a deterministic distributed algorithm that finds a
2-approximation of a minimum vertex cover in the port-
numbering model.

Or, in brief:

• A is a PN-algorithm for finding a 2-approximation of a
minimum vertex cover.
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Informally, this entails the following:

(a) We can take any simple undirected graph G = (V, E).

(b) We can then put together a computer network N with
the same structure as G. A node v ∈ V corresponds to a
computer in N , and an edge {u, v} ∈ E corresponds to a
communication link between the computers u and v.

(c) Communication takes place through communication ports.
A node of degree d corresponds to a computer with d ports
that are labelled with numbers 1, 2, . . . , d in an arbitrary
order.

(d) Each computer runs a copy of the same deterministic
algorithm A. All nodes are identical; initially they know
only their own degree (i.e., the number of communication
ports).

(e) All computers are started simultaneously, and they follow
algorithm A synchronously in parallel. In each synchron-
ous communication round, all computers in parallel

(1) send a message to each of their ports,

(2) wait while the messages are propagated along the
communication channels,

(3) receive a message from each of their ports, and

(4) update their own state.

(f) After each round, a computer can stop and announce its
local output: in this case the local output is either 0 or 1.
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(g) We require that all nodes eventually stop — the running
time of the algorithm is the number of communication
rounds it takes until all nodes have stopped.

(h) We require that

C = { v ∈ V : computer v produced output 1 }

is a feasible vertex cover for graph G, and its size is at
most 2 times the size of a minimum vertex cover.

Sections 4.2 and 4.3 will formalise this idea.

4.2 Port-Numbered Network

A port-numbered network is a triple N = (V, P, p), where V is the
set of nodes, P is the set of ports, and p : P → P is a function
that specifies the connections between the ports. We make the
following assumptions:

(a) Each port is a pair (v, i) where v ∈ V and i ∈ {1, 2, . . . }.

(b) The connection function p is an involution, that is, for
any port x ∈ P we have p(p(x)) = x .

See Figures 4.1 and 4.2 for illustrations.

4.2.1 Terminology

If (v, i) ∈ P, we say that (v, i) is the port number i in node v.
The degree degN (v) of a node v ∈ V is the number of ports in v,
that is, degN (v) = |{ i ∈ N : (v, i) ∈ P }|.
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a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 4.1: A port-numbered network N = (V, P, p). There are
four nodes, V = {a, b, c, d}; the degree of node a is 3, the degrees
of nodes b and c are 2, and the degree of node d is 1. The
connection function p is illustrated with arrows — for example,
p(a, 3) = (d, 1) and conversely p(d, 1) = (a, 3). This network is
simple.

c, 3
c, 2
c, 1

a, 1
a, 2

b, 1
b, 2

d, 4
d, 3

d, 1
d, 2

Figure 4.2: A port-numbered network N = (V, P, p). There is a
loop at node a, as p(a, 1) = (a, 1), and another loop at node d,
as p(d, 3) = (d, 4). There are also multiple connections between
c and d. Hence the network is not simple.
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Unless otherwise mentioned, we assume that the port num-
bers are consecutive: for each v ∈ V there are ports (v, 1), (v, 2),
. . . , (v, degN (v)) in P.

We use the shorthand notation p(v, i) for p((v, i)). If p(u, i) =
(v, j), we say that port (u, i) is connected to port (v, j); we also
say that port (u, i) is connected to node v, and that node u is
connected to node v.

If p(v, i) = (v, j) for some j, we say that there is a loop at
v — note that we may have i = j or i 6= j. If p(u, i1) = (v, j1)
and p(u, i2) = (v, j2) for some u 6= v, i1 6= i2, and j1 6= j2, we
say that there are multiple connections between u and v. A port-
numbered network N = (V, P, p) is simple if there are no loops
or multiple connections.

4.2.2 Underlying Graph

For a simple port-numbered network N = (V, P, p) we define the
underlying graph G = (V, E) as follows: {u, v} ∈ E if and only
if u is connected to v in network N . Observe that degG(v) =
degN (v) for all v ∈ V . See Figure 4.3 for an illustration.

4.2.3 Encoding Input and Output

In a distributed system, nodes are the active elements: they can
read input and produce output. Hence we will heavily rely on
node labellings: we can directly associate information with each
node v ∈ V .

Assume that N = (V, P, p) is a simple port-numbered net-
work, and G = (V, E) is the underlying graph of N . We show
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(a) (b)

Figure 4.3: (a) An alternative drawing of the simple port-
numbered network N from Figure 4.1. (b) The underlying graph
G of N .
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1 13

(a) (b)

00

10

010 0

Figure 4.4: (a) A graph G = (V, E) and a matching M ⊆ E. (b) A
port-numbered network N ; graph G is the underlying graph of N .
The node labelling f : V → {0,1}∗ is an encoding of matching
M .
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that a node labelling f : V → Y can be used to represent the
following graph-theoretic structures; see Figure 4.4 for an illus-
tration.

Node labelling g : V → X . Trivial: we can choose Y = X and
f = g.

Subset of nodes X ⊆ V . We can interpret a subset of nodes as
a node labelling g : V → {0,1}, where g is the indicator
function of the set X . That is, g(v) = 1 iff v ∈ X .

Edge labelling g : E→ X . For each node v, its label f (v) en-
codes the values g(e) for all edges e incident to v, in the
order of increasing port numbers. More precisely, if v
is a node of degree d, its label is a vector f (v) ∈ X d . If
(v, j) ∈ P and p(v, j) = (u, i), then element j of vector
f (v) is g({u, v}).

Subset of edges X ⊆ E. We can interpret a subset of edges as
an edge labelling g : E→ {0, 1}.

Orientation H = (V, E′). For each node v, its label f (v) indic-
ates which of the edges incident to v are outgoing edges,
in the order of increasing port numbers.

It is trivial to compose the labellings. For example, we can
easily construct a node labelling that encodes both a subset of
nodes and a subset of edges.
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4.2.4 Distributed Graph Problems

A distributed graph problem Π associates a set of solutions Π(N)
with each simple port-numbered network N = (V, P, p). A solu-
tion f ∈ Π(N) is a node labelling f : V → Y for some set Y of
local outputs.

Using the encodings of Section 4.2.3, we can interpret all of
the following as distributed graph problems: independent sets,
vertex covers, dominating sets, matchings, edge covers, edge
dominating sets, colourings, edge colourings, domatic partitions,
edge domatic partitions, factors, factorisations, orientations,
and any combinations of these.

To make the idea more clear, we will give some more de-
tailed examples.

(a) Vertex cover: f ∈ Π(N) if f encodes a vertex cover of the
underlying graph of N .

(b) Minimal vertex cover: f ∈ Π(N) if f encodes a minimal
vertex cover of the underlying graph of N .

(c) Minimum vertex cover: f ∈ Π(N) if f encodes a minimum
vertex cover of the underlying graph of N .

(d) 2-approximation of minimum vertex cover: f ∈ Π(N) if f
encodes a vertex cover C of the underlying graph of N ;
moreover, the size of C is at most two times the size of a
minimum vertex cover.

(e) Orientation: f ∈ Π(N) if f encodes an orientation of the
underlying graph of N .
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(f) 2-colouring: f ∈ Π(N) if f encodes a 2-colouring of the
underlying graph of N . Note that we will have Π(N) =∅
if the underlying graph of N is not bipartite.

4.3 Distributed Algorithms in the
Port-Numbering Model

We will now give a formal definition of a distributed algorithm in
the port-numbering model. In essence, a distributed algorithm
is a state machine (not necessarily a finite-state machine). To
run the algorithm on a certain port-numbered network, we put
a copy of the same state machine at each node of the network.

The formal definition of a distributed algorithm plays a sim-
ilar role as the definition of a Turing machine in the study of
non-distributed algorithms. A formally rigorous foundation is
necessary to study questions such as computability and com-
putational complexity. However, we do not usually present
algorithms as Turing machines, and the same is the case here.
Once we become more familiar with distributed algorithms, we
will use higher-level pseudocode to define algorithms and omit
the tedious details of translating the high-level description into
a state machine.

4.3.1 State Machine

A distributed algorithm A is a state machine that consists of the
following components:

(i) InputA is the set of local inputs,

67



(ii) StatesA is the set of states,

(iii) OutputA ⊆ StatesA is the set of stopping states (local out-
puts),

(iv) MsgA is the set of possible messages.

Moreover, for each possible degree d ∈ N we have the following
functions:

(v) initA,d : InputA→ StatesA initialises the state machine,

(vi) sendA,d : StatesA→Msgd
A constructs outgoing messages,

(vii) receiveA,d : StatesA×Msgd
A→ StatesA processes incoming

messages.

We require that receiveA,d(x , y) = x whenever x ∈ OutputA.
The idea is that a node that has already stopped and printed its
local output no longer changes its state.

4.3.2 Execution

Let A be a distributed algorithm, let N = (V, P, p) be a port-
numbered network, and let f : V → InputA be a labelling of
the nodes. A state vector is a function x : V → StatesA. The
execution of A on (N , f ) is a sequence of state vectors x0, x1, . . .
defined recursively as follows.

The initial state vector x0 is defined by

x0(u) = initA,d( f (u)),

where u ∈ V and d = degN (u).
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Now assume that we have defined state vector x t−1. Define
mt : P → MsgA as follows. Assume that (u, i) ∈ P, (v, j) =
p(u, i), and degN (v) = `. Let mt(u, i) be component j of the
vector sendA,`(x t−1(v)).

Intuitively, mt(u, i) is the message received by node u from
port number i on round t. Equivalently, it is the message sent
by node v to port number j on round t — recall that ports (u, i)
and (v, j) are connected.

For each node u ∈ V with d = degN (u), we define the
message vector

mt(u) =
�

mt(u, 1), mt(u, 2), . . . , mt(u, d)
�

.

Finally, we define the new state vector x t by

x t(u) = receiveA,d

�

x t−1(u), mt(u)
�

.

We say that algorithm A stops in time T if xT (u) ∈ OutputA
for each u ∈ V . We say that A stops if A stops in time T for some
finite T . If A stops in time T , we say that g = xT is the output
of A, and xT (u) is the local output of node u.

4.3.3 Solving Graph Problems

Now we will define precisely what it means if we say that a
distributed algorithm A solves a certain graph problem.

Let F be a family of simple undirected graphs. Let Π and
Π′ be distributed graph problems (see Section 4.2.4). We say
that distributed algorithm A solves problem Π on graph family F
given Π′ if the following holds: assuming that
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(a) N = (V, P, p) is a simple port-numbered network,
(b) the underlying graph of N is in F , and
(c) the input f is in Π′(N),

the execution of algorithm A on (N , f ) stops and produces an
output g ∈ Π(N). If A stops in time T(|V |) for some function
T : N→ N, we say that A solves the problem in time T .

Obviously, A has to be compatible with the encodings of Π
and Π′. That is, each f ∈ Π′(N) has to be a function of the form
f : V → InputA, and each g ∈ Π(N) has to be a function of the
form g : V → OutputA.

Problem Π′ is often omitted. If A does not need the input f ,
we simply say that A solves problem Π on graph family F . More
precisely, in this case we provide a trivial input f (v) = 0 for
each v ∈ V .

In practice, we will often specify F , Π, Π′, and T implicitly.
Here are some examples of common parlance:

(a) Algorithm A finds a maximum matching in any path graph:
here F consists of all path graphs; Π′ is omitted; and Π
is the problem of finding a maximum matching.

(b) Algorithm A finds a maximal independent set in k-coloured
graphs in time k: here F consists of all graphs that admit
a k-colouring; Π′ is the problem of finding a k-colouring;
Π is the problem of finding a maximal independent set;
and T is the constant function T : n 7→ k.
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4.4 Example: Colouring Paths

Recall the algorithm P3C for 3-colouring paths from Section 1.3.
We will now present the algorithm in a formally precise manner
as a state machine. Let us start with the problem definition:

• F is the family of path graphs.
• Π is the problem of colouring graphs with 3 colours.
• Π′ is the problem of colouring graphs with any number

of colours.

We will present algorithm A that solves problem Π on graph
family F given Π′. Note that in Section 1.3 we assumed that
we have unique identifiers, but it is sufficient to assume that we
have some graph colouring, i.e., a solution to problem Π′.

The set of local inputs is determined by what we assume as
input:

InputA = Z
+.

The set of stopping states is determined by the problem that we
are trying to solve:

OutputA = {1, 2,3}.

In our algorithm, each node only needs to store one positive
integer (the current colour):

StatesA = Z+.

Messages are also integers:

MsgA = Z
+.
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Initialisation is trivial: the initial state of a node is its colour.
Hence for all d we have

initA,d(x) = x .

In each step, each node sends its current colour to each of its
neighbours. As we assume that all nodes have degree at most
2, we only need to define sendA,d for d ≤ 2:

sendA,0(x) = ().

sendA,1(x) = (x).

sendA,2(x) = (x , x).

The nontrivial part of the algorithm is hidden in the receive func-
tion. To define it, we will use the following auxiliary function
that returns the smallest positive number not in X :

g(X ) =min(Z+ \ X ).

Again, we only need to define receiveA,d for degrees d ≤ 2:

receiveA,0(x , ()) =

¨

g(∅) if x /∈ {1, 2,3},
x otherwise.

receiveA,1(x , (y)) =







g({y}) if x /∈ {1,2, 3}
and x > y,

x otherwise.

receiveA,2(x , (y, z)) =







g({y, z}) if x /∈ {1, 2,3}
and x > y , x > z,

x otherwise.
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This algorithm does precisely the same thing as the al-
gorithm that was described in pseudocode in Table 1.1. It
can be verified that this algorithm indeed solves problem Π
on graph family F given Π′, in the sense that we defined in
Section 4.3.3.

We will not usually present distributed algorithms in the
low-level state-machine formalism. Typically we are happy
with a higher-level presentation (e.g., in pseudocode), but it is
important to understand that any distributed algorithm can be
always translated into the state machine formalism.

In the next two sections we will give some non-trivial ex-
amples of PN-algorithms. We will give informal descriptions
of the algorithms; in the exercises we will see how to translate
these algorithms into the state machine formalism.

4.5 Example: Maximal Matching in
Two-Coloured Graphs

In this section we present a distributed algorithm BMM that
finds a maximal matching in a 2-coloured graph. That is, F
is the family of bipartite graphs, we are given a 2-colouring
f : V → {1, 2}, and the algorithm will output an encoding of a
maximal matching M ⊆ E.

4.5.1 Algorithm

In what follows, we say that a node v ∈ V is white if f (v) = 1,
and it is black if f (v) = 2. During the execution of the algorithm,
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each node is in one of the states

{UR, MR(i), US, MS(i) },

which stand for “unmatched and running”, “matched and run-
ning”, “unmatched and stopped”, and “matched and stopped”,
respectively. As the names suggest, US and MS(i) are stopping
states. If the state of a node v is MS(i) then v is matched with
the neighbour that is connected to port i.

Initially, all nodes are in state UR. Each black node v main-
tains variables M(v) and X (v), which are initialised

M(v)←∅, X (v)← {1,2, . . . , deg(v)}.

The algorithm is presented in Table 4.1; see Figure 4.5 for an
illustration.

4.5.2 Analysis

The following invariant is useful in order to analyse the al-
gorithm.

Lemma 4.1. Assume that u is a white node, v is a black node,
and (u, i) = p(v, j). Then at least one of the following holds:

(a) element j is removed from X (v) before round 2i,
(b) at least one element is added to M(v) before round 2i.

Proof. Assume that we still have M(v) =∅ and j ∈ X (v) after
round 2i − 2. This implies that v is still in state UR, and u has
not sent ‘matched’ to v. In particular, u is in state UR or MR(i)
after round 2i − 2. In the former case, u sends ‘proposal’ to v
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Figure 4.5: Algorithm BMM; the illustration shows the algorithm
both from the perspective of the port-numbered network N and
from the perspective of the underlying graph G. Arrows pointing
right are proposals, and arrows pointing left are acceptances.
Wide grey edges have been added to matching M .
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Round 2k− 1, white nodes:

• State UR, k ≤ degN (v): Send ‘proposal’ to port (v, k).

• State UR, k > degN (v): Switch to state US.

• State MR(i): Send ‘matched’ to all ports.
Switch to state MS(i).

Round 2k− 1, black nodes:

• State UR: Read incoming messages.
If we receive ‘matched’ from port i, remove i from X (v).
If we receive ‘proposal’ from port i, add i to M(v).

Round 2k, black nodes:

• State UR, M(v) 6=∅: Let i =min M(v).
Send ‘accept’ to port (v, i). Switch to state MS(i).

• State UR, X (v) =∅: Switch to state US.

Round 2k, white nodes:

• State UR: Process incoming messages.
If we receive ‘accept’ from port i, switch to state MR(i).

Table 4.1: Algorithm BMM; here k = 1, 2, . . . .
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on round 2i − 1, and j is added to M(v) on round 2i − 1. In
the latter case, u sends ‘matched’ to v on round 2i − 1, and j is
removed from X (v) on round 2i − 1.

Now it is easy to verify that the algorithm actually makes
some progress and eventually halts.

Lemma 4.2. Algorithm BMM stops in time 2∆+ 1, where ∆ is
the maximum degree of N.

Proof. A white node of degree d stops before or during round
2d + 1≤ 2∆+ 1.

Now let us consider a black node v. Assume that we still
have j ∈ X (v) on round 2∆. Let (u, i) = p(v, j); note that i ≤∆.
By Lemma 4.1, at least one element has been added to M(v)
before round 2∆. In particular, v stops before or during round
2∆.

Moreover, the output is correct.

Lemma 4.3. Algorithm BMM finds a maximal matching in any
two-coloured graph.

Proof. Let us first verify that the output correctly encodes a
matching. In particular, assume that u is a white node, v is a
black node, and p(u, i) = (v, j). We have to prove that u stops
in state MS(i) if and only if v stops in state MS( j). If u stops
in state MS(i), it has received an ‘accept’ from v, and v stops in
state MS( j). Conversely, if v stops in state MS( j), it has received
a ‘proposal’ from u and it sends an ‘accept’ to u, after which u
stops in state MS(i).
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Let us then verify that M is indeed maximal. If this was not
the case, there would be an unmatched white node u that is
connected to an unmatched black node v. However, Lemma 4.1
implies that at least one of them becomes matched before or
during round 2∆.

4.6 Example: Vertex Covers

We will now give a distributed algorithm VC3 that finds a 3-ap-
proximation of a minimum vertex cover; we will use algorithm
BMM from the previous section as a building block.

So far we have seen algorithms that assume something about
the input (e.g., we are given a proper colouring of the network).
The algorithm that we will see in this section makes no such
assumptions. We can run algorithm VC3 in any port-numbered
network, without any additional input. In particular, we do not
need any kind of colouring, unique identifiers, or randomness.

4.6.1 Virtual 2-Coloured Network

Let N = (V, P, p) be a port-numbered network. We will construct
another port-numbered network N ′ = (V ′, P ′, p′) as follows; see
Figure 4.6 for an illustration. First, we double the number of
nodes — for each node v ∈ V we have two nodes v1 and v2 in
V ′:

V ′ = { v1, v2 : v ∈ V },
P ′ = { (v1, i), (v2, i) : (v, i) ∈ P }.
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Then we define the connections. If p(u, i) = (v, j), we set

p′(u1, i) = (v2, j),

p′(u2, i) = (v1, j).

With these definitions we have constructed a network N ′ such
that the underlying graph G′ = (V ′, E′) is bipartite. We can
define a 2-colouring f ′ : V ′→ {1,2} as follows:

f ′(v1) = 1 and f (v2) = 2 for each v ∈ V.

Nodes of colour 1 are called white and nodes of colour 2 are
called black.

4.6.2 Simulation of the Virtual Network

Now N is our physical communication network, and N ′ is merely
a mathematical construction. However, the key observation is
that we can use the physical network N to efficiently simulate
the execution of any distributed algorithm A on (N ′, f ′). Each
physical node v ∈ V simulates nodes v1 and v2 in N ′:

(a) If v1 sends a message m1 to port (v1, i) and v2 sends a
message m2 to port (v2, i) in the simulation, then v sends
the pair (m1, m2) to port (v, i) in the physical network.

(b) If v receives a pair (m1, m2) from port (v, i) in the physical
network, then v1 receives message m2 from port (v1, i)
in the simulation, and v2 receives message m1 from port
(v2, i) in the simulation.
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Note that we have here reversed the messages: what
came from a white node is received by a black node and
vice versa.

In particular, we can take algorithm BMM of Section 4.5
and use the network N to simulate it on (N ′, f ′). Note that
network N is not necessarily bipartite and we do not have any
colouring of N ; hence we would not be able to apply algorithm
BMM on N .

4.6.3 Algorithm

Now we are ready to present algorithm VC3 that finds a vertex
cover:

(a) Simulate algorithm BMM in the virtual network N ′. Each
node v waits until both of its copies, v1 and v2, have
stopped.

(b) Node v outputs 1 if at least one of its copies v1 or v2
becomes matched.

4.6.4 Analysis

Clearly algorithm VC3 stops, as algorithm BMM stops. Moreover,
the running time is 2∆+ 1 rounds, where ∆ is the maximum
degree of N .

Let us now prove that the output is correct. To this end, let
G = (V, E) be the underlying graph of N , and let G′ = (V ′, E′) be
the underlying graph of N ′. Algorithm BMM outputs a maximal
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matching M ′ ⊆ E′ for G′. Define the edge set M ⊆ E as follows:

M =
�

{u, v} ∈ E : {u1, v2} ∈ M ′ or {u2, v1} ∈ M ′
	

. (4.1)

See Figure 4.7 for an illustration. Furthermore, let C ′ ⊆ V ′ be
the set of nodes that are incident to an edge of M ′ in G′, and
let C ⊆ V be the set of nodes that are incident to an edge of M
in G; equivalently, C is the set of nodes that output 1. We make
the following observations.

(a) Each node of C ′ is incident to precisely one edge of M ′.
(b) Each node of C is incident to one or two edges of M .
(c) Each edge of E′ is incident to at least one node of C ′.
(d) Each edge of E is incident to at least one node of C .

We are now ready to prove the main result of this section.

Lemma 4.4. Set C is a 3-approximation of a minimum vertex
cover of G.

Proof. First, observation (d) above already shows that C is a
vertex cover of G.

To analyse the approximation ratio, let C∗ ⊆ V be a vertex
cover of G. By definition each edge of E is incident to at least
one node of C∗; in particular, each edge of M is incident to a
node of C∗. Therefore C∗ ∩ C is a vertex cover of the subgraph
H = (C , M).

By observation (b) above, graph H has a maximum degree
of at most 2. Set C consists of all nodes in H. We will then
argue that any vertex cover C∗ contains at least a fraction 1/3 of
the nodes in H; see Figure 4.8 for an example. Then it follows
that C is at most 3 times as large as a minimum vertex cover.
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(b)(a)
Figure 4.8: (a) In a cycle with n nodes, any vertex cover contains
at least n/2 nodes. (b) In a path with n nodes, any vertex cover
contains at least n/3 nodes.
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To this end, let Hi = (Ci , Mi), i = 1,2, . . . , k, be the con-
nected components of H; each component is either a path or a
cycle. Now C∗i = C∗ ∩ Ci is a vertex cover of Hi .

A node of C∗i is incident to at most two edges of Mi . There-
fore

|C∗i | ≥ |Mi|/2.

If Hi is a cycle, we have |Ci|= |Mi| and

|C∗i | ≥ |Ci|/2.

If Hi is a path, we have |Mi| = |Ci| − 1. If |Ci| ≥ 3, it follows
that

|C∗i | ≥ |Ci|/3.

The only remaining case is a path with two nodes, in which case
trivially |C∗i | ≥ |Ci|/2.

In conclusion, we have |C∗i | ≥ |Ci|/3 for each component
Hi . It follows that

|C∗| ≥ |C∗ ∩ C |=
k
∑

i=1

|C∗i | ≥
k
∑

i=1

|Ci|/3= |C |/3.

In summary, VC3 finds a 3-approximation of a minimum
vertex cover in any graph G. Moreover, if the maximum degree
of G is small, the algorithm is fast: we only need O(∆) rounds
in a network of maximum degree ∆.
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4.7 Exercises

Exercise 4.1 (formalising BMM). Present algorithm BMM from
Section 4.5 in a formally precise manner, using the definitions
of Sections 4.2 and 4.3. Try to make MsgA as small as possible.

Exercise 4.2 (formalising VC3). Present algorithm VC3 from
Section 4.6 in a formally precise manner, using the definitions
of Sections 4.2 and 4.3. Try to make both MsgA and StatesA as
small as possible.

. hint G

Exercise 4.3 (stopped nodes). In the formalism of this chapter,
a node that stops will repeatedly send messages to its neigh-
bours. Show that this detail is irrelevant, and we can always
re-write algorithms so that such messages are ignored. Put
otherwise, a node that stops can also stop sending messages.

More precisely, assume that A is a distributed algorithm that
solves problem Π on family F given Π′ in time T . Show that
there is another algorithm A′ such that (i) A′ solves problem
Π on family F given Π′ in time T + O(1), and (ii) in A′ the
state transitions never depend on the messages that are sent by
nodes that have stopped.

Exercise 4.4 (more than two colours). Design a distributed
algorithm that finds a maximal matching in k-coloured graphs.
You can assume that k is a known constant.

Exercise 4.5 (analysis of VC3). Is the analysis of VC3 tight?
That is, is it possible to construct a network N such that VC3
outputs a vertex cover that is exactly 3 times as large as the
minimum vertex cover of the underlying graph of N?
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? Exercise 4.6 (implementation). Using your favourite pro-
gramming language, implement a simulator that lets you play
with distributed algorithms in the port-numbering model. Im-
plement BMM and VC3 and try them out in the simulator.

? Exercise 4.7 (composition). Assume that algorithm A1 solves
problem Π1 on family F given Π0 in time T1, and algorithm A2
solves problem Π2 on family F given Π1 in time T2.

Is it always possible to design an algorithm A that solves
problem Π2 on family F given Π0 in time O(T1 + T2)?

. hint H

4.8 Bibliographic Notes

The concept of a port numbering is from Angluin’s [2] work.
Algorithm BMM is due to Hańćkowiak et al. [11], and algorithm
VC3 is from a paper with Polishchuk [22].
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Chapter 5

LOCAL Model:
Unique Identifiers

In the previous chapter, we studied deterministic distributed
algorithms in port-numbered networks. In this chapter we will
study a stronger model: networks with unique identifiers — see
Figure 5.1. Following the standard terminology of the field,
we will use the term “LOCAL model” to refer to networks with
unique identifiers.

5.1 Definitions

Throughout this chapter, fix a constant c > 1. An assignment of
unique identifiers for a port-numbered network N = (V, P, p) is
an injection

id: V → {1, 2, . . . , |V |c}.

That is, each node v ∈ V is labelled with a unique integer, and
the labels are assumed to be relatively small. We will use the
shorthand notation χ = |V |c .

Formally, unique identifiers can be interpreted as a graph
problem Π′, where each solution id ∈ Π′(N) is an assignment
of unique identifiers for network N . If a distributed algorithm A
solves a problem Π on a family F given Π′, we say that A solves
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Π on F given unique identifiers, or equivalently, A solves Π on
F in the LOCAL model.

For the sake of convenience, when we discuss networks
with unique identifiers, we will identify a node with its unique
identifier, i.e., v = id(v) for all v ∈ V .

5.2 Gathering Everything

In the LOCAL model, if the underlying graph G = (V, E) is
connected, all nodes can learn everything about G in time
O(diam(G)). In this section, we will present algorithm Gather
that accomplishes this.

In algorithm Gather, each node v ∈ V will construct sets
V (v, r) and E(v, r), where r = 1, 2, . . . . For all v ∈ V and r ≥ 1,
these sets will satisfy

V (v, r) = ballG(v, r), (5.1)

E(v, r) =
�

{s, t} : s ∈ ballG(v, r), t ∈ ballG(v, r−1)
	

. (5.2)

Now define the graph

G(v, r) = (V (v, r), E(v, r)). (5.3)

See Figure 5.2 for an illustration.
The following properties are straightforward corollaries of

(5.1)–(5.3).

(a) Graph G(v, r) is a subgraph of G(v, r + 1), which is a
subgraph of G.
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(b) If G is a connected graph, and r ≥ diam(G) + 1, we have
G(v, r) = G.

(c) If Gv is the connected component of G that contains v,
and r ≥ diam(Gv) + 1, we have G(v, r) = Gv .

(d) For a sufficiently large r, we have G(v, r) = G(v, r + 1).

(e) If G(v, r) = G(v, r + 1), we will also have G(v, r + 1) =
G(v, r + 2).

(f) Graph G(v, r) for r > 1 can be constructed recursively as
follows:

V (v, r) =
⋃

u∈V (v,1)

V (u, r − 1), (5.4)

E(v, r) =
⋃

u∈V (v,1)

E(u, r − 1). (5.5)

Algorithm Gather maintains the following invariant: after
round r ≥ 1, each node v ∈ V has constructed graph G(v, r).
The execution of Gather proceeds as follows:

(a) In round 1, each node u ∈ V sends its identity u to each
of its ports. Hence after round 1, each node v ∈ V knows
its own identity and the identities of its neighbours. Put
otherwise, v knows precisely G(v, 1).

(b) In round r > 1, each node u ∈ V sends G(u, r−1) to each
of its ports. Hence after round r, each node v ∈ V knows
G(u, r − 1) for all u ∈ V (v, 1). Now v can reconstruct
G(v, r) using (5.4) and (5.5).
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(c) A node v ∈ V can stop once it detects that the graph
G(v, r) no longer changes.

It is easy to extend Gather so that we can discover not only
the underlying graph G = (V, E) but also the original port-
numbered network N = (V, P, p).

5.3 Solving Everything

LetF be a family of connected graphs, and letΠ be a distributed
graph problem. Assume that there is a deterministic centralised
(non-distributed) algorithm A′ that solves Π onF . For example,
A′ can be a simple brute-force algorithm — we are not interested
in the running time of algorithm A′.

Now there is a simple distributed algorithm A that solves Π
onF in the LOCAL model. Let N = (V, P, p) be a port-numbered
network with the underlying graph G ∈ F . Algorithm A pro-
ceeds as follows.

(a) All nodes discover N using algorithm Gather from Sec-
tion 5.2.

(b) All nodes use the centralised algorithm A′ to find a solu-
tion f ∈ Π(N). From the perspective of algorithm A, this
is merely a state transition; it is a local step that requires
no communication at all, and hence takes 0 communica-
tion rounds.

(c) Finally, each node v ∈ V switches to state f (v) and stops.
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Clearly, the running time of the algorithm is O(diam(G)).
It is essential that all nodes have the same canonical repres-

entation of network N (for example, V , P, and p are represented
as lists that are ordered lexicographically by node identifiers
and port numbers), and that all nodes use the same determin-
istic algorithm A′ to solve Π. This way we are guaranteed that
all nodes have locally computed the same solution f , and hence
the outputs f (v) are globally consistent.

5.4 Focus on Computational Complexity

So far we have learned the key difference between PN and
LOCAL models: while there are plenty of graph problems that
cannot be solved at all in the PN model (recall the discussion
in Section 1.2), we know that all computable graph problems
can be easily solved in the LOCAL model.

Hence our focus shifts from computability to computational
complexity. While it is trivial to determine if a problem can
be solved in the LOCAL model, we would like to know which
problems can be solved quickly. In particular, we would like to
learn which problems can be solved in time that is much smaller
than diam(G). It turns out that graph colouring is an example
of such a problem.

In the rest of this chapter, we will design an efficient dis-
tributed algorithm that finds a graph colouring in the LOCAL
model. The algorithm will find a proper vertex colouring with
∆ + 1 colours in O(∆2 + log∗ |V |) communication round, for
any graph of maximum degree ∆. We will first present some
simpler algorithms that will be used as subroutines — many of
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these are generalisations and variants of algorithms P3C and
P3CBit that we saw in Chapter 1.

5.5 Algorithm BDGreedy: Colour Reduction
in Bounded-Degree Graphs

Let x ∈ N. We present an algorithm called BDGreedy that
reduces the number of colours from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph. That is, given a
proper vertex colouring with x colours, the algorithm outputs
a proper vertex colouring with y colours. The running time of
the algorithm is one communication round.

5.5.1 Algorithm

The algorithm proceeds as follows; here f is the x-colouring
that we are given as input and g is the y-colouring that we
produce as output. See Figure 5.3 for an illustration.

(a) In the first communication round, each node v ∈ V sends
its colour f (v) to each of its neighbours.

(b) Now each node v ∈ V knows the set

C(v) = {i : there is a neighbour u of v with f (u) = i}.

We say that a node is active if f (v)>max C(v); otherwise
it is passive. That is, the colours of the active nodes are
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local maxima. Let

C̄(v) = {1,2, . . . } \ C(v)

be the set of free colours in the neighbourhood of v.

(c) A node v ∈ V outputs

g(v) =

¨

f (v) if v is passive,

min C̄(v) if v is active.

Informally, a node whose colour is a local maximum re-colours
itself with the first available free colour.

5.5.2 Analysis

Lemma 5.1. Algorithm BDGreedy reduces the number of colours
from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph.

Proof. Let us first prove that g(v) ∈ {1,2, . . . , y} for all v ∈ V .
As f is a proper colouring, we cannot have f (v) = max C(v).
Hence there are only two possibilities.

(a) f (v)<max C(v). Now v is passive, and it is adjacent to
a node u such that f (v)< f (u). We have

g(v) = f (v)≤ f (u)− 1≤ x − 1≤ y.
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Figure 5.3: Greedy colour reduction. The active nodes have been
highlighted. Note that in the original colouring f , the largest
colour was 99, while in the new colouring, the largest colour
is strictly smaller than 99 — we have successfully reduced the
number of colours in the graph.
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(b) f (v)>max C(v). Now v is active, and we have

g(v) =min C̄(v).

There is at least one value i ∈ {1,2, . . . , |C(v)|+ 1} with
i /∈ C(v); hence

min C̄(v)≤ |C(v)|+ 1≤ degG(v) + 1≤∆+ 1≤ y.

Next we will show that g is a proper vertex colouring of G.
Let {u, v} ∈ E. If both u and v are passive, we have

g(u) = f (u) 6= f (v) = g(v).

Otherwise, w.l.o.g., assume that u is active. Then we must have
f (u)> f (v). It follows that f (u) ∈ C(v) and f (v)≤max C(v);
therefore v is passive. Now g(u) /∈ C(u) while g(v) = f (v) ∈
C(u); we have g(u) 6= g(v).

The key observation is that the set of active nodes forms an
independent set. Therefore all active nodes can pick their new
colours simultaneously in parallel, without any risk of choosing
colours that might conflict with each other.

5.5.3 Remarks

Algorithm BDGreedy does not need to know the number of
colours x or the maximum degree ∆; we only used them in
the analysis. We can take any graph, blindly apply algorithm
BDGreedy, and we are guaranteed to reduce the number of
colours by one — provided that the number of colours was larger
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than ∆+ 1. In particular, we can apply algorithm BDGreedy
repeatedly until we get stuck, at which point we have a (∆+1)-
colouring of G — we will formalise and generalise this idea in
Exercise 5.3.

5.6 Directed Pseudoforests

We will next study graph colouring in so-called directed pseudo-
forests. As we will see later, algorithms that colour directed
pseudoforests can be used as subroutines in algorithms that
colour bounded-degree graphs.

A directed pseudoforest is a directed graph G = (V, E) such
that each node v ∈ V has outdegreeG(v)≤ 1; see Figure 5.4 for
an example.

Compare the definition of a directed pseudoforest with the
definition of a pseudoforest in Section 3.1.4. We make the fol-
lowing observations:

(a) Let H be an undirected graph, and let G be an orienta-
tion of H. If G is a directed pseudoforest, then H is a
pseudoforest.

(b) Let H be a pseudoforest. There exists an orientation G of
H such that G is a directed pseudoforest.

(c) An orientation of a pseudoforest is not necessarily a dir-
ected pseudoforest.

If (u, v) ∈ E, we say that v is a successor of u and u is a predecessor
of v. By definition, in a directed pseudoforest each node has at
most one successor.
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Figure 5.4: A directed pseudoforest with a colouring f .
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5.7 Algorithm DPGreedy: Colour Reduction
in Directed Pseudoforests

Let G = (V, E) be a directed pseudoforest, and let f be a proper
vertex colouring of G with x colours, for some x ≥ 4. We design
a distributed algorithm DPGreedy that reduces the number of
colours from x to x − 1 in two communication rounds.

Note the key difference between algorithms BDGreedy and
DPGreedy: algorithm BDGreedy gets stuck at ∆ + 1 colours,
while DPGreedy can be used to reduce the number of colours
down to 3.

5.7.1 Overview

The high-level structure of algorithm DPGreedy is as follows:

(a) We are given an x-colouring f (Figure 5.4).

(b) In one communication round, given f we construct an-
other x-colouring s, which has the property that each
node is adjacent to at most two different colour classes
(Figure 5.5).

(c) In one communication round, given s we construct an
(x−1)-colouring g using algorithm BDGreedy (Figure 5.6).

5.7.2 Algorithm

First, each v ∈ V computes s(v) as follows; see Figure 5.5:
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(a) If outdegreeG(v) = 1, let u be the successor of v, and let
s(v) = f (u).

(b) Otherwise, if f (v)> 1, let s(v) = 1.

(c) Otherwise s(v) = 2.

Then we apply BDGreedy from Section 5.5 to labelling s to
construct another labelling g.

5.7.3 Analysis

We will first prove that the values s(v) form a proper x-colouring
of G. Moreover, we will show that each node is adjacent to only
two different colours in colouring s.

Lemma 5.2. Function s is an x-colouring of G.

Proof. By construction, we have s(v) ∈ {1,2, . . . , x}. Now let
(u, v) ∈ E. We need to show that s(u) 6= s(v). To see this,
observe that v is a successor of u. Hence

s(u) = f (v) 6= s(v).

Lemma 5.3. Define

C(v) = {i : there is a neighbour u of v with s(u) = i}.

We have |C(v)| ≤ 2 for each node v ∈ V .

Proof. For each predecessor u of v, we have s(u) = f (v). That
is, all predecessors of v have the same colour. Hence C(v)
consists of at most two different values: the common colour of
the predecessors of v (if any), and the colour of the successor
of v (if any).
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Now let us consider what happens when we apply algorithm
BDGreedy to construct labelling g. Each active node v will
choose a colour

g(v) =min C̄(v) ∈ {1, 2,3},

while each passive node v will output its old colour g(v) = s(v).
In particular, if the number of colours in f was x ≥ 4, then the
number of colours in g is at most x − 1.

We conclude that we have designed algorithm DPGreedy
that reduces the number of colours from x ≥ 4 to x − 1 in dir-
ected pseudoforests in 2 communication rounds. In particular,
we can reduce the number of colours from any number x ≥ 3
to 3 in 2(x − 3) rounds.

5.8 Algorithm DPBit: Fast Colour Reduction
in Directed Pseudoforests

So far we have only seen algorithms that reduce the number
of colours by one in each iteration. In this section we will
present an algorithm that is much faster. We present algorithm
DPBit that reduces the number of colours from 2x to 2x in one
communication round, in any directed pseudoforest. We will
assume that x ≥ 1 is a known constant. In essence, this is
the same algorithm as P3CBit from Section 1.4 — fast colour
reduction in directed pseudoforests is almost as easy as fast
colour reduction in directed paths.
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5.8.1 Algorithm

We assume that we are given a proper vertex colouring

f : V → {1, 2, . . . , 2x}

of a directed pseudoforest G = (V, E). We will use the values
s(v) defined in Section 5.7 — recall that f (v) 6= s(v) for each
node v, and if u is the successor of v, we have s(v) = f (u).

The key idea is that each node compares the binary encodings
of the values s(v) and f (v). More precisely, if j ∈ {1, 2, . . . , 2x}
is a colour, let us use 〈 j〉 to denote the binary encoding of j−1;
this is always a binary string of length x . For example, if x = 3,
we have

〈1〉= 000, 〈2〉= 001, . . . , 〈8〉= 111.

If i ∈ {0,1, . . . , x − 1}, we use the notation 〈 j〉i to refer to bit i
of the binary string 〈 j〉, counting from the lowest-order bit. For
example, 〈2〉0 = 1 and 〈2〉1 = 0.

In algorithm DPBit, each node first finds out the values
s(v) and f (v)— this takes only one communication round —
and then compares the binary strings 〈s(v)〉 and 〈 f (v)〉. As
s(v) 6= f (v), there is at least one bit in these strings that differs.
Let

i(v) =min{i : 〈 f (v)〉i 6= 〈s(v)〉i}

be the index of the first bit that differs, and let

b(v) = 〈 f (v)〉i(v)
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be the value of the bit that differs. Note that 0 ≤ i(v) ≤ x − 1
and 0≤ b(v)≤ 1. We encode the pair

�

i(v), b(v)
�

as a colour

g(v) = 2i(v) + b(v) + 1.

Algorithm DPBit outputs the value g(v).

5.8.2 Analysis

The key observation is that the pairs
�

i(v), b(v)
�

form a proper
colouring of G.

Lemma 5.4. Let (u, v) ∈ E. We have i(u) 6= i(v) or b(u) 6= b(v).

Proof. If i(u) 6= i(v), the claim is trivial. Otherwise i(u) = i(v).
As v is the successor of u, we have s(u) = f (v). Hence

b(v) = 〈 f (v)〉i(v) = 〈s(u)〉i(u),

and by the definition of i(u),

b(u) = 〈 f (u)〉i(u) 6= 〈s(u)〉i(u).

In summary, b(u) 6= b(v).

Note that if we have g(u) = g(v) for two nodes u and v,
this implies b(u) = b(v) and i(u) = i(v). Hence Lemma 5.4
implies that g is a proper vertex colouring of G. Moreover, we
have 1≤ g(v)≤ 2x , and hence g is a 2x-colouring of G.

In summary, we have designed algorithm DPBit that reduces
the number of colours from 2x to 2x in one communication
round — given a 2x -colouring f , the algorithm outputs a 2x-
colouring g.
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5.9 Algorithm DP3C: Fast 3-Colouring in
Directed Pseudoforests

Assume that we know |V |. We will design algorithm DP3C
that finds a 3-colouring in O(log∗ |V |) rounds in any directed
pseudoforest. The algorithm proceeds as follows:

(a) Use the unique identifiers to construct a colouring with
χ colours.

(b) Repeat algorithm DPBit for log∗χ times to reduce the
number of colours from χ to 6.

(c) Repeat algorithm DPGreedy for 3 times to reduce the
number of colours from 6 to 3.

Here phase (a) takes 0 communication rounds, phase (b) takes
log∗χ communication rounds, and phase (c) takes 6 commu-
nication rounds. The analysis is, in essence, identical to what
we already did in Exercise 1.5.

5.10 Algorithm BDColour: Fast Colouring in
Bounded-Degree Graphs

Now we will turn our attention to bounded-degree graphs. As-
sume that we know |V | and∆. We will now design a distributed
algorithm BDColour that finds a (∆+ 1)-colouring in any graph
of maximum degree at most ∆ in O(∆2 + log∗ |V |) rounds.
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5.10.1 Preliminaries

For each node v and each port number i, node v sends the
pair (v, i) to port i. This way a node u learns the following
information about each node v that is adjacent to u: what is
the unique identifier of v, which port of u is connected to v,
and which port of v is connected to u. This step requires one
communication round.

5.10.2 Orientation

We construct an orientation G′ = (V, E′) of G as follows: we
have (u, v) ∈ E′ if and only if {u, v} ∈ E and u< v. That is, we
use the unique identifiers to orient the edges; see Figure 5.7.
Each node only needs to know the orientation of its incident
edges. This step requires zero communication rounds.

5.10.3 Partition in Pseudoforests

For each i = 1, 2, . . . ,∆, we construct a subgraph Gi = (V, Ei) of
G′ as follows: we have (u, v) ∈ Ei if and only if (u, v) ∈ E′ and
v is connected to port number i of u in N . See Figure 5.8.

Observe that the sets E1, E2, . . . , E∆ form a partition of E′:
for each directed edge e ∈ E′ there is precisely one i such that
e ∈ Ei . Also note that for each node u ∈ V and for each index i
there is at most one neighbour v such that (u, v) ∈ Ei . It follows
that the outdegree of any node v in Gi = (V, Ei) is at most one,
and therefore Gi is a directed pseudoforest.

109



74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 5.7: Orientation G′ derived from the unique identifiers.
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Figure 5.8: Subgraph Gi of G′. Each node has outdegree at most
one.
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Each node only needs to know which of its incident edges
are in which subset Ei . This step requires zero communication
rounds.

5.10.4 Parallel Colouring of Pseudoforests

For each i, we use algorithm DP3C to construct a 3-colouring gi
of Gi . Each node v ∈ V needs to know the value gi(v) for each
i. This step takes only O(log∗ |V |) rounds: we can simulate the
execution of A in parallel for all subgraphs Gi . In the simulation,
each node has ∆ different roles, one for each subgraph Gi .

5.10.5 Merging Colourings

For each j = 0,1, . . . ,∆, define

E′j =
j
⋃

i=1

Ei

and G′j = (V, E′j). Note that G′0 is a graph without any edges,
each G′j is a subgraph of G′, and G′∆ = G′.

We will construct a sequence of colourings g ′0, g ′1, . . . , g ′∆
such that g ′j is a (∆+ 1)-colouring of the subgraph G′j . Then it
follows that we can output g = g ′∆, which is a (∆+1)-colouring
of G′ and hence also a (∆+1)-colouring of the original graph G.

Our construction is recursive. The base case of j = 0 is
trivial: we can choose g ′0(v) = 1 for all v ∈ V , and this is
certainly a proper (∆+ 1)-colouring of G′0.

Now assume that we have already constructed a (∆+ 1)-
colouring g ′j−1 of G′j−1. Recall that g j is a 3-colouring of G j; see
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Figure 5.9. Define a function h j as follows:

h j(v) = (∆+ 1)(g j(v)− 1) + g ′j−1(v).

Observe that h j is a proper 3(∆+1)-colouring of G′j . To see this,
consider an edge (u, v) ∈ E′j. If (u, v) ∈ E j, we have g j(u) 6=
g j(v), which implies h j(u) 6= h j(v). Otherwise (u, v) ∈ E′j−1,
and we have g ′j−1(u) 6= g ′j−1(v), which implies h j(u) 6= h j(v).

Now we use 2(∆+ 1) iterations of BDGreedy to reduce the
number of colours from 3(∆+ 1) to ∆+ 1. This way we can
construct a proper (∆+ 1)-colouring g ′j of G′j in time O(∆).

After ∆ phases, we have eventually constructed colouring
g = g ′∆; the total running time is O(∆2), as each phase takes
O(∆) communication rounds.

5.10.6 Summary

In this section, we have seen how to find a proper vertex col-
ouring with ∆+ 1 colours in O(∆2 + log∗ x) communication
round in the LOCAL model, for any graph of maximum degree
∆. In the exercises, we will see that efficient algorithms for
vertex colouring can be used as subroutines to solve many other
problems.

5.11 Exercises

Exercise 5.1 (applications). Let ∆ be a known constant, and
let F be the family of graphs of maximum degree at most
∆. Design fast distributed algorithms that solve the following
problems on F in the LOCAL model.
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(a) Maximal independent set.

(b) Maximal matching.

(c) Edge colouring with O(∆) colours.

. hint I

Exercise 5.2 (vertex cover). Let F consist of cycle graphs.
Design a fast distributed algorithm that finds a 1.1-approxima-
tion of a minimum vertex cover on F in the LOCAL model.

. hint J

Exercise 5.3 (iterated greedy). Design a colour reduction al-
gorithm A with the following properties: given any graph G =
(V, E) and any proper vertex colouring f , algorithm A outputs
a proper vertex colouring g such that for each node v ∈ V we
have g(v)≤ degG(v) + 1.

Let ∆ be the maximum degree of G, let n = |V | be the
number of nodes in G, and let x be the number of colours in
colouring f . The running time of A should be at most

min{n, x}+O(1).

Note that the algorithm does not know n, x , or ∆. Also note
that we may have either x ≤ n or x ≥ n.

. hint K

Exercise 5.4 (distance-2 colouring). Let G = (V, E) be a graph.
A distance-2 colouring with k colours is a function f : V →
{1, 2, . . . , k} with the following property:

distG(u, v)≤ 2 implies f (u) 6= f (v) for all nodes u 6= v.
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Let ∆ be a known constant, and let F be the family of
graphs of maximum degree at most∆. Design a fast distributed
algorithm that finds a distance-2 colouring with O(∆2) colours
for any graph G ∈ F in the LOCAL model.

. hint L

? Exercise 5.5 (numeral systems). Algorithm DPBit is based on
the idea of identifying a digit that differs in the binary encod-
ings of the colours. Generalise the idea: design an analogous
algorithm that finds a digit that differs in the base-k encodings
of the colours, for an arbitrary k, and analyse the running time
of the algorithm (cf. Exercise 1.6). Is the special case of k = 2
the best possible choice?

? Exercise 5.6 (from bits to sets). Algorithm DPBit can reduce
the number of colours from 2x to 2x in one round in any directed
pseudoforest, for any positive integer x . For example, we can
reduce the number of colours as follows:

2128→ 256→ 16→ 8→ 6.

One of the problems is that an iterated application of the al-
gorithm slows down and eventually “gets stuck” at x = 3, i.e.,
at six colours.

In this exercise we will design a distributed algorithm DPSet
that reduces the number of colours from

h(x) =
�

2x
x

�

to 2x in one round, for any positive integer x . For example, we
can reduce the number of colours as follows:

184756→ 20→ 6→ 4.
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Here

184756= h(10),

2 · 10= 20= h(3),

2 · 3= 6= h(2).

In particular, algorithm DPSet does not get stuck at six colours;
we can use the same algorithm to reduce the number of colours
to four. Moreover, at least in this case the algorithm seems to be
much more efficient — algorithm DPSet can reduce the number
of colours from 184756 to 6 in two rounds, while algorithm
DPBit requires at three rounds to achieve the same reduction.

The basic structure of algorithm DPSet follows algorithm
DPBit — in particular, we use one communication round to
compute the values s(v) for all nodes v ∈ V . However, the
technique for choosing the new colour is different: as the name
suggests, we will not interpret colours as bit strings but as sets.

To this end, let H(x) consist of all subsets

X ⊆ {1,2, . . . , 2x}

with |X |= x . There are precisely h(x) such subsets, and hence
we can find a bijection

L : {1, 2, . . . ,h(x)} → H(x).

We have f (v) 6= s(v). Hence L( f (v)) 6= L(s(v)). As both
L( f (v)) and L(s(v)) are subsets of size x , it follows that

L( f (v)) \ L(s(v)) 6=∅.
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We choose the new colour g(v) of a node v ∈ V as follows:

g(v) =min
�

L( f (v)) \ L(s(v))
�

.

Prove that DPSet works correctly. In particular, show that
g : V → {1, 2, . . . , 2x} is a proper graph colouring of the directed
pseudoforest G.

Analyse the running time of DPSet and compare it with
DPBit. Is DPSet always faster? Can you prove a general result
analogous to the claim of Exercise 1.6?

? Exercise 5.7 (dominating set approximation). Let ∆ be a
known constant, and letF be the family of graphs of maximum
degree at most ∆. Design an algorithm that finds an O(log∆)-
approximation of a minimum dominating set onF in the LOCAL
model.

. hint M

5.12 Bibliographic Notes

The model of computing is from Linial’s [15] seminal paper,
and the name LOCAL is from Peleg’s [20] book. Algorithm
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Vishkin [6] and further refined by Goldberg et al. [10]. The
idea of algorithm DPSet is from Naor and Stockmeyer [16].
Algorithm BDColour is from Goldberg et al. [10] and Panconesi
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Chapter 6

CONGEST Model:
Bandwidth Limitations

In the previous chapter, we learned about the LOCAL model.
We saw that with the help of unique identifiers, it is possible
to gather the full information on a connected input graph in
O(diam(G)) rounds. To achieve this, we heavily abused the fact
that we can send arbitrarily large messages. In this chapter we
will see what can be done if we are only allowed to send small
messages. With this restriction, we arrive at a model that is
commonly known as the “CONGEST model”.

6.1 Definitions

Let A be a distributed algorithm that solves a problem Π on a
graph family F in the LOCAL model. Assume that MsgA is a
countable set; without loss of generality, we can then assume
that

MsgA = N,

that is, the messages are encoded as natural numbers. Now we
say that A solves problemΠ on graph familyF in the CONGEST
model if the following holds for some constant C: for any graph
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G = (V, E) ∈ F , algorithm A only sends messages from the set
{0, 1, . . . , |V |C}.

Put otherwise, we have the following bandwidth restriction:
in each communication round, over each edge, we only send
O(log n)-bit messages, where n is the total number of nodes.

6.2 Examples

Assume that we have an algorithm A that is designed for the
LOCAL model. Moreover, assume that during the execution of
A on a graph G = (V, E), in each communication round, we
only need to send the following pieces of information over each
edge:

• O(1) node identifiers,
• O(1) edges, encoded as a pair of node identifiers,
• O(1) counters that take values from 0 to diam(G),
• O(1) counters that take values from 0 to |V |,
• O(1) counters that take values from 0 to |E|.

Now it is easy to see that we can encode all of this as a binary
string with O(log n) bits. Hence A is not just an algorithm for
the LOCAL model, but it is also an algorithm for the CONGEST
model.

Many algorithms that we have encountered in this book so
far are of the above form, and hence they are also CONGEST
algorithms (see Exercise 6.1). However, there is a notable
exception: algorithm Gather from Section 5.2. In this algorithm,
we need to send messages of size up to Θ(n2) bits:
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• To encode the set of nodes, we may need up to Θ(n log n)
bits (a list of n identifiers, each of which is Θ(log n) bits
long).

• To encode the set of edges, we may need up to Θ(n2) bits
(the adjacency matrix).

While algorithms with a running time of O(diam(G)) or
O(n) are trivial in the LOCAL model, this is no longer the case
in the CONGEST model. Indeed, there are graph problems that
cannot be solved in time O(n) in the CONGEST model (see
Exercise 6.6).

In this chapter, we will learn techniques that can be used
to design efficient algorithms in the CONGEST model. We will
use the all-pairs shortest path problem as the running example.

6.3 All-Pairs Shortest Path Problem

Throughout this chapter, we will assume that the input graph
G = (V, E) is connected, and as usual, we have n= |V |. In the
all-pairs shortest path problem (APSP in brief), the goal is to
find the distances between all pairs of nodes. More precisely,
the local output of node v ∈ V is

f (v) =
�

(u, d) : u ∈ V, d = distG(v, u)
	

.

That is, v has to know the identities of all other nodes, as well
as the shortest-path distance between itself and all other nodes.

Note that to represent the local output of a single node
we need Θ(n log n) bits, and just to transmit this information
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over a single edge we would need Θ(n) communication rounds.
Indeed, we can prove that any algorithm that solves the APSP
problem in the CONGEST model takes Ω(n) rounds — see Ex-
ercise 6.7.

In this chapter, we will present an optimal distributed al-
gorithm for the APSP problem: it solves the problem in O(n)
rounds in the CONGEST model.

6.4 Algorithm Wave: Single-Source Shortest
Paths

As a warm-up, we will start with a much simpler problem.
Assume that we have elected a leader s ∈ V , that is, there is
precisely one node s with input 1 and all other nodes have input
0. We will design an algorithm such that each node v ∈ V
outputs

f (v) = distG(s, v),

i.e., its shortest-path distance to leader s.
The algorithm proceeds as follows. In the first round, the

leader will send message ‘wave’ to all neighbours, switch to state
0, and stop. In round i, each node v proceeds as follows: if v
has not stopped, and if it receives message ‘wave’ from some
ports, it will send message ‘wave’ to all other ports, switch to
state i, and stop; otherwise it does nothing. See Figure 6.1.

The analysis of the algorithm is simple. By induction, all
nodes at distance i from s will receive message ‘wave’ from at
least one port in round i, and they will hence output the correct
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3

t = 1 t = 2 t = 3
Figure 6.1: (a) Graph G and leader s. (b) Execution of algorithm
Wave on graph G. The arrows denote ‘wave’ messages, and the
dotted lines indicate the communication round during which
these messages were sent.
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value i. The running time of the algorithm is O(diam(G)) rounds
in the CONGEST model.

6.5 Algorithm BFS: Breadth-First Search
Tree

Algorithm Wave finds the shortest-path distances from a single
source s. Now we will do something slightly more demanding:
calculate not just the distances but also the shortest paths.

More precisely, our goal is to construct a breadth-first search
tree (BFS tree) T rooted at s. This is a spanning subgraph
T = (V, E′) of G such that T is a tree, and for each node v ∈ V ,
the shortest path from s to v in tree T is also a shortest path
from s to v in graph G. We will also label each node v ∈ V with
a distance label d(v), so that for each node v ∈ V we have

d(v) = distT (s, v) = distG(s, v).

See Figure 6.2 for an illustration. We will interpret T as a
directed graph, so that each edge is of form (u, v), where d(u)>
d(v), that is, the edges point towards the root s.

There is a simple centralised algorithm that constructs the
BFS tree and distance labels: breadth-first search. We start with
an empty tree and unlabelled nodes. First we label the leader s
with d(s) = 0. Then in step i = 0,1, . . . , we visit each node u
with distance label d(u) = i, and check each neighbour v of u.
If we have not labelled v yet, we will label it with d(v) = i + 1,
and add the edge (u, v) to the BFS tree. This way all nodes that
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Figure 6.2: (a) Graph G and leader s. (b) BFS tree T (arrows)
and distance labels d(v) (numbers).

125



are at distance i from s in G will be labelled with the distance
label i, and they will also be at distance i from s in T .

We can implement the same idea as a distributed algorithm
in the CONGEST model. We will call this algorithm BFS. In the
algorithm, each node v maintains the following variables:

• d(v): distance to the root.

• p(v): pointer to the parent of node v in tree T (port
number).

• C(v): the set of children of node v in tree T (port num-
bers).

• a(v): acknowledgement — set to 1 when the subtree
rooted at v has been constructed.

Here a(v) = 1 denotes a stopping state. When the algorithm
stops, variables d(v) will be distance labels, tree T is encoded
in variables p(v) and C(v), and all nodes will have a(v) = 1.

Initially, we set d(v) ← ⊥, p(v) ← ⊥, C(v) ← ⊥, and
a(v)← 0 for each node v, except for the root which has d(s) = 0.
We will grow tree T from s by iterating the following steps:

• Each node v with d(v) 6= ⊥ and C(v) = ⊥ will send a
proposal with value d(v) to all neighbours.

• If a node u with d(u) =⊥ receives some proposals with
value j, it will accept one of them and reject all other
proposals. It will set p(u) to point to the node whose
proposal it accepted, and it will set d(u)← j + 1.
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• Each node v that sent some proposals will set C(v) to be
the set of neighbours that accepted proposals.

This way T will grow towards the leaf nodes. Once we reach a
leaf node, we will send acknowledgements back towards the
root:

• Each node v with a(v) = 1 and p(v) 6= ⊥ will send an
acknowledgement to port p(v).

• Each node v with a(v) = 0 and C(v) 6=⊥will set a(v)← 1
when it has received acknowledgements from each port
of C(v). In particular, if a node has C(v) =∅, it can set
a(v)← 1 without waiting for any acknowledgements.

It is straightforward to verify that the algorithm works cor-
rectly and constructs a BFS tree in O(diam(G)) rounds in the
CONGEST model.

Note that the acknowledgements would not be strictly ne-
cessary in order to construct the tree. However, they will be
very helpful in the next section when we use algorithm BFS as
a subroutine.

6.6 Algorithm Leader: Leader Election

Algorithm BFS constructs a BFS tree rooted at a single leader,
assuming that we have already elected a leader. Now we will
show how to elect a leader. Surprisingly, we can use algorithm
BFS to do it!
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We will design an algorithm Leader that finds the node with
the smallest identifier; this node will be the leader. The basic
idea is very simple:

(a) We modify algorithm BFS so that we can run multiple
copies of it in parallel, with different root nodes. We
augment the messages with the identity of the root node,
and each node keeps track of the variables d, p, C , and a
separately for each possible root.

(b) Then we pretend that all nodes are leaders and start
running BFS. In essence, we will run n copies of BFS in
parallel, and hence we will construct n BFS trees, one
rooted at each node. We will denote by BFSv the BFS
process rooted at node v ∈ V , and we will write Tv for
the output of this process.

However, there are two problems: First, it is not yet obvious
how all this would help with leader election. Second, we cannot
implement this idea directly in the CONGEST model — nodes
would need to send up to n distinct messages per communica-
tion round, one per each BFS process, and there is not enough
bandwidth for all those messages.

Fortunately, we can solve both of these issues very easily;
see Figure 6.3:

(c) Each node will only send messages related to the tree
that has the smallest identifier as the root. More precisely,
for each node v, let U(v) ⊆ V denote the set of nodes u
such that v has received messages related to process BFSu,
and let `(v) = min U(v) be the smallest of these nodes.
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Figure 6.3: Leader election. Each node v will launch a process
BFSv that attempts to construct a BFS tree Tv rooted at v. Other
nodes will happily follow BFSv if v is the smallest leader they
have seen so far; otherwise they will start to ignore messages
related to BFSv . Eventually, precisely one of the processes will
complete successfully, while all other process will get stuck at
some point. In this example, node 1 will be the leader, as it has
the smallest identifier. Process BFS2 will never succeed, as node
1 (as well as all other nodes that are aware of node 1) will ignore
all messages related to BFS2. Node 1 is the only root that will
receive acknowledgements from every child.
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Then v will ignore messages related to process BFSu for
all u 6= `(v), and it will only send messages related to
process BFS`(v).

We make the following observations:

• In each round, each node will only send messages related
to at most one BFS process. Hence we have solved the
second problem — this algorithm can be implemented in
the CONGEST model.

• Let s = min V be the node with the smallest identifier.
When messages related to BFSs reach a node v, it will set
`(v) = s and never change it again. Hence all nodes will
follow process BFSs from start to end, and thanks to the
acknowledgements, node s will eventually know that we
have successfully constructed a BFS tree Ts rooted at it.

• Let u 6=min V be any other node. Now there is at least one
node, s, that will ignore all messages related to process
BFSu. Hence BFSu will never finish; node u will never
receive the acknowledgements related to tree Tu from all
neighbours.

That is, we now have an algorithm with the following properties:
after O(diam(G)) rounds, there is precisely one node s that
knows that it is the unique node s =min V . To finish the leader
election process, node s will inform all other nodes that leader
election is over; node s will output 1 and all other nodes will
output 0 and stop.

130



6.7 Algorithm APSP: All-Pairs Shortest
Paths

Now we are ready to design algorithm APSP that solves the
all-pairs shortest path problem (APSP) in time O(n).

We already know how to find the shortest-path distances
from a single source; this is efficiently solved with algorithm
Wave. Just like we did with the BFS algorithm, we can also
augment Wave with the root identifier and hence have a sep-
arate process Wavev for each possible root v ∈ V . If we could
somehow run all these processes in parallel, then each node
would receive a wave from every other node, and hence each
node would learn the distance to every other node, which is
precisely what we need to do in the APSP problem. However,
it is not obvious how to achieve a good performance in the
CONGEST model:

• If we try to run all Wavev processes simultaneously in
parallel, we may need to send messages related to several
waves simultaneously over a single edge, and there is not
enough bandwidth to do that.

• If we try to run all Wavev processes sequentially, it will
take a lot of time: the running time would be O(n diam(G))
instead of O(n).

The solution is to pipeline the Wavev processes so that we can
have many of them running simultaneously in parallel, without
congestion. In essence, we want to have multiple wavefronts
active simultaneously so that they never collide with each other.
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(a)

(b)

Figure 6.4: (a) BFS tree Ts rooted at s. (b) A depth-first traversal
ws of Ts.

To achieve this, we start with the leader election and the
construction of a BFS tree rooted at the leader; let s be the
leader, and let Ts be the BFS tree. Then we do a depth-first
traversal of Ts. This is a walk ws in Ts that starts at s, ends at s,
and traverses each edge precisely twice; see Figure 6.4.

More concretely, we move a token along walk ws. We move
the token slowly: we always spend 2 communication rounds
before we move the token to an adjacent node. Whenever the
token reaches a new node v that we have not encountered
previously during the walk, we launch process Wavev. This is
sufficient to avoid all congestion!
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The key observation here is that the token moves slower
than the waves. The waves move at speed 1 edge per round
(along the edges of G), while the token moves at speed 0.5
edges per round (along the edges of Ts, which is a subgraph
of G). This guarantees that two waves never collide. To see
this, consider two waves Waveu and Wavev , so that Waveu was
launched before Wavev. Let d = distG(u, v). Then it will take
at least 2d rounds to move the token from u to v, but only d
rounds for Waveu to reach node v. Hence Waveu was already
past v before we triggered Wavev, and Wavev will never catch
up with Waveu as both of them travel at the same speed. See
Figure 6.5 for an illustration.

Hence we have an algorithm APSP that is able to trigger
all Wavev processes in O(n) time, without collisions, and each
of them completes O(diam(G)) rounds after it was launched.
Overall, it takes O(n) rounds for all nodes to learn distances to
all other nodes. Finally, the leader can inform everyone else
when it is safe to stop and announce the local outputs (e.g.,
with the help of another wave).

6.8 Exercises

Exercise 6.1 (prior algorithms). In Chapters 4 and 5 we have
seen examples of algorithms that were designed for the PN
and LOCAL models. Many of these algorithms use only small
messages — they can be used directly in the CONGEST model.
Give at least three examples of such algorithms.
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Figure 6.5: Algorithm APSP: the token walks along the BFS tree
at speed 0.5 (thick arrows), while each Wavev moves along the
original graph at speed 1 (dashed lines). The waves are strictly
nested: if Wavev was triggered after Waveu, it will never catch
up with Waveu.
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Exercise 6.2 (edge counting). The edge counting problem is
defined as follows: each node has to output the value |E|, i.e.,
it has to indicate how many edges there are in the graph.

Assume that the input graph is connected. Design an al-
gorithm that solves the edge counting problem in the CONGEST
model in time O(diam(G)).

Exercise 6.3 (detecting bipartite graphs). Assume that the in-
put graph is connected. Design an algorithm that solves the
following problem in the CONGEST model in time O(diam(G)):

• If the input graph is bipartite, all nodes output 1.
• Otherwise all nodes output 0.

Exercise 6.4 (detecting complete graphs). We say that a graph
G = (V, E) is complete if for all nodes u, v ∈ V , u 6= v, there is
an edge {u, v} ∈ E.

Assume that the input graph is connected. Design an al-
gorithm that solves the following problem in the CONGEST
model in time O(1):

• If the input graph is a complete graph, all nodes output
1.

• Otherwise all nodes output 0.

Exercise 6.5 (gathering). Assume that the input graph is con-
nected. In Section 5.2 we saw how to gather full information
on the input graph in time O(diam(G)) in the LOCAL model.
Design an algorithm that solves the problem in time O(|E|) in
the CONGEST model.
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? Exercise 6.6 (gathering lower bounds). Assume that the
input graph is connected. Prove that there is no algorithm that
gathers full information on the input graph in time O(|V |) in
the CONGEST model.

. hint N

? Exercise 6.7 (APSP lower bounds). Assume that the input
graph is connected. Prove that there is no algorithm that solves
the APSP problem in time o(|V |) in the CONGEST model.

6.9 Bibliographic Notes

The name CONGEST is from Peleg’s [20] book. Algorithm APSP
is due to Holzer and Wattenhofer [12]— surprisingly, it was
published only as recently as in 2012.
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Chapter 7

Randomised Algorithms

All models of computing that we have studied so far were based
on the formalism that we introduced in Chapter 4: a distrib-
uted algorithm A is a state machine whose state transitions
are determined by functions initA,d , sendA,d , and receiveA,d .
Everything has been fully deterministic: for a given network
and a given input, the algorithm will always produce the same
output. In this chapter, we will extend the model so that we
can study randomised distributed algorithms.

7.1 Definitions

Let us first define a randomised distributed algorithms in the PN
model or, in brief, a randomised PN algorithm. We extend the
definitions of Section 4.3 so that the state transitions are chosen
randomly according to some probability distribution that may
depend on the current state and incoming messages.

More formally, the values of the functions init and receive
are discrete probability distributions over StatesA. The initial
state of a node u is a random variable x0(u) chosen from a
discrete probability distribution

initA,d( f (u))
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that may depend on the initial state f (u). The state at time t
is a random variable x t(u) chosen from a discrete probability
distribution

receiveA,d

�

x t−1(u), mt(u)
�

that may depend on the previous state x t−1(u) and on the
incoming messages mt(u). All other parts of the model are as
before. In particular, function sendA,d is deterministic.

Above we have defined randomised PN algorithms. We can
now extend the definitions in a natural manner to define ran-
domised algorithms in the LOCAL model (add unique identifiers,
see Chapter 5) and randomised algorithms in the CONGEST
model (add unique identifiers and limit the size of the messages,
see Chapter 6).

7.2 Probabilistic Analysis

In randomised algorithms, performance guarantees are typically
probabilistic. For example, we may claim that algorithm A stops
in time T with probability p.

Note that all probabilities here are over the random choices
in the state transitions. We do not assume that our network or
the local inputs are chosen randomly; we still require that the
algorithm performs well with worst-case inputs. For example, if
we claim that algorithm A solves problem Π on graph family F
in time T (n)with probability p, then we can take any graph G ∈
F and any port-numbered network N with G as its underlying
graph, and we guarantee that with probability at least p the
execution of A in N stops in time T (n) and produces a correct
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output g ∈ Π(G); as usual, n is the number of nodes in the
network.

We may occasionally want to emphasise the distinction
between “Monte Carlo” and “Las Vegas” type algorithms:

• Monte Carlo: Algorithm A always stops in time T (n); the
output is a correct solution to problem Π with probability
p.

• Las Vegas: Algorithm A stops in time T (n)with probability
p; when it stops, the output is always a correct solutions
to problem Π.

However, Monte Carlo algorithms are not as useful in the field
of distributed computing as they were in the context of cent-
ralised algorithms. In centralised algorithms, we can usually
take a Monte Carlo algorithm and just run it repeatedly until
it produces a feasible solution; hence we can turn a Monte
Carlo algorithm into a Las Vegas algorithm. This is not neces-
sarily the case with distributed algorithms: verifying the output
of an algorithm may require global information on the entire
output, and gathering such information may take a long time.
In this chapter, we will mainly focus on Las Vegas algorithms,
i.e., algorithms that are always correct but may occasionally be
slow, but in the exercises we will also encounter Monte Carlo
algorithms.
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7.3 With High Probability

We will use the word failure to refer to the event that the al-
gorithm did not meet its guarantees — in the case of a Las Vegas
algorithm, it did not stop in time T (n), and in the case of Monte
Carlo algorithms, it did not produce a correct output. The word
success refers to the opposite case.

Usually we want to show that the probability of a failure is
negligible. In computer science, we are usually interested in
asymptotic analysis, and hence in the context of randomised
algorithms, it is convenient if we can show that the success
probability approaches 1 when n increases. Even better, we
would like to let the user of the algorithm choose how quickly
the success probability approaches 1.

This idea is captured in the phrase “with high probability”
(commonly abbreviated w.h.p.). Please note that this phrase is
not a vague subjective statement but it carries a precise mathem-
atical meaning: it refers to the success probability of 1− 1/nc ,
where we can choose any constant c > 0. (Unfortunately, dif-
ferent sources use slightly different definitions; for example, it
may also refer to the success probability of 1−O(1)/nc for any
constant c > 0.)

In our context, we say that algorithm A solves problem Π
on graph family F in time O(T (n)) with high probability if the
following holds:

• I can choose any constant c > 0. Algorithm A may depend
on this constant.
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• Then if I run A in any network N that has its underlying
graph in F , the algorithm will stop in time O(T (n)) with
probability at least 1− 1/nc , and the output is a feasible
solution to problem Π.

Note that the O(·) notation in the running time is used to hide
the dependence on c. This is a crucial point. For example, it
would not make much sense to say that the running time is
at most log n with probability 1 − 1/nc for any constant c >
0. However, it is perfectly reasonable to say that the running
time is, e.g., at most c log n or 2c log n or simply O(log n) with
probability 1− 1/nc for any constant c > 0.

7.4 Algorithm BDRand: Randomised
Colouring in Bounded-Degree Graphs

In Section 5.10 we presented a deterministic algorithm BDColour
that finds a (∆+ 1)-colouring in a graph of maximum degree∆.
In this section, we will design a randomised algorithm BDRand
that solves the same problem. The running times are different:

• BDColour runs in O(∆2 + log∗ n) rounds.
• BDRand runs in O(log n) rounds with high probability.

Hence for large values of ∆, algorithm BDRand can be much
faster.

7.4.1 Algorithm Idea

A running time of O(log n) is very typical for a randomised
distributed algorithm. Often randomised algorithms follow the
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strategy that in each step each node picks a value randomly
from some probability distribution. If the value conflicts with
the values of the neighbours, the node will try again next time;
otherwise the node outputs the current value and stops. If we
can prove that each node stops in each round with a constant
probability, we can prove that after Θ(log n) all nodes have
stopped w.h.p. This is precisely what we saw in the analysis of
the randomised path-colouring algorithm in Section 1.5.

However, adapting the same strategy to graphs of maximum
degree ∆ requires some thought. If each node just repeatedly
tries to pick a random colour from {1, 2, . . . ,∆+1}, the success
probability may be fairly low for large values of ∆.

Therefore we will adopt a strategy in which nodes are
slightly less aggressive. In algorithm BDRand, nodes will first
randomly choose whether they are active or passive in this round;
each node is passive with probability 1/2. Only active nodes
will try to pick a random colour among those colours that are
not yet used by their neighbours.

Informally, the reason why this works well is the following.
Assume that we have a node v with d neighbours that have not
yet stopped. Then there are at least d + 1 colours among which
v can choose whenever it is active. If all of the d neighbours
were also active and if they happened to pick distinct colours,
we would have only a

1
d + 1

chance of picking a colour that is not used by any of the neigh-
bours. However, in algorithm BDRand on average only d/2
neighbours are active. If we have at most d/2 active neigh-
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bours, we will succeed in picking a free colour with probability
at least

d + 1− d/2
d + 1

>
1
2

,

regardless of what the active neighbours do.

7.4.2 Algorithm

Let us now formalise the algorithm. For each node u, let

C(u) = {1,2, . . . , degG(u) + 1}

be the colour palette of the node; node u will output one of the
colours of C(u).

In the algorithm, node u maintains the following variables:

• State s(u) ∈ {0,1}
• Colour c(u) ∈ {⊥} ∪ C(u).

Initially, s(u)← 1 and c(u)←⊥. When s(u) = 1 and c(u) 6=⊥,
node u stops and outputs colour c(u).

In each round, node u always sends c(u) to each port. The
incoming messages are processed as follows, depending on the
current state of the node:

• s(u) = 1 and c(u) 6=⊥:

– This is a stopping state; ignore incoming messages.

• s(u) = 1 and c(u) =⊥:

– Let M(u) be the set of messages received.
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– Let F(u) = C(u) \M(u) be the set of free colours.

– With probability 1/2, set c(u)←⊥; otherwise choose
a c(u) ∈ F(u) uniformly at random.

– Set s(u)← 0.

• s(u) = 0:

– Let M(u) be the set of messages received.

– If c(u) ∈ M(u), set c(u)←⊥.

– Set s(u)← 1.

Informally, the algorithm proceeds as follows. For each node
u, its state s(u) alternates between 1 and 0:

• When s(u) = 1, the node either decides to be passive and
sets c(u) =⊥, or it decides to be active and picks a random
colour c(u) ∈ F(u). Here F(u) is the set of colours that are
not yet used by any of the neighbours that are stopped.

• When s(u) = 0, the node verifies its choice. If the current
colour c(u) conflicts with one of the neighbours, we go
back to the initial state s(u)← 1 and c(u)←⊥. However,
if we were lucky and managed to pick a colour that does
not conflict with any of our neighbours, we keep the
current value of c(u) and switch to the stopping state.

7.4.3 Analysis

It is easy to see that if the algorithm stops, then the output is a
proper (∆+ 1)-colouring of the underlying graph. Let us now
analyse how long it takes for the nodes to stop.
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In the analysis, we will write st(u) and ct(u) for values of
variables s(u) and c(u) after round t = 0, 1, . . . , and Mt(u) and
Ft(u) for the values of M(u) and F(u) during round t = 1, 2, . . . .
We also write

Kt(u) =
�

v ∈ V : {u, v} ∈ E, st−1(v) = 1, ct−1(v) =⊥
	

for the set of competitors of node u during round t = 1, 3, 5, . . . ;
these are the neighbours of u that have not yet stopped.

First, let us prove that with probability at least 1/4, a run-
ning node succeeds in picking a colour that does not conflict
with any of its neighbours.

Lemma 7.1. Fix a node u ∈ V and time t = 1, 3, 5, . . . . Assume
that st−1(u) = 1 and ct−1(u) =⊥, i.e., u has not stopped before
round t. Then with probability at least 1/4, we have st+1(u) = 1
and ct+1(u) 6=⊥, i.e., u will stop after round t + 1.

Proof. Let f = |Ft(u)| be the number of free colours during
round t, and let k = |Kt(u)| be the number of competitors
during round t. Note that f ≥ k+ 1, as the size of the palette
is one larger than the number of neighbours.

Let us first study the case that u is active. As we have got f
free colours, for any given colour x ∈ N we have

Pr
�

ct(u) = x
�

� ct(u) 6=⊥
�

≤ 1/ f .

In particular, this holds for any colour x = ct(v) chosen by any
active competitor v ∈ Kt(u):

Pr
�

ct(u) = ct(v)
�

� ct(u) 6=⊥, ct(v) 6=⊥
�

≤ 1/ f .
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That is, we conflict with an active competitor with probabil-
ity at most 1/ f . Naturally, we cannot conflict with a passive
competitor:

Pr
�

ct(u) = ct(v)
�

� ct(u) 6=⊥, ct(v) =⊥
�

= 0.

As a competitor is active with probability

Pr
�

ct(v) 6=⊥
�

= 1/2,

and the random variables ct(u) and ct(v) are independent, the
probability that we conflict with a given competitor v ∈ Kt(u) is

Pr
�

ct(u) = ct(v)
�

� ct(u) 6=⊥
�

≤
1

2 f
.

By the union bound, the probability that we conflict with some
competitor is

Pr
�

ct(u) = ct(v) for some v ∈ Kt(u)
�

� ct(u) 6=⊥
�

≤
k

2 f
,

which is less than 1/2 for all k ≥ 0 and all f ≥ k + 1. Put
otherwise, node u will avoid conflicts with probability

Pr
�

ct(u) 6= ct(v) for all v ∈ Kt(u)
�

� ct(u) 6=⊥
�

>
1
2

.

So far we have studied the conditional probabilities assum-
ing that u is active. This happens with probability

Pr
�

ct(u) 6=⊥
�

= 1/2.

Therefore node u will stop after round t + 1 with probability

Pr
�

ct+1(u) 6=⊥] =

Pr
�

ct(u) 6=⊥ and ct(u) 6= ct(v) for all v ∈ Kt(u)]> 1/4.
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Now we can continue with the same argument as what we
used in Section 1.5 to analyse the running time. Fix a constant
c > 0. Define

T (n) = 2(c + 1) log4/3 n.

We will prove that algorithm BDRand stops in T(n) rounds.
First, let us consider an individual node. Note the exponent
c + 1 instead of c in the statement of the lemma; this will be
helpful later.

Lemma 7.2. Fix a node u ∈ V . The probability that u has not
stopped after T (n) rounds is at most 1/nc+1.

Proof. By Lemma 7.1, if node u has not stopped after round
2i, it will stop after round 2i + 2 with probability at least 1/4.
Hence the probability that it has not stopped after T (n) rounds
is at most

(3/4)T (n)/2 =
1

(4/3)(c+1) log4/3 n
=

1
nc+1

.

Now we are ready to analyse the time until all nodes stop.

Theorem 7.3. The probability that all nodes have stopped after
T (n) rounds is at least 1− 1/nc .

Proof. Follows from Lemma 7.2 by the union bound.

Note that T(n) = O(log n) for any constant c. Hence we
conclude that algorithm BDRand stops in O(log n) rounds with
high probability, and when it stops, it outputs a vertex colouring
with ∆+ 1 colours.
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7.5 Exercises

Exercise 7.1 (larger palette). Assume that we have a graph
without any isolated nodes. We will design a graph-colouring
algorithm A that is a bit easier to understand and analyse than
algorithm BDRand. In algorithm A, each node u proceeds as
follows until it stops:

• Node u picks a colour c(u) from {1, 2, . . . , 2d} uniformly
at random; here d is the degree of node u.

• Node u compares its value c(u) with the values of all
neighbours. If c(u) is different from the values of its
neighbours, u outputs c(u) and stops.

Present this algorithm in a formally precise manner, using the
state-machine formalism. Analyse the algorithm, and prove that
it finds a 2∆-colouring in time O(log n) with high probability.

Exercise 7.2 (unique identifiers). Design a randomised PN
algorithm A that solves the following problem in O(1) rounds:

• As input, all nodes get value |V |.
• Algorithm outputs a labelling f : V → {1,2, . . . ,χ} for

some χ = |V |O(1).
• With high probability, f (u) 6= f (v) for all nodes u 6= v.

Analyse your algorithm and prove that it indeed solves the
problem correctly.

In essence, algorithm A demonstrates that we can use ran-
domness to construct unique identifiers, assuming that we have
some information on the size of the network. Hence we can take
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any algorithm B designed for the LOCAL model, and combine
it with algorithm A to obtain a PN algorithm B′ that solves the
same problem as B (with high probability).

. hint O

Exercise 7.3 (large independent sets). Design a randomised
PN algorithm A with the following guarantee: in any graph
G = (V, E) of maximum degree ∆, algorithm A outputs an
independent set I such that the expected size of the I is |V |/O(∆).
The running time of the algorithm should be O(1). You can
assume that all nodes know ∆.

. hint P

Exercise 7.4 (max cut problem). Let G = (V, E) be a graph. A
cut is a function f : V → {0, 1}. An edge {u, v} ∈ E is a cut edge
in f if f (u) 6= f (v). The size of cut f is the number of cut edges,
and a maximum cut is a cut of the largest possible size.

(a) Prove: If G = (V, E) is a bipartite graph, then a maximum
cut has |E| edges.

(b) Prove: If G = (V, E) has a cut with |E| edges, then G is
bipartite.

(c) Prove: For any α > 1/2, there exists a graph G = (V, E)
in which the maximum cut has fewer than α|E| edges.

. hint Q

Exercise 7.5 (max cut algorithm). Design a randomised PN
algorithm A with the following guarantee: in any graph G =
(V, E), algorithm A outputs a cut f such that the expected size
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of cut f is at least |E|/2. The running time of the algorithm
should be O(1).

Note that the analysis of algorithm A also implies that for
any graph there exists a cut with at least |E|/2.

. hint R

Exercise 7.6 (maximal independent sets). Design a randomised
PN algorithm that finds a maximal independent set in time
O(∆+ log n) with high probability.

. hint S

? Exercise 7.7 (maximal independent sets quickly). Design a
randomised distributed algorithm that finds a maximal inde-
pendent set in time O(log n) with high probability.

. hint T

7.6 Bibliographic Notes

Algorithm BDRand and the algorithm of Exercise 7.1 are from
Barenboim and Elkin’s book [4, Section 10.1].

150



Part IV

Proving Impossibility
Results

151



Chapter 8

Covering Maps

Chapters 4–7 have focused on positive results; now we will turn
our attention to techniques that can be used to prove negative
results. We will start with so-called covering maps — we will use
covering maps to prove that many problems cannot be solved
at all with deterministic PN-algorithms.

8.1 Definition

A covering map is a topological concept that finds applications
in many areas of mathematics, including graph theory. We
will focus on one special case: covering maps between port-
numbered networks.

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be port-numbered
networks, and let φ : V → V ′. We say that φ is a covering map
from N to N ′ if the following holds:

(a) φ is a surjection: φ(V ) = V ′.

(b) φ preserves degrees: degN (v) = degN ′(φ(v))
for all v ∈ V .

(c) φ preserves connections and port numbers:
p(u, i) = (v, j) implies p′(φ(u), i) = (φ(v), j).
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N:

N’:

a1, 3
a1, 2
a1, 1

b1, 1
b1, 2

c1, 1
c1, 2

d1, 1

a2, 3
a2, 2
a2, 1

b2, 1
b2, 2

c2, 1
c2, 2

d2, 1

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 8.1: There is a covering map φ from N to N ′ that maps
ai 7→ a, bi 7→ b, ci 7→ c, and di 7→ d for each i ∈ {1,2}.
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N:

N’:

v1, 1
v1, 2

v3, 1
v3, 2

v2, 1
v2, 2

v, 1
v, 2

Figure 8.2: There is a covering map φ from N to N ′ that maps
vi 7→ v for each i ∈ {1, 2, 3}. Here N is a simple port-numbered
network but N ′ is not.

N:

N’: v, 1

v1, 1 v2, 1

Figure 8.3: There is a covering map φ from N to N ′ that maps
vi 7→ v for each i ∈ {1,2}. Again, N is a simple port-numbered
network but N ′ is not.
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See Figures 8.1–8.3 for examples.
We can also consider labelled networks, for example, net-

works with local inputs. Let f : V → X and f ′ : V ′ → X . We
say that φ is a covering map from (N , f ) to (N ′, f ′) if φ is a
covering map from N to N ′ and the following holds:

(d) φ preserves labels: f (v) = f ′(φ(v)) for all v ∈ V .

8.2 Covers and Executions

Now we will study covering maps from the perspective of de-
terministic PN-algorithms. The basic idea is that a covering
map φ from N to N ′ fools any PN-algorithm A: a node v in N
is indistinguishable from the node φ(v) in N ′.

Without further ado, we state the main result and prove it
— many applications and examples will follow.

Theorem 8.1. Assume that

(a) A is a deterministic PN-algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are port-numbered
networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions, and

(d) φ : V → V ′ is a covering map from (N , f ) to (N ′, f ′).

Let

(e) x0, x1, . . . be the execution of A on (N , f ), and

(f) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).
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Then for each t = 0,1, . . . and each v ∈ V we have x t(v) =
x ′t(φ(v)).

Proof. We will use the notation of Section 4.3.2; the symbols
with a prime refer to the execution of A on (N ′, f ′). In particular,
m′t(u

′, i) is the message received by u′ ∈ V ′ from port i in round
t in the execution of A on (N ′, f ′), and m′t(u

′) is the vector of
messages received by u′.

The proof is by induction on t. To prove the base case t = 0,
let v ∈ V , d = degN (v), and v′ = φ(v); we have

x ′0(v
′) = initA,d( f

′(v′)) = initA,d( f (v)) = x0(v).

For the inductive step, let (u, i) ∈ P, (v, j) = p(u, i), d =
degN (u), ` = degN (v), u′ = φ(u), and v′ = φ(v). Let us first
consider the messages sent by v and v′; by the inductive as-
sumption, these are equal:

sendA,`(x
′
t−1(v

′)) = sendA,`(x t−1(v)).

A covering map φ preserves connections and port num-
bers: (u, i) = p(v, j) implies (u′, i) = p′(v′, j). Hence mt(u, i)
is component j of sendA,`(x t−1(v)), and m′t(u

′, i) is component
j of sendA,`(x ′t−1(v

′)). It follows that mt(u, i) = m′t(u
′, i) and

mt(u) = m′t(u
′). Therefore

x ′t(u
′) = receiveA,d

�

x ′t−1(u
′), m′t(u

′)
�

= receiveA,d

�

x t−1(u), mt(u)
�

= x t(u).

In particular, if the execution of A on (N , f ) stops in time
T , the execution of A on (N ′, f ′) stops in time T as well, and
vice versa. Moreover, φ preserves the local outputs: xT (v) =
x ′T (φ(v)) for all v ∈ V .
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8.3 Examples

We will give representative examples of negative results that we
can easily derive from Theorem 8.1. First, we will observe that
a deterministic PN-algorithm cannot break symmetry in a cycle
— unless we provide some symmetry-breaking information in
local inputs.

Lemma 8.2. Let G = (V, E) be a cycle graph, let A be a determin-
istic PN-algorithm, and let f be a constant function f : V → {0}.
Then there is a simple port-numbered network N = (V, P, p) such
that

(a) the underlying graph of N is G, and

(b) if A stops on (N , f ), the output is a constant function
g : V → {c} for some c.

Proof. Label the nodes V = { v1, v2, . . . , vn } along the cycle so
that the edges are

E =
�

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
	

.

Choose the port numbering p as follows:

p : (v1, 1) 7→ (v2, 2), (v2, 1) 7→ (v3, 2), . . . ,

(vn−1, 1) 7→ (vn, 2), (vn, 1) 7→ (v1, 2).

See Figure 8.2 for an illustration in the case n= 3.
Define another port-numbered network N ′ = (V ′, P ′, p′)with

V ′ = {v}, P ′ = {(v, 1), (v, 2)}, and p(v, 1) = (v, 2). Let f ′ : V ′→

157



{0}. Define a function φ : V → V ′ by setting φ(vi) = v for each
i.

Now we can verify that φ is a covering map from (N , f )
to (N ′, f ′). Assume that A stops on (N , f ) and produces an
output g. By Theorem 8.1, A also stops on (N ′, f ′) and produces
an output g ′. Let c = g ′(v). Now

g(vi) = g ′(φ(vi)) = g ′(v) = c

for all i.

In the above proof, we never assumed that the execution of
A on N ′ makes any sense — after all, N ′ is not even a simple
port-numbered network, and there is no underlying graph. Al-
gorithm A was never designed to be applied to such a strange
network with only one node. Nevertheless, the execution of
A on N ′ is formally well-defined, and Theorem 8.1 holds. We
do not really care what A outputs on N ′, but the existence of a
covering map can be used to prove that the output of A on N
has certain properties. It may be best to interpret the execution
of A on N ′ as a thought experiment, not as something that we
would actually try to do in practice.

Lemma 8.2 has many immediate corollaries.

Corollary 8.3. Let F be the family of cycle graphs. Then there
is no deterministic PN-algorithm that solves any of the following
problems on F :

(a) maximal independent set,
(b) 1.999-approximation of a minimum vertex cover,
(c) 2.999-approximation of a minimum dominating set,
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(d) maximal matching,
(e) vertex colouring,
(f) weak colouring,
(g) edge colouring.

Proof. In each of these cases, there is a graph G ∈ F such that
a constant function is not a feasible solution in the network N
that we constructed in Lemma 8.2.

For example, consider the case of dominating sets; other
cases are similar. Assume that G = (V, E) is a cycle with 3k
nodes. Then a minimum dominating set consists of k nodes
— it is sufficient to take every third node. Hence a 2.999-ap-
proximation of a minimum dominating set consists of at most
2.999k < 3k nodes. A solution D = V violates the approxima-
tion guarantee, as D has too many nodes, while D =∅ is not a
dominating set. Hence if A outputs a constant function, it can-
not produce a 2.999-approximation of a minimum dominating
set.

Lemma 8.4. There is no deterministic PN-algorithm that finds a
weak colouring for any 3-regular graph.

Proof. Again, we are going to apply the standard technique:
pick a suitable 3-regular graph G, find a port-numbered network
N that has G as its underlying graph, find a smaller network N ′

such that we have a covering map φ from N to N ′, and apply
Theorem 8.1.

However, it is not immediately obvious which 3-regular
graph would be appropriate; hence we try the simplest possible
case first. Let G = (V, E) be the complete graph on four nodes:
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V = { s, t, u, v }, and we have an edge between any pair of nodes;
see Figure 8.4. The graph is certainly 3-regular: each node is
adjacent to the other three nodes.

Now it is easy to verify that the edges of G can be partitioned
into a 2-factor X and a 1-factor Y . The 2-factor consists of a
cycle and a 1-factor consists of disjoint edges. We can use the
factors to guide the selection of port numbers in N .

In the cycle induced by X , we can choose symmetric port
numbers using the same idea as what we had in the proof of
Lemma 8.2; one end of each edge is connected to port 1 while
the other end is connected to port 2. For the edges of the 1-
factor Y , we can assign port number 3 at each end. We have
constructed the port-numbered network N that is illustrated in
Figure 8.4.

Now we can verify that there is a covering map φ from N
to N ′, where N ′ is the network with one node illustrated in
Figure 8.4. Therefore in any algorithm A, if we do not have
any local inputs, all nodes of N will produce the same output.
However, a constant output is not a weak colouring of G.

In the above proof, we could have also partitioned the
edges of G into three 1-factors, and we could have used the
1-factorisation to guide the selection of port numbers. However,
the above technique is more general: there are 3-regular graphs
that do not admit a 1-factorisation but that can be partitioned
into a 1-factor and a 2-factor.

So far we have used only one covering map in our proofs;
the following lemma gives an example of the use of more than
one covering map.
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X
Y

Y
X

X
s

X

t

uv

N:

N’:

s, 3
s, 2
s, 1

v, 3
v, 2
v, 1

u, 3
u, 2
u, 1

t, 3
t, 2
t, 1

G:

x, 3
x, 2
x, 1

Figure 8.4: Graph G is the complete graph on four nodes. The
edges of G can be partitioned into a 2-factor X and a 1-factor Y .
Network N has G as its underlying graph, and there is a covering
map φ from N to N ′
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N’:

N3: N4:

φ3 φ4

Figure 8.5: The structure of the proof of Lemma 8.5.

Lemma 8.5. LetF = {G3, G4 }, where G3 is the cycle graph with
3 nodes, and G4 is the cycle graph with 4 nodes. There is no
deterministic PN-algorithm that solves the following problem Π
on F : in Π(G3) all nodes output 3 and in Π(G4) all nodes output
4.

Proof. We again apply the construction of Lemma 8.2; for each
i ∈ {3, 4}, let Ni be the symmetric port-numbered network that
has Gi as the underlying graph.

Now it would be convenient if we could construct a cov-
ering map from N4 to N3; however, this is not possible (see
the exercises). Therefore we proceed as follows. Construct a
one-node network N ′ as in the proof of Lemma 8.2, construct
the covering map φ3 from N3 to N ′, and construct the covering
map φ4 from N4 to N ′; see Figure 8.5. The local inputs are
assumed to be all zeroes.
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Let A be a PN-algorithm, and let c be the output of the only
node of N ′. If we apply Theorem 8.1 to φ3, we conclude that
all nodes of N3 output c; if A solves Π on G3, we must have
c = 3. However, if we apply Theorem 8.1 to φ4, we learn that
all nodes of N4 also output c = 3, and hence A cannot solve Π
on F .

We have learned that a deterministic PN-algorithm cannot
determine the length of a cycle. In particular, a deterministic PN-
algorithm cannot determine if the underlying graph is bipartite.

8.4 Exercises

We use the following definition in the exercises. A graph G is ho-
mogeneous if there are port-numbered networks N and N ′ and a
covering map φ from N to N ′ such that N is simple, the under-
lying graph of N is G, and N ′ has only one node. For example,
Lemma 8.2 shows that all cycle graphs are homogeneous.

Exercise 8.1 (finding port numbers). Consider the graph G
and network N ′ illustrated in Figure 8.6. Find a simple port-
numbered network N such that N has G as the underlying graph
and there is a covering map from N to N ′.

Exercise 8.2 (homogeneity). Assume that G is homogeneous
and it contains a node of degree at least two. Give several
examples of graph problems that cannot be solved with any
deterministic PN-algorithm in any family of graphs that contains
G.
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b, 3
b, 2
b, 1

c, 3
c, 2
c, 1

d, 3
d, 2
d, 1

a, 3
a, 2
a, 1

N’:

G:

Figure 8.6: Graph G and network N ′ for Exercises 8.1 and 8.3b.
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Figure 8.7: Graph G for Exercise 8.3a.

Exercise 8.3 (regular and homogeneous). Show that the fol-
lowing graphs are homogeneous:

(a) graph G illustrated in Figure 8.7,

(b) graph G illustrated in Figure 8.6.

. hint U

Exercise 8.4 (complete graphs). Recall that we say that a graph
G = (V, E) is complete if for all nodes u, v ∈ V , u 6= v, there is
an edge {u, v} ∈ E. Show that

(a) any 2k-regular graph is homogeneous,

(b) any complete graph with 2k nodes has a 1-factorisation,

(c) any complete graph is homogeneous.

Exercise 8.5 (dominating sets). Let ∆ ∈ {2,3, . . . }, let ε > 0,
and let F consist of all graphs of maximum degree at most ∆.
Show that it is possible to find a (∆+ 1)-approximation of a
minimum dominating set in constant time in family F with a
deterministic PN-algorithm. Show that it is not possible to find
a (∆+ 1− ε)-approximation with a deterministic PN-algorithm.

. hint V
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Figure 8.8: Graph G for Exercise 8.7.

Exercise 8.6 (covers with covers). What is the connection
between covering maps and algorithm VC3 of Section 4.6?

? Exercise 8.7 (3-regular and not homogeneous). Consider the
graph G illustrated in Figure 8.8.

(a) Show that G is not homogeneous.

(b) Present a deterministic PN-algorithm A with the following
property: if N is a simple port-numbered network that
has G as the underlying graph, and we execute A on N ,
then A stops and produces an output where at least one
node outputs 0 and at least one node outputs 1.

(c) Find a simple port-numbered network N that has G as
the underlying graph, a port-numbered network N ′, and
a covering map φ from N to N ′ such that N ′ has the
smallest possible number of nodes.

. hint W

? Exercise 8.8 (covers and connectivity). Assume that N =
(V, P, p) and N ′ = (V ′, P ′, p′) are simple port-numbered networks
such that there is a covering map φ from N to N ′. Let G be the
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underlying graph of network N , and let G′ be the underlying
graph of network N ′.

(a) Is it possible that G is connected and G′ is not connected?

(b) Is it possible that G is not connected and G′ is connected?

? Exercise 8.9 (k-fold covers). Let N = (V, P, p) and N ′ =
(V ′, P ′, p′) be simple port-numbered networks such that the
underlying graphs of N and N ′ are connected, and assume
that φ : V → V ′ is a covering map from N to N ′. Prove that
there exists a positive integer k such that the following holds:
|V | = k|V ′| and for each node v′ ∈ V ′ we have |φ−1(v′)| = k.
Show that the claim does not necessarily hold if the underlying
graphs are not connected.

8.5 Bibliographic Notes

The use of covering maps in the context of distributed algorithm
was introduced by Angluin [2]. The general idea of Exercise 8.7
can be traced back to Yamashita and Kameda [27], while the
specific construction in Figure 8.8 is from Bondy and Murty’s
textbook [5, Figure 5.10]. Parts of exercises 8.1, 8.3, 8.4, and
8.5 are inspired by our work [3, 25].
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Chapter 9

Local Neighbourhoods

Covering maps can be used to argue that a given problem cannot
be solved at all with deterministic PN algorithms. Now we
will revisit the concept of locality that we already studied in
Chapter 2. Locality can be used to argue that a given problem
cannot be solved fast, in any model of distributed computing.

9.1 Definitions

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be simple port-numbered
networks, with the underlying graphs G = (V, E) and G′ =
(V ′, E′). Fix the local inputs f : V → Y and f ′ : V ′→ Y , a pair
of nodes v ∈ V and v′ ∈ V ′, and a radius r ∈ N. Define the
radius-r neighbourhoods

U = ballG(v, r), U ′ = ballG′(v
′, r).

We say that (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r
neighbourhoods if there is a bijectionψ: U → U ′ withψ(v) = v′

such that

(a) ψ preserves degrees: degN (v) = degN ′(ψ(v))
for all v ∈ U .

168



u v

Figure 9.1: Nodes u and v have isomorphic radius-2 neighbour-
hoods, provided that we choose the port numbers appropriately.
Therefore in any algorithm A the state of u equals the state of v
at time t = 0,1,2. However, at time t = 3,4, . . . this does not
necessarily hold.

(b) ψ preserves connections and port numbers:
p(u, i) = (v, j) if and only if p′(ψ(u), i) = (ψ(v), j)
for all u, v ∈ U .

(c) ψ preserves local inputs: f (v) = f ′(ψ(v)) for all v ∈ U .

The function ψ is called an r-neighbourhood isomorphism from
(N , f , v) to (N ′, f ′, v′). See Figure 9.1 for an example.

9.2 Local Neighbourhoods and Executions

Theorem 9.1. Assume that

(a) A is a deterministic PN algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are simple
port-numbered networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions,

(d) v ∈ V and v′ ∈ V ′,
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(e) (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r
neighbourhoods.

Let

(f) x0, x1, . . . be the execution of A on (N , f ), and

(g) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . , r we have x t(v) = x ′t(v
′).

Proof. Let G and G′ be the underlying graphs of N and N ′,
respectively. We will prove the following stronger claim by
induction: for each t = 0,1, . . . , r, we have x t(u) = x ′t(ψ(u))
for all u ∈ ballG(v, r − t).

To prove the base case t = 0, let u ∈ ballG(v, r), d =
degN (u), and u′ =ψ(u); we have

x ′0(u
′) = initA,d( f

′(u′)) = initA,d( f (u)) = x0(u).

For the inductive step, assume that t ≥ 1 and

u ∈ ballG(v, r − t).

Let u′ =ψ(u). By inductive assumption, we have

x ′t−1(u
′) = x t−1(u).

Now consider a port (u, i) ∈ P. Let (s, j) = p(u, i). We have
{s, u} ∈ E, and therefore

distG(s, v)≤ distG(s, u) + distG(u, v)≤ 1+ r − t.
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Define s′ =ψ(s). By inductive assumption we have

x ′t−1(s
′) = x t−1(s).

The neighbourhood isomorphismψ preserves the port numbers:
(s′, j) = p′(u′, i). Hence all of the following are equal:

(a) the message sent by s to port j on round t,
(b) the message sent by s′ to port j on round t,
(c) the message received by u from port i on round t,
(d) the message received by u′ from port i on round t.

As the same holds for any port of u, we conclude that

x ′t(u
′) = x t(u).

To apply Theorem 9.1 in the LOCAL model, we need to
include unique identifiers in the local inputs f and f ′.

9.3 Exercises

Exercise 9.1 (edge colouring). In this exercise, the graph family
F consists of path graphs.

(a) Show that it is possible to find a 2-edge colouring in time
O(n) with deterministic PN-algorithms.

(b) Show that it is not possible to find a 2-edge colouring in
time o(n) with deterministic PN-algorithms.

(c) Show that it is not possible to find a 2-edge colouring in
time o(n) with deterministic LOCAL-algorithms.
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Exercise 9.2 (maximal matching). In this exercise, the graph
family F consists of path graphs.

(a) Show that it is possible to find a maximal matching in
time O(n) with deterministic PN-algorithms.

(b) Show that it is not possible to find a maximal matching
in time o(n) with deterministic PN-algorithms.

(c) Show that it is possible to find a maximal matching in
time o(n) with deterministic LOCAL-algorithms.

Exercise 9.3 (optimisation). In this exercise, the graph family
F consists of path graphs. Can we solve the following problems
with deterministic PN-algorithms? If yes, how fast? Can we
solve them any faster in the LOCAL model?

(a) Minimum vertex cover.

(b) Minimum dominating set.

(c) Minimum edge dominating set.

Exercise 9.4 (approximation). In this exercise, the graph family
F consists of path graphs. Can we solve the following problems
with deterministic PN-algorithms? If yes, how fast? Can we
solve them any faster in the LOCAL model?

(a) 2-approximation of a minimum vertex cover?

(b) 2-approximation of a minimum dominating set?

Exercise 9.5 (auxiliary information). In this exercise, the graph
familyF consists of path graphs, and we are given a 4-colouring
as input. We consider deterministic PN-algorithms.
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(a) Show that it is possible to find a 3-colouring in time 1.

(b) Show that it is not possible to find a 3-colouring in time
0.

(c) Show that it is possible to find a 2-colouring in time O(n).

(d) Show that it is not possible to find a 2-colouring in time
o(n).

? Exercise 9.6 (orientations). In this exercise, the graph family
F consists of cycle graphs, and we are given some orientation
as input. The task is to find a consistent orientation, i.e., an
orientation such that both the indegree and the outdegree of
each node is 1.

(a) Show that this problem cannot be solved with any de-
terministic PN-algorithm.

(b) Show that this problem cannot be solved with any de-
terministic LOCAL-algorithm in time o(n).

(c) Show that this problem can be solved with a deterministic
PN-algorithm if we give n as input to all nodes. How fast?
Prove tight upper and lower bounds on the running time.

? Exercise 9.7 (local indistinguishability). Consider the graphs
G1 and G2 illustrated in Figure 9.2. Assume that A is a determ-
inistic PN-algorithm with running time 2. Show that A cannot
distinguish between nodes v1 and v2. That is, there are simple
port-numbered networks N1 and N2 such that Ni has Gi as the
underlying graph, and the output of v1 in N1 equals the output
of v2 in N2.

. hint X
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v1 v2

G1 G2

Figure 9.2: Graphs for Exercise 9.7.

9.4 Bibliographic Notes

Local neighbourhoods were used to prove negative results in
the context of distributed computing by, e.g., Linial [15].
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Chapter 10

Ramsey Theory

In this chapter we will prove Ramsey’s theorem, which is a math-
ematical statement with numerous applications. This chapter is
pure combinatorics; we will not discuss distributed algorithms
at all. In Chapter 11 we will then see how to apply Ramsey’s the-
orem to prove negative results related to distributed algorithms.

10.1 Monochromatic Subsets

Let Y be a finite set. We say that X is a k-subset of Y if X ⊆ Y
and |X |= k. We use the notation

Y (k) = {X ⊆ Y : |X |= k}

for the collection of all k-subsets of Y .
A c-labelling of Y (k) is an arbitrary function

f : Y (k)→ {1, 2, . . . , c}.

Fix some Y , k, c, and f , where f is a c-labelling of Y (k). We say
that

(a) X ⊆ Y is monochromatic in f if f (A) = f (B) for all A, B ∈
X (k),
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f : Y (2)→ {1, 2,3}

{1, 2} 7→ 1 {2,4} 7→ 1
{1, 3} 7→ 1 {2,5} 7→ 2
{1, 4} 7→ 2 {3,4} 7→ 3
{1, 5} 7→ 1 {3,5} 7→ 3
{2, 3} 7→ 2 {4,5} 7→ 3

Figure 10.1: In this example, Y = {1, 2, 3, 4, 5}. Function f is a 3-
labelling of Y (2). Set {1, 2, 3, 5} is almost monochromatic but not
monochromatic in f . Set {3, 4, 5} is both almost monochromatic
and monochromatic in f .

(b) X ⊆ Y is almost monochromatic in f if f (A) = f (B) for all
A, B ∈ X (k) with min(A) =min(B).

See Figure 10.1 for examples. Monochromatic subsets are a
central concept in Ramsey theory, while almost monochromatic
subsets are a technical definition that we will use in the proof.

10.2 Ramsey Numbers

For all positive integers c, n, and k, we define the numbers
Rc(n; k) and R̄c(n; k) as follows.

(a) Rc(n; k) is the smallest natural number N such that the
following holds: for any set Y with at least N elements,
and for any c-labelling f of Y (k), there is an n-subset
of Y that is monochromatic in f . If no such N exists,
Rc(n; k) =∞.
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(b) R̄c(n; k) is the smallest natural number N such that the
following holds: for any set Y with at least N elements,
and for any c-labelling f of Y (k), there is an n-subset of
Y that is almost monochromatic in f . If no such N exists,
R̄c(n; k) =∞.

Numbers Rc(n; k) are called Ramsey numbers, and Ramsey’s
theorem shows that they are always finite.

Theorem 10.1 (Ramsey’s theorem). Numbers Rc(n; k) are finite
for all positive integers c, n, and k.

We will prove Theorem 10.1 in Section 10.4; let us first have
a look at an application.

10.3 An Application

In the case of k = 2, Ramsey’s theorem can be used to derive
various graph-theoretic results. As a simple application, we can
use Ramsey’s theorem to prove that sufficiently large graphs
necessarily contain large cliques or large independent sets.

Let G = (V, E) be a graph. Recall that an independent set
is a subset X ⊆ V such that {u, v} /∈ E for all {u, v} ∈ X (2). A
complementary concept is a clique: it is a subset X ⊆ V such
that {u, v} ∈ E for all {u, v} ∈ X (2).

Lemma 10.2. For any natural number n there is a natural num-
ber N such that the following holds: if G = (V, E) is a graph with
at least N nodes, then G contains a clique with n nodes or an
independent set with n nodes.
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Proof. Choose an integer N ≥ R2(n; 2); by Theorem 10.1, such
an N exists.

Now if G = (V, E) is any graph with at least N nodes, we
can define a 2-labelling f of V (2) as follows:

f ({u, v}) =

¨

1 if {u, v} ∈ E,

2 if {u, v} /∈ E.

By the definition of Ramsey numbers, if |V | ≥ N , there is an
n-subset X ⊆ V that is monochromatic in f . If X ⊆ V is mono-
chromatic, we have one of the following cases:

(a) we have f ({u, v}) = 1 for all {u, v} ∈ X (2); therefore X is
a clique,

(b) we have f ({u, v}) = 2 for all {u, v} ∈ X (2); therefore X is
an independent set.

10.4 Proof

Let us now prove Theorem 10.1. Throughout this section, let
c be fixed. We will show that Rc(n; k) is finite for all n and k.
The proof outline is as follows:

(a) Lemma 10.3: Rc(n; 1) is finite for all n.

(b) Corollary 10.7: if Rc(n; k − 1) is finite for all n, then
Rc(n; k) is finite for all n.

Here we will use the following auxiliary results:
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(i) Lemma 10.5 — if Rc(n; k−1) is finite for all n, then
R̄c(n; k) is finite for all n.

(ii) Lemma 10.6 — if R̄c(n; k) is finite for all n, then
Rc(n; k) is finite for all n.

(c) Now by induction on k, it follows that Rc(n; k) is finite
for all n and k.

The base case of k = 1 is, in essence, equal to the familiar
pigeonhole principle.

Lemma 10.3. Ramsey number Rc(n; 1) is finite for all n.

Proof. Let N = c(n−1)+1. We can use the pigeonhole principle
to show that Rc(n; 1)≤ N .

Let Y be a set with at least N elements, and let f be a c-
labelling of Y (1). In essence, we have c boxes, labelled with
{1, 2, . . . , c}, and function f places each element of Y into one
of these boxes. As there are N elements, there is a box that
contains at least

dN/ce= n

elements. These elements form a monochromatic subset.

Let us now study the case of k > 1. We begin with a technical
lemma.

Lemma 10.4. Let n and k be integers, n > k > 1. If M =
R̄c(n− 1; k) and Rc(M ; k− 1) are finite, then R̄c(n; k) is finite.

Proof. Define
N = 1+ Rc(M ; k− 1).
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We will prove that R̄c(n; k)≤ N .
Let Y be a set with N elements; w.l.o.g., we can assume that

Y = {1,2, . . . , N}. Let f be any c-labelling of Y (k). We need to
show that there is an almost monochromatic n-subset W ⊆ Y .

To this end, let Y2 = {2,3, . . . , N}, and define a c-labelling
f2 of Y (k−1)

2 as follows; see Figure 10.2 for an illustration:

f2(A) = f ({1} ∪ A) for each A∈ Y (k−1)
2 .

Now f2 is a c-labelling of Y (k−1)
2 , and Y2 contains

N − 1= Rc(M ; k− 1)

elements. Hence, by the definition of Ramsey numbers, there is
an M -subset X2 ⊆ Y2 that is monochromatic in f2.

Function f is a c-labelling of Y (k), and X2 ⊆ Y . Hence
by restriction f defines a c-labelling of X (k)2 . Set X2 contains
M = R̄c(n− 1; k) elements. Therefore there is an (n− 1)-subset
W2 ⊆ X2 that is almost monochromatic in f .

To conclude the proof, let W = {1} ∪W2. By construction,
W contains n elements. Moreover, W is almost monochromatic
in f . To see this, assume that A, B ⊆W are k-subsets such that
min(A) = min(B). We need to show that f (A) = f (B). There
are two cases:

(a) We have min(A) = min(B) = 1. Let A2 = A \ {1} and
B2 = B\{1}. Now A2 and B2 are (k−1)-subsets of X2. Set
X2 was monochromatic in f2, and hence f (A) = f2(A2) =
f2(B2) = f (B).
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…{4,5,7} � 1 {5,6,7} � 1

{2,3,7} � 1

{1,5,6} � 1

{1,2,4} � 1

{2,4,6} � 1

{1,2,5} � 1

{1,4,6} � 2

{2,3,6} � 1

{1,2,6} � 2

{1,6,7} � 2

…
{2,4,5} � 2

{1,4,5} � 1
{1,3,6} � 1{1,3,5} � 1

{1,3,4} � 1
{1,3,7} � 1

{2,3,5} � 1
{1,5,7} � 1

{2,4,7} � 2

{1,4,7} � 1

{2,3,4} � 2

{1,2,3} � 1
{1,2,7} � 1

{4,5,6} � 2

{5,6} � 1

{3,6} � 1 {3,7} � 1
{3,4} � 1{2,6} � 2

{6,7} � 2
{4,6} � 2
{5,7} � 1

{2,5} � 1{2,4} � 1
{2,7} � 1

{4,7} � 1{4,5} � 1

{2,3} � 1

{3,5} � 1

f2 :

f :

X2 = {2,3,4,5,7}, monochromatic in  f2
W2 = {2,4,5,7}, almost monochromatic in  f

W = {1,2,4,5,7}, almost monochromatic in  f

Figure 10.2: The proof of Lemma 10.4, for the case of c = 2,
k = 3, and n = 5, assuming completely fictional values M = 5
and N = 7.
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(b) Otherwise 1 /∈ A and 1 /∈ B. Now A and B are k-subsets
of W2. Set W2 was almost monochromatic in f , and we
have min(A) =min(B), which implies f (A) = f (B).

Lemma 10.5. Let k > 1 be an integer. If Rc(n; k− 1) is finite for
all n, then R̄c(n; k) is finite for all n.

Proof. The proof is by induction on n.
The base case of n ≤ k is trivial: a set with n elements

has at most one subset with k elements, and hence it is almost
monochromatic and monochromatic.

Now let n> k. Inductively assume that R̄c(n−1; k) is finite.
Recall that in the statement of this lemma, we assumed that
Rc(M ; k − 1) is finite for any M ; in particular, it is finite for
M = R̄c(n − 1; k). Hence we can apply Lemma 10.4, which
implies that R̄c(n; k) is finite.

Lemma 10.6. Let k > 1 be an integer. If R̄c(n; k) is finite for all
n, then Rc(n; k) is finite for all n.

Proof. Let M = Rc(n; 1). By Lemma 10.3, M is finite. By as-
sumption, R̄c(M ; k) is also finite. We will show that

Rc(n; k)≤ R̄c(M ; k).

Let Y be a set with N = R̄c(M ; k) elements, and let f be any
c-labelling of Y (k). We need to show that there is a monochro-
matic n-subset W ⊆ Y .

By definition, there is an almost monochromatic M -subset
X ⊆ Y . Hence we can define a c-labelling g of X (1) such that

g({min(A)}) = f (A)
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f g

{1,2} 7→ 1 {1} 7→ 1
{1,3} 7→ 1
{1,4} 7→ 1

{2,3} 7→ 3 {2} 7→ 3
{2,4} 7→ 3

{3,4} 7→ 2 {3} 7→ 2

{4} 7→ 1

Figure 10.3: The proof of Lemma 10.6. In this example, c = 3,
k = 2, and X = {1,2,3,4} is almost monochromatic in f . We
define a c-labelling g of X (1) such that g({min(A)}) = f (A) for
all A∈ X (2). Note that the choice of g(4) is arbitrary.

for each k-subset A⊆ X ; see Figure 10.3. As X is a subset with
M = Rc(n; 1) elements, we can find an n-subset W ⊆ X that is
monochromatic in g.

Now we claim that W is also monochromatic in f . To see
this, let A and B be k-subsets of W . Let x = min(A) and y =
min(B). We have x , y ∈W and

f (A) = g({x}) = g({y}) = f (B).

Lemmas 10.5 and 10.6 have the following corollary.

Corollary 10.7. Let k > 1 be an integer. If Rc(n; k− 1) is finite
for all n, then Rc(n; k) is finite for all n.

Now Ramsey’s theorem follows by induction on k: the base
case is Lemma 10.3, and the inductive step is Corollary 10.7.
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10.5 Exercises

Exercise 10.1. Prove that Rc(n; 1) = c · (n− 1) + 1.
. hint Y

Exercise 10.2. Prove that R2(3; 2)≥ 6.
. hint Z

Exercise 10.3. Prove that R2(3;2) ≤ 6. Together with the
previous exercise, this will show that R2(3;2) = 6.

Exercise 10.4. Prove a non-trivial lower bound on R2(4; 2). For
example, show that R2(4;2)≥ 10.

Exercise 10.5. Prove some concrete upper bound on R2(4;2).
For example, show that R2(4;2)≤ 100.

? Exercise 10.6. Find the exact value of R2(4;2).

10.6 Bibliographic Notes

Ramsey’s theorem dates back to 1930s [24]; our proof follows
Nešeťril [17], and the notation is from Radziszowski [23].
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Chapter 11

Applications of Ramsey’s
Theorem

In Section 2.3, we gave a proof of the following result: in
the LOCAL model, it is not possible to find a 3-colouring of a
directed cycle in O(1) rounds with deterministic algorithms. In
this chapter, we will give another proof of the same result, this
time with the help of Ramsey’s theorem (recall Chapter 10).
In the exercises, we will see plenty of other applications of
Ramsey’s theorem in this context, some of which would be
rather difficult to prove with the technique that we used in
Section 2.3.

11.1 Claim

We will prove the following theorem.

Theorem 11.1. Assume that A is a deterministic distributed al-
gorithm for the LOCAL model. Assume that there is a constant
T ∈ N such that A stops in time T in any directed cycle G = (V, E),
and outputs a labelling g : V → {1, 2, 3}. Then there exists a dir-
ected cycle G and an assignment of unique identifiers such that if
we execute A on G, the output of A is not a proper vertex colouring
of G.
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11.2 Preliminaries

To prove Theorem 11.1, let n = 2T+2, k = 2T+1, and c = 3. By
Ramsey’s theorem, Rc(n; k) is finite. Choose any N ≥ Rc(n; k).

We will construct a directed cycle G = (V, E) with N nodes.
In our construction, the set of nodes is V = {1,2, . . . , N}. This
is also the set of unique identifiers in our cycle; recall that we
follow the convention that the unique identifier of a node v ∈ V
is v.

With the set of nodes fixed, we proceed to define the set of
edges. In essence, we only need to specify in which order the
nodes are placed along the cycle.

11.3 Subsets and Cycles

For each subset X ⊆ V , we define a directed cycle GX = (V, EX )
as follows; see Figure 11.1. Let ` = |X |. Label the nodes by
x1, x2, . . . , xN such that

X = { x1, x2, . . . , x` },
V \ X = { x`+1, x`+2, . . . , xN },

x1 < x2 < · · ·< x`,

x`+1 < x`+2 < · · ·< xN .

Then choose the edges

EX = { (x i , x i+1) : 1≤ i < N } ∪ { (xN , x1) }.
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1
4

2

5
6 3

Figure 11.1: Construction of GX . Here N = 6 and X = {2, 4}.

Informally, GX is constructed as follows: first take all nodes
of X , in the order of increasing identifiers, and then take all
other nodes, again in the order of increasing identifiers.

11.4 Labelling

If B ⊆ V is a k-subset, then we define that the internal node i(B)
is the median of the set B. Put otherwise, i(B) is the unique
node in B that is not among the T smallest nodes of B, nor
among the T largest nodes of B.

We will use algorithm A to construct a c-labelling f of V (k)

as follows. For each k-subsets B ⊆ V , we construct the cycle
GB, execute A on GB, and define that f (B) is the output of node
i(B) in GB. See Figure 11.2 for an illustration.

11.5 Monochromatic Subsets

We have constructed a certain c-labelling f . As N is sufficiently
large, there exists an n-subset X ⊆ V that is monochromatic
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9
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7
3

6

8

10

GB

GC

GX

f(B)

f(C)

f(B)

f(C)

Figure 11.2: In this example, N = 10 and T = 2. Let
B = {1,2,4,5,7 }, C = {2,4,5,7,9 }, and X = {1,2,4,5,7,9 }.
The label f (B) is defined as follows: we construct GB, execute
algorithm A, and take the output of the internal node i(B) = 4.
Similarly, the label f (C) is the output of node i(C) = 5 in GC .
As the local neighbourhoods are identical, the output of node 4
in GX is also f (B), and the output of node 5 in GX is also f (C).
If X is monochromatic in f , we have f (B) = f (C).
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in f . Let us label the nodes of X by

X = {x0, x1, . . . , xk},

where x0 < x1 < · · ·< xk. Let

B = {x0, x1, . . . , xk−1},
C = {x1, x2, . . . , xk}.

See Figure 11.2 for an illustration.
Sets B and C are k-subsets of X , and their internal nodes

are i(B) = xT and i(C) = xT+1. As X is monochromatic, we
have f (B) = f (C). Therefore we know that the output of xT in
GB equals the output of xT+1 in GC .

Moreover, node xT has isomorphic radius-T neighbour-
hoods in GB and GX ; in both graphs, the radius-T neighbour-
hood of node xT is a directed path, along which we have the
nodes x0, x1, . . . , xk−1 in this order. Hence by Theorem 9.1, the
output of xT in GB equals the output of xT in GX .

A similar argument shows that the output of xT+1 in GC
equals the output of xT+1 in GX . In summary, the output of xT
in GX equals f (B), which equals f (C), which equals the output
of xT+1 in GX .

We have shown that in the directed cycle GX , there are two
adjacent nodes, xT and xT+1, that produce the same output.
Hence A does not output a proper vertex colouring in GX .

189



11.6 Exercises

Exercise 11.1 (Ramsey and cycles). You are given a constant
` = O(1). Let A be any deterministic distributed algorithm in
the LOCAL model such that:

• OutputA = {1,2, . . . , c} for a constant c = O(1),
• the running time of A is bounded by a constant T = O(1).

Prove: There exists a cycle G of diameter larger than `, and an
assignment of unique identifiers in G such that for some node v,
all nodes in the radius-` neighbourhood of v output the same
value.

Exercise 11.2 (impossibility in cycles). Use the result of Exer-
cise 11.1 to prove that there is no deterministic constant-time al-
gorithm that solves any of the following problems in the LOCAL
model in the family of cycle graphs:

(a) Vertex colouring with O(1) colours.
(b) Edge colouring with O(1) colours.
(c) Weak colouring with O(1) colours.
(d) Maximal independent set.
(e) Maximal matching.
(f) Minimal dominating set.
(g) Minimal edge dominating set.

Exercise 11.3 (Ramsey and 4-regular graphs). In Exercise 11.1,
we considered cycles, i.e., connected 2-regular graphs. General-
ise the result to connected 4-regular graphs.

. hint AA
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Exercise 11.4 (impossibility in 4-regular graphs). Using the
result of Exercise 11.3, generalise the result of Exercise 11.2 to
4-regular graphs.

Exercise 11.5 (impossibility in 3-regular graphs). Prove that
there is no deterministic constant-time algorithm that finds a
vertex colouring with O(1) colours in the LOCAL model in the
family of 3-regular graphs.

. hint AB

? Exercise 11.6 (positive results in 3-regular graphs). Prove
that there is a deterministic constant-time algorithm that finds
a weak colouring with O(1) colours in the LOCAL model in the
family of 3-regular graphs.

? Exercise 11.7 (impossibility of approximations). Prove that
there is no deterministic constant-time algorithm that finds an
O(1)-approximation of a maximum independent set in any cycle
in the LOCAL model.

. hint AC

11.7 Bibliographic Notes

Ramsey’s theorem has been used to prove lower bounds on
distributed algorithms by, e.g., Naor and Stockmeyer [16] and
Czygrinow et al. [7]. In particular, the idea of Exercise 11.7 is
from Czygrinow et al. [7]. Exercise 11.6 is a special case of the
classical result by Naor and Stockmeyer [16].
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Chapter 12

Conclusions

We have reached the end of this book. In this chapter we will
review what we have learned, and we will also have a brief look
at what else is there in the field of distributed algorithms. The
exercises of this chapter form a small project in which we will
analyse one graph problem — edge dominating sets — from
the perspective of distributed algorithms, and apply many of
the techniques that we have learned in this book.

12.1 What Have We Learned?

By now, you have learned a new mindset — an entirely new way
to think about computation. You can reason about distributed
systems, which requires you to take into account many chal-
lenges that we do not encounter in basic courses on algorithms
and data structures:

• Dealing with unknown systems: you can design algorithms
that work correctly in any computer network, no matter
how the computers are connected together, no matter
how we choose the port numbers, and no matter how we
choose the unique identifiers.
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• Dealing with partial information: you can solve graph
problems in sublinear time, so that each node only sees
a small part of the network, and nevertheless the nodes
produce outputs that are globally consistent.

• Dealing with parallelism: you can design highly parallel-
ised algorithms, in which several nodes take steps simul-
taneously.

These skills are in no way specific to distributed algorithms
— they play a key role also in many other areas of modern
computer science. For example, dealing with unknown sys-
tems is necessary if we want to design fault-tolerant algorithms,
dealing with partial information is the key element in e.g. on-
line algorithms and streaming algorithms, and parallelism is
the cornerstone of any algorithm that makes the most out of
modern multicore CPUs, GPUs, and computing clusters.

Learning Objectives. Let us now have a more detailed look
of the detailed learning objectives. The following is based on
the scope of the lecture course Distributed Algorithms that I
lecture at Aalto University. This is a 12-week course, with one
2-hour lecture and one 2-hour exercise session per week, worth
5 ECTS credits, which roughly translates to 133 hours of work
in total. Roughly speaking, normal exercises are something
that the students should be able to solve, while the exercises
marked with a star are material that goes beyond the learning
objectives.
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Objective 1: Models. As the title of this book suggests, by
now you should know precisely what is a distributed algorithm.
You can now define in a formally precise manner what is a
distributed algorithm in each of the following models:

• deterministic PN-algorithms (Chapter 4),
• deterministic LOCAL-algorithms (Chapter 5),
• deterministic CONGEST-algorithms (Chapter 6),
• randomised PN-algorithms (Chapter 7),
• randomised LOCAL-algorithms (Chapter 7),
• randomised CONGEST-algorithms (Chapter 7).

Objective 2: Algorithms. You have now learned how to design
a distributed algorithm in each of these models, how to prove
that the algorithm is correct, and how to analyse the running
time of the algorithm.

We have seen many concrete examples of distributed al-
gorithms. At least, you should be familiar with the following
key examples:

• Colouring paths in O(log∗ n) rounds with deterministic
algorithms in the LOCAL model (Section 1.4).

• Colouring graphs in O(log n) rounds w.h.p. with random-
ised algorithms in the LOCAL model (Section 7.4).

• Gathering everything in O(diam(G)) rounds in the LOCAL
model (Section 5.2).

• Maximal matching in bipartite graphs in O(∆) rounds in
the PN model (Section 4.5).
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• All-pairs shortest paths in O(n) rounds in the CONGEST
model (Section 6.7).

These algorithm highlight the key aspect of the models of com-
puting, they illustrate important techniques for algorithm design
and analysis, and they also serve as key building blocks that
can be used as subroutines in many other algorithms.

The use of other algorithms as subroutines is one of the key
algorithm design techniques in distributed computing. More
formally, we employ reductions: to solve a problem X , you first
show that given a solution to another problem Y , you can easily
solve problem X , too. Then it is sufficient to find an algorithm
for solving problem Y ; in many cases, you can simply reuse an
existing algorithm.

Graph colouring is a prime example of the power of re-
ductions: given an efficient distributed algorithm for graph
colouring, we can also solve many other problems efficiently.
A graph colouring helps with symmetry breaking and a graph
colouring makes it easier to coordinate or schedule the activities
of the nodes in a conflict-free manner — for example, we can
proceed by colour classes, so that in step i nodes of colour i are
active.

Note that in the PN model, it is impossible to find a graph
colouring with a deterministic algorithm. Nevertheless, we can
still use graph colourings in algorithm design even in this model:
recall the vertex cover algorithm from Section 4.6, in which we
were able to produce a 2-colouring out of thin air, and exploit
it in algorithm design.
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Objective 3: Lower Bounds. You can now also prove what
cannot be computed with distributed algorithms, and what can-
not be computed efficiently. There are two main arguments that
we use:

• Covering maps can be used to show that many problems
cannot be solved at all in the PN model (Chapter 8).

• Local neighbourhoods can be used to show that many
problems cannot be solved efficiently in any of the models
(Chapters 2 and 9).

For many problems these two basic tools — together with a bit
of creativity in how to apply them — are all that is needed. How-
ever, there are some problems that need a more heavyweight
machinery. The key example is, again, graph colouring.

While it is possible to, e.g., find a 3-colouring of a path in
O(log∗ n) rounds with deterministic LOCAL-algorithms, this is
not possible in O(1) rounds. We have now seen two different
ways to prove this result; hopefully you are comfortable with at
least one of the proofs:

(a) Section 2.3 gave a proof that is self-contained but a bit
technical. This proof gives a tight result, showing that
the problem cannot be solved in o(log∗ n) rounds.

(b) Chapter 11 showed how to prove the claim using Ramsey’s
theorem. The proof itself is fairly simple, and it can be
easily generalised to many other results. Unfortunately, it
relies on Ramsey’s theorem, which is a bit tedious to prove.
Moreover, our proof is a bit sloppy; we only showed that
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O(1) rounds is not sufficient. To prove the stronger claim
that o(log∗ n) rounds is not sufficient requires more work
if we want to use Ramsey’s theorem.

Objective 4: Graph Theory. The theory of distributed al-
gorithms often relies heavily on graph theory. We use graph
theory to define the problems that we want to solve, we use
graph theory to define the model of computing that we use, and
we also use graph theory in algorithm design and analysis, as
well as in lower bound proofs.

By now you should be familiar with the standard graph-
theoretic terms that we introduced in Chapter 3, and you should
be able to prove simple graph-theoretic results that e.g. show
connections between different graph problems. This is often
needed in reductions if we want to apply existing distributed
algorithms in order to solve new problems.

A typical example of a graph-theoretic statement that you
should be able to easily prove is the connection between max-
imal matchings and approximate vertex covers (Exercise 3.3).
This immediately gives you a distributed algorithm that finds
a 2-approximation of a minimum vertex cover, provided that
you have a distributed algorithm that finds a maximal matching
— and to find maximal matchings, you can once again resort
to graph colourings. Such results have direct applications also
outside the area of distributed algorithms.

We have also encountered two concepts that go beyond
elementary graph theory. The first one is the concept of cover-
ing maps (Chapter 8); while we studied covering maps in the
context of port-numbered networks, an analogous concept with
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similar properties can be defined for e.g. undirected or directed
graphs. The second one is Ramsey’s theorem; we presented
Ramsey’s theorem in a very general form, but the special case
of k = 2 has many direct graph-theoretic applications. While
the proof of Ramsey’s theorem is a bit tedious in the general
case, you should be able to prove it without much difficulty e.g.
for the special case of c = 2 and k = 2.

12.2 What Else Exists?

Distributed computing is a vast topic and so far we have merely
scratched the surface. This book has focused on what is often
known as distributed graph algorithms, and we have only focused
on the most basic models of distributed graph algorithms. There
are many questions related to distributed computing that we
have not addressed at all; here are a few examples.

Fault-tolerant Algorithms. In distributed systems, the nodes
may fail and the communication links may be unreliable. We
may e.g. want to tolerate Byzantine failures, in which a small
number of nodes may be controlled by an adversary. Or we may
want to design self-stabilising algorithms, in which the algorithm
must work correctly, no matter what are the initial states of the
nodes.

Asynchronous Algorithms. In asynchronous networks, there
is no global clock that guarantees that all nodes take steps
simultaneously in parallel. Communication links may have un-
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predictable delays. This is not a major issue if we do not need
to tolerate failures — we can apply efficient synchronisers. How-
ever, if the nodes may fail, it becomes impossible to distinguish
between e.g. a node behind a very slow links and a node that
has stopped responding.

Shared Memory. Our model of computing can be seen as a
message-passing system: nodes send messages (data packets) to
each other. A commonly studied alternative is a system with
shared memory: each node has a shared register, and the nodes
can communicate with each other by reading and writing the
shared registers.

Physical Models. We have pretended that computers are con-
nected to each other by physical wires. If we connect the nodes
by wireless links, the physical properties of radio waves (e.g.,
reflection, refraction, multipath propagation, attenuation, inter-
ference, and noise) give rise to new models and new algorithmic
challenges. The physical locations of the nodes as well as the
properties of the environment become relevant.

Robot Navigation. In our model, the nodes are active compu-
tational entities, and they cannot move around in the network —
they can only send information around in the network. Another
possibility is to study computation with autonomous agents
(“robots”) that can move around in the network. Typically, the
nodes are passive entities, and the robots can communicate
with each other by e.g. leaving some tokens in the nodes.
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Nondeterministic Algorithms. Just like we can study non-
deterministic Turing machines, we can study nondeterministic
distributed algorithms. In this setting, it is sufficient that there
exists a certificate that can be verified efficiently in a distributed
setting; we do not need to construct the certificate efficiently.

Complexity Measures. For us the main complexity measure
has been the number of synchronous communication rounds.
Many other possibilities exist: e.g., how many bits of memory
we need per node, and how many messages do we need to send
in total?

High-Performance Computing. For the general public, dis-
tributed computing often refers to large-scale high-performance
computing in a computer network. This includes scientific com-
puting on grids and clusters, and volunteer computing projects.
Here a key question is how to partition the computation and the
data set efficiently among multiple computers; this is closely
related to similar questions in traditional parallel computing.

Practical Aspects of Networking. This book has focused on
the theory of distributed algorithms. There is of course also
the practical side. We need physical computers to run our
algorithms, and we need networking hardware to transmit in-
formation between computers. We need modulation techniques,
communication protocols, and standardisation to make things
work together, and good software engineering practices, pro-
gramming languages, and reusable libraries to keep the task of
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implementing algorithms manageable. In the real world, we
will also need to worry about privacy and security. There is
plenty of room for research in computer science, telecommu-
nications engineering, and electrical engineering in all of these
areas.

12.3 Research in Distributed Algorithms

There are two main conferences related to the theory of distrib-
uted computing:

• PODC, Symposium on Principles of Distributed Comput-
ing

http://www.podc.org/

• DISC, International Symposium on Distributed Comput-
ing

http://www.disc-conference.org/

The proceedings of the recent editions of these conferences
provide a good overview of the state-of-the-art of this research
area.

12.4 Exercises

In the following exercises, we will study distributed approxima-
tion algorithms for the edge dominating set problem. We will
first show that the problem is easy to approximate within factor
4 in general graphs. Then we will have a look at some special
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cases, and derive tight upper and lower bounds for the approx-
imation ratio. We use the abbreviation MEDS for a minimum
edge dominating set. Unless otherwise mentioned, all exercises
in this chapter are related to deterministic algorithms.

Exercise 12.1 (general case). Design a PN-algorithm that finds
a 4-approximation of MEDS.

. hint AD

Exercise 12.2 (2-regular, upper bounds). Show that the follow-
ing is possible in 2-regular graphs:

(a) finding a 3-approximation of MEDS in O(1) time in the
PN model

(b) finding a 2-approximation of MEDS in O(log∗ n) time in
the LOCAL model

(c) finding a 2-approximation of MEDS with a randomised
algorithm in the PN model

? Exercise 12.3 (2-regular, lower bounds). Show that the fol-
lowing is not possible in 2-regular graphs:

(a) finding a 2.999-approximation of MEDS in the PN model

(b) finding a 2.999-approximation of MEDS in O(1) time in
the LOCAL model

Exercise 12.4 (4-regular, upper bound). Show that it is possible
to find a 3.5-approximation of MEDS in 4-regular graphs in
constant time in the PN model.

. hint AE
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Exercise 12.5 (4-regular, lower bound). Show that it is not
possible to find a 3.499-approximation of MEDS in 4-regular
graphs in the PN model.

. hint AF

Exercise 12.6 (3-regular, lower bound). Show that it is not
possible to find a 2.499-approximation of MEDS in 3-regular
graphs in the PN model.

. hint AG

? Exercise 12.7 (3-regular, upper bound). Show that it is pos-
sible to find a 2.5-approximation of MEDS in 3-regular graphs
in constant time in the PN model.

. hint AH

12.5 Bibliographic Notes

Exercises 12.1–12.7 are inspired by our work [3, 25].
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Index

Notation

|X | the number of elements in set X

f −1(y) preimage of y , i.e., f −1(y) = { x : f (x) = y }

i2 power tower, i2= 22·
·2

with i twos

log∗ n iterated logarithm, log∗(i2) = i

degG(v) degree of node v in graph G

distG(u, v) distance between nodes u and v in G

ballG(v, r) nodes that are within distance r from v in G

diam(G) diameter of graph G

N the set of natural numbers, {0, 1,2, . . . }
Z+ the set of positive integers, {1,2, . . . }
R the set of real numbers

[a, b] set {x ∈ R : a ≤ x ≤ b}
Y (k) the collection of all k-subsets of Y

Rc(n; k) Ramsey numbers

Symbols

These conventions are usually followed in the choice of symbols.
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α approximation factor

χ range of unique identifiers, χ = |V |c

φ covering map, φ : V → V ′

ψ local isomorphism, ψ: ballG(v, r)→ ballH(u, r)

∆ maximum degree; an upper bound of the
maximum degree

Π graph problem

F graph family

S set of feasible solutions

id unique identifiers

A distributed algorithm

C vertex cover C ⊆ V , edge cover C ⊆ E

D dominating set D ⊆ V , edge dominating set D ⊆ E

E set of edges

G, H graph, G = (V, E)

I independent set I ⊆ V

M matching M ⊆ E

N port-numbered network, N = (V, P, p)

P set of ports

T running time (number of rounds)

T tree

U subset of nodes

V set of nodes
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c, C , d natural number

e edge, element of E

f , g, h function

i, j, k,` natural number

mt message

m number of edges, m= |E|

n number of nodes, n= |V |

p connection function, involution p : P → P

r natural number

s, t, u, v node, element of V

t time step (round), t = 0,1, . . . , T

w walk

x t state

Models of Computing

PN port-numbering model, Chapter 4.

LOCAL networks with unique identifiers, Chapter 5.

CONGEST bandwidth-limited networks, Chapter 6.

Algorithms

P3C 3-colouring a path. Runs in O(n) rounds in the
LOCAL model. Sections 1.3 and 4.4.
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P3CBit 3-colouring a directed path. Runs in O(log∗ n)
rounds in the LOCAL model. Section 1.4.

P3CRand 3-colouring a path. Randomised algorithm, runs
in O(log n) rounds with high probability.
Section 1.5.

P2C 2-colouring a path. Runs in O(n) rounds in the
LOCAL model. Section 2.2.1.

BMM Maximal matching in 2-coloured graphs. Runs in
O(∆) rounds in the PN model. Section 4.5.

VC3 3-approximation of a minimum vertex cover. Runs
in O(∆) rounds in the PN model. Section 4.6.

Gather Gathering the full information on the
communication network. Runs in O(diam(G))
rounds in the LOCAL model. Section 5.2.

BDGreedy Greedy colour reduction in bounded-degree
graphs. Section 5.5.

DPGreedy Greedy colour reduction in directed pseudoforests.
Section 5.7.

DPBit Fast colour reduction in directed pseudoforests.
Section 5.8.

DPSet Fast colour reduction in directed pseudoforests.
Exercise 5.6.

DP3C 3-colouring a directed pseudoforest. Runs in
O(log∗ n) rounds in the LOCAL model.
Section 5.9.
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BDColour (∆+ 1)-colouring graphs of maximum degree ∆.
Runs in O(∆2 + log∗ n) rounds in the LOCAL
model. Section 5.10.

Wave Single-source shortest paths. Runs in O(diam(G))
rounds in the CONGEST model. Section 6.4.

BFS Breadth-first search tree. Runs in O(diam(G))
rounds in the CONGEST model. Section 6.5.

Leader Leader election. Runs in O(diam(G)) rounds in
the CONGEST model. Section 6.6.

APSP All-pairs shortest paths. Runs in O(n) rounds in
the CONGEST model. Section 6.7.

BDRand (∆+ 1)-colouring graphs of maximum degree ∆.
Randomised algorithm, runs in O(log n) rounds in
the LOCAL model with high probability.
Section 7.4.
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Hints

A. Use the local maxima and minima to partition the path
in subpaths so that within each subpath we have unique
identifiers given in an increasing order. Use this ordering
to orient each subpath. Then we can apply the fast colour
reduction algorithm in each subpath. Finally, combine
the solutions.

B. Design a randomised algorithm that finds a colouring
with a large number of colours quickly. Then apply the
technique of algorithm P3CBit to reduce the number of
colours to 3 quickly.

C. Consider the following cases separately:

(i) log∗ x ≤ 2, (ii) log∗ x = 3, (iii) log∗ x ≥ 4.

In case (iii), prove that after log∗(x)− 3 iterations, the
number of colours is at most 64.

D. One possible strategy is this: Choose some threshold, e.g.,
d = 10. Focus on the nodes that have identifiers smaller
than d, and find a proper 3-colouring in those parts, in
time O(log∗ d). Remove the nodes that are properly col-
oured. Then increase threshold d, and repeat. Be careful
with the way in which you increase d. Show that you
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can achieve a running time of O(log∗ x), where x is the
largest identifier, without knowing x in advance.

E. Consider the following strategy: after each iteration, re-
verse the directions of the edges. Then consider two iter-
ations of the algorithm, and observe that the new colour
of a node v after two iterations only depends on the ori-
ginal colours within distance one from node v. Hence one
communication step is enough to simulate two iterations
of colour reduction.

F. Assume that D is an edge dominating set; show that you
can construct a maximal matching M with |M | ≤ |D|.

G. For the purposes of algorithm VC3, it is sufficient to know
which nodes are matched in BMM — we do not need to
know with whom they are matched.

H. This exercise is not trivial. If T1 was a constant function
T1(n) = c, we could simply run A1, and then start A2 at
time c, using the output of A1 as the input of A2. However,
if T1 is an arbitrary function of |V |, this strategy is not
possible — we do not know in advance when A1 will stop.

I. You can either use algorithm BDColour as a subroutine,
or you can modify the basic idea of BDColour slightly to
solve these problems.

J. Solve small problem instances by brute force and focus
on the case of long cycles. In a long cycle, use a graph col-
ouring algorithm to find a 3-colouring, and then use the
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3-colouring to construct a maximal independent set. Ob-
serve that a maximal independent set partitions the cycle
into short fragments (with 2–3 nodes in each fragment).

Apply the same approach recursively: interpret each frag-
ment as a “supernode” and partition the cycle that is
formed by the supernodes into short fragments, etc. Even-
tually, you have partitioned the original cycle into long
fragments, with dozens of nodes in each fragment.

Find an optimal vertex cover within each fragment. Make
sure that the solution is feasible near the boundaries, and
prove that you are able to achieve the required approxim-
ation ratio.

K. Adapt the basic idea of algorithm BDGreedy — find local
maxima and choose appropriate colours for them — but
pay attention to the stopping conditions and low-degree
nodes. One possible strategy is this: a node becomes
active if its current colour is a local maximum among
those neighbours that have not yet stopped; once a node
becomes active, it selects an appropriate colour and stops.

L. Given a graph G ∈ F , construct a virtual graph G2 =
(V, E′) as follows: {u, v} ∈ E′ if u 6= v and distG(u, v)≤ 2.
Prove that the maximum degree of G2 is O(∆2). Simulate
a fast graph colouring algorithm on G2.

M. First, design (or look up) a greedy centralised algorithm
achieves an approximation ratio of O(log∆) on F . The
following idea will work: repeatedly pick a node that
dominates as many new nodes as possible — here a node
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v ∈ V is said to dominate all nodes in ballG(v, 1). For more
details, see a textbook on approximation algorithms, e.g.,
Vazirani [26].

Second, show that you can simulate the centralised greedy
algorithm in a distributed setting. Use the algorithm of
Exercise 5.4 to construct a distance-2 colouring. Prove
that the following strategy is a faithful simulation of the
centralised greedy algorithm:

– For each possible value i =∆+ 1,∆, . . . , 2, 1:

– For each colour j = 1, 2, . . . , O(∆2):

– Pick all nodes v ∈ V that are of colour j and
that dominate i new nodes.

The key observation is that if u, v ∈ V are two distinct
nodes of the same colour, then the set of nodes dominated
by u and the set of nodes dominated by v are disjoint.
Hence it does not matter whether the greedy algorithm
picks u before v or v before u, provided that both of them
are equally good from the perspective of the number of
new nodes that they dominate. Indeed, we can equally
well pick both u and v simultaneously in parallel.

N. To reach a contradiction, assume that A is an algorithm
that solves the problem. For each n, let F (n) consists
of all graphs with the following properties: there are
n nodes with unique identifiers 1,2, . . . , n, the graph is
connected, and the degree of node 1 is 1. Then compare
the following two quantities as a function of n:
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(a) f (n) = how many different graphs there are in fam-
ily F (n).

(b) g(n) = how many different message sequences node
number 1 may receive during the execution of al-
gorithm A if we run it on any graph G ∈ F (n).

Argue that for a sufficiently large n, we will have f (n)>
g(n). Then there are at least two different graphs G1, G2 ∈
F (n) such that node 1 receives the same information
when we run A on either of these graphs.

O. Pick the labels randomly from a sufficiently large set; this
takes 0 communication rounds.

P. Each node u picks a random number f (u). Nodes that
are local maxima with respect to the labelling f will join
I .

Q. For the last part, consider a complete graph with a suffi-
ciently large number of nodes.

R. Each node chooses an output 0 or 1 uniformly at random
and stops; this takes 0 communication rounds. To analyse
the algorithm, prove that each edge is a cut edge with
probability 1/2.

S. Use algorithm BDRand.

T. Look up “Luby’s algorithm”.

U. (a) Apply the result of Exercise 3.8. (b) Find a 1-factor.
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V. For the lower bound, use the result of Exercise 8.4c.

W. Show that if a 3-regular graph is homogeneous, then it
has a 1-factor. Show that G does not have any 1-factor.

X. We need to combine the results of Theorems 8.1 and 9.1.
For i = 1,2, construct a network N ′i and a covering map
φi from N ′i to Ni. Let v′i ∈ φ

−1
i (vi). Show that v′1 and

v′2 have isomorphic radius-2 neighbourhoods; hence v′1
and v′2 produce the same output. Then use the covering
maps to argue that v1 and v2 also produce the same out-
puts. In the construction of N ′1, you will need to eliminate
the 3-cycle; otherwise v′1 and v′2 cannot have isomorphic
neighbourhoods.

Y. The proof of Lemma 10.3 shows that

Rc(n; 1)≤ c · (n− 1) + 1.

You need to show that

Rc(n; 1)> c · (n− 1).

Z. Prove that R2(3;2) > 5. That is, show that there is a
2-labelling of 2-subsets of a base set of size 5 such that
there is no monocromatic subset of size 3.

AA. Consider 2-dimensional grids; to make it 4-regular, wrap
around at borders.

AB. Consider a ladder graph that consists of two n-cycles
connected by n rungs.

215



AC. You will need several applications of Ramsey’s theorem.
First, choose a (very large) space of unique identifiers.
Then apply Ramsey’s theorem to find a large monochro-
matic subset, remove the set, and repeat. This way you
have partitioned almost all identifiers into monochromatic
subsets. Each monochromatic subset is used to construct
a fragment of the cycle.

AD. Use the idea of Section 4.6. Show that the edge set M ⊆ E
defined in (4.1) is a 4-approximation of MEDS. To this
end, consider an optimal solution D∗ and show that each
edge of D∗ is adjacent to at most 4 edges of M .

AE. Consider an algorithm that selects all edges that have port
number 1 in at least one end. Derive an upper bound on
the size of the solution and a lower bound on the size of
an optimal solution, as a function of |V |.

AF. Use the construction of Exercise 8.3a.

AG. Use the construction of Exercise 8.1.

AH. Let G = (V, E) be a 3-regular graph. We say that a set
D ⊆ E is good if it satisfies the following properties:

(a) D is an edge cover for G,

(b) the subgraph induced by D does not contain a path
of length 3.

Put otherwise, D induces a spanning subgraph that con-
sists of node-disjoint stars. Prove that

216



(a) any good set D is a 2.5-approximation of MEDS,

(b) there is a distributed algorithm that finds a good set
D.

The distributed algorithm has to exploit the port numbers
of the edges. One possible approach is this: First, use
the port numbers to find nine matchings, M1, M2, . . . , M9,
such that each node is incident to an edge in at least one
of the sets Mi; do not worry if some edges are present in
more than one matching. Then construct an edge cover
D by greedily adding edges from the sets Mi; in step
i = 1,2, . . . , 9 you can consider all edges of Mi in paral-
lel. Finally, eliminate paths of length three by removing
redundant edges in order to make D a good set; again,
in step i = 1, 2, . . . , 9 you can consider all edges of Mi in
parallel.
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