
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · December 10, 2020

Chapter 1

Warm-Up

We will start this course with an informal introduction to distributed
algorithms. We will formalize the model of computing later but for now
the intuitive idea of computers that can exchange messages with each
others is sufficient.

1.1 Running Example: Coloring Paths

Imagine that we have n computers (or nodes as they are usually called)
that are connected to each other with communication channels so that
the network topology is a path:

The computers can exchange messages with their neighbors. All comput-
ers run the same algorithm—this is the distributed algorithm that we will
design. The algorithm will decide what messages a computer sends in
each step, how it processes the messages that it receives, when it stops,
and what it outputs when it stops.

In this example, the task is to find a proper coloring of the path with
3 colors. That is, each node has to output one of the colors, 1, 2, or 3,
so that neighbors have different colors—here is an example of a proper
solution:

1

https://jukkasuomela.fi/da2020/


12 22 33 13

1.2 Challenges of Distributed Algorithm

With a bird’s-eye view of the entire network, coloring a path looks like a
very simple task: just start from one endpoint and assign colors 1 and 2
alternately. However, in a real-world computer network we usually do
not have all-powerful entities that know everything about the network
and can directly tell each computer what to do.

Indeed, when we start a networked computer, it is typically only
aware of itself and the communication channels that it can use. In our
simple example, the endpoints of the path know that they have one
neighbor:

All other nodes along the path just know that they have two neighbors:

For example, the second node along the path looks no different from the
third node, yet somehow they have to produce different outputs.

Obviously, the nodes have to exchange messages with each other in
order to figure out a proper solution. Yet this turns out to be surprisingly
difficult even in the case of just n= 2 nodes:

If we have two identical computers connected to each other with a single
communication link, both computers are started simultaneously, and
both of them run the same deterministic algorithm, how could they ever
end up in different states?

The answer is that it is not possible, without some additional assump-
tions. In practice, we could try to rely on some real-world imperfections

2



(e.g., the computers are seldom perfectly synchronized), but in the the-
ory of distributed algorithms we often assume that there is some explicit
way to break symmetry between otherwise identical computers. In this
chapter, we will have a brief look at two common assumption:

• each computer has a unique name,
• each computer has a source of random bits.

In subsequent chapters we will then formalize these models, and develop
a theory that will help us understand precisely what kind of tasks can be
solved in each case, and how fast.

1.3 Coloring with Unique Identifiers

There are plenty of examples of real-world networks with globally unique
identifiers: public IPv4 and IPv6 addresses are globally unique identifiers
of Internet hosts, devices connected to an Ethernet network have globally
unique MAC addresses, mobile phones have their IMEI numbers, etc.
The common theme is that the identifiers are globally unique, and the
numbers can be interpreted as natural numbers:

3312 3720 2715 1342

With the help of unique identifiers, it is now easy to design an algorithm
that colors a path. Indeed, the unique identifiers already form a coloring
with a large number of colors! All that we need to do is to reduce the
number of colors to 3.

We can use the following simple strategy. In each step, a node is
active if it is a “local maximum”, i.e., its current color is larger than the
current colors of its neighbors:

3312 3720 2715 1342

The active nodes will then pick a new color from the color palette {1, 2, 3},
so that it does not conflict with the current colors of their neighbors.

3



This is always possible, as each node in a path has at most 2 neighbors,
and we have 3 colors in our color palette:

112 3720 2715 131

Then we simply repeat the same procedure until all nodes have small
colors. First find the local maxima:

112 3720 2715 131

And then recolor the local maxima with colors from {1,2, 3}:

12 220 2715 21

Continuing this way we will eventually have a path that is properly
colored with colors {1,2, 3}:

12 220 2715 21

12 220 115 21

12 220 115 21

12 22 115 21

12 22 115 21

12 22 13 21

Note that we may indeed be forced to use all three colors.
So far we have sketched an algorithm idea, but we still have to show

that we can actually implement this idea as a distributed algorithm.
Remember that there is no central control; nobody has a bird’s-eye view
of the entire network. Each node is an independent computer, and all
computers are running the same algorithm. What would the algorithm
look like?

4



Repeat forever:

• Send message c to all neighbors.

• Receive messages from all neighbors.
Let M be the set of messages received.

• If c /∈ {1,2, 3} and c >max M :
Let c←min ({1, 2,3} \M).

Table 1.1: A simple 3-coloring algorithm for paths.

Let us fix some notation. Each node maintains a variable c that
contains its current color. Initially, c is equal to the unique identifier of
the node. Then computation proceeds as shown in Table 1.1.

This shows a typical structure of a distributed algorithm: an infinite
send–receive–compute loop. A computer is seen as a state machine; here
c is the variable that holds the current state of the computer. In this
algorithm, we have three stopping states: c = 1, c = 2, and c = 3. It is
easy to verify that the algorithm is indeed correct in the following sense:

(a) In any path graph, for any assignment of unique identifiers, all
computers will eventually reach a stopping state.

(b) Once a computer reaches a stopping state, it never changes its
state.

The second property is very important: each computer has to know when
it is safe to announce its output and stop.

Our algorithm may look a bit strange in the sense that computers
that have “stopped” are still sending messages. However, it is fairly
straightforward to rewrite the algorithm so that you could actually turn
off computers that have stopped. The basic idea is that nodes that are
going to switch to a stopping state first inform their neighbors about
this. Each node will memorize which of its neighbors have already

5



stopped and what where their final colors. Implementing this idea is
left as Exercise 1.2, and you will later see that this can be done for any
distributed algorithm. Hence, without loss of generality, we can play by
the following simple rules:

• The nodes are state machines that repeatedly send messages to
their neighbors, receive messages from their neighbors, and up-
date their state—all nodes perform these steps synchronously in
parallel.

• Some of the states are stopping states, and once a node reaches a
stopping state, it no longer changes its state.

• Eventually all nodes have to reach stopping states, and these states
must form a correct solution to the problem that we want to solve.

Note that here a “state machine” does not necessarily refer to a finite-
state machine. We can perfectly well have a state machine with infinitely
many states. Indeed, in the example of Table 1.1 the set of possible
states was the set of all positive integers.

1.4 Faster Coloring with Unique Identifiers

So far we have seen that with the help of unique identifiers, it is possible
to find a 3-coloring of a path. However, the algorithm that we designed
is not particularly efficient in the worst case. To see this, consider a path
in which the unique identifiers happen to be assigned in an increasing
order:

1312 3320 2715 4237

In such a graph, in each round there is only one node that is active. In
total, it will take Θ(n) rounds until all nodes have stopped.

However, it is possible to color paths much faster. The algorithm is
easier to explain if we have a directed path:

6



3312 3720 2715 1342

That is, we have a consistent orientation in the path so that each node has
at most one “predecessor” and at most one “successor”. The orientations
are just additional information that we will use in algorithm design
—nodes can always exchange information along each edge in either
direction. Once we have presented the algorithm for directed paths, we
will then generalize it to undirected paths in Exercise 1.3.

1.4.1 Algorithm Overview

For the sake of concreteness, let us assume that the nodes are labeled
with 128-bit unique identifiers—for example, IPv6 addresses. In most
real-world networks 2128 identifiers is certainly more than enough, but
the same idea can be easily generalized to arbitrarily large identifiers if
needed.

Again, we will interpret the unique identifiers as colors; hence our
starting point is a path that is properly colored with 2128 colors. In the
next section, we will present a fast color reduction algorithm for directed
paths that reduces the number of colors from 2x to 2x in one round, for
any positive integer x . Hence in one step we can reduce the number of
colors from 2128 to 2 · 128= 256. In just four iterations we can reduce
the number of colors from 2128 to 6, as follows:

2128→ 2 · 128= 28,

28→ 2 · 8= 24,

24→ 2 · 4= 23,

23→ 2 · 3= 6.

Once we have found a 6-coloring, we can then apply the algorithm of
Table 1.1 to reduce the number of colors from 6 to 3. It is easy to see
that this will take at most 3 rounds. Overall, we have an algorithm that
reduces the number of colors from 2128 to 3 in only 7 rounds—no matter
how many nodes we have in the path. Compare this with the simple

7



3-coloring algorithm, which may take millions of rounds for paths with
millions of nodes.

1.4.2 Algorithm for One Step

Let us now show how to reduce the number of colors from 2x to 2x in
one round; this will be achieved by doing some bit manipulations. First,
each node sends its current color to its predecessor. After this step, each
node u knows two values:

• c0(u), the current color of the node,
• c1(u), the current color of its successor.

If a node does not have any successor, it just proceeds as if it had a
successor of some color different from c0(u).

We can interpret both c0(u) and c1(u) as x-bit binary strings that
represent integers from range 0 to 2x − 1. We know that the current
color of node u is different from the current color of its successor, i.e.,
c0(u) 6= c1(u). Hence in the two binary strings c0(u) and c1(u) there is
at least one bit that differs. Define:

• i(u) ∈ {0,1, . . . , x − 1} is the index of the first bit that differs
between c0(u) and c1(u),

• b(u) ∈ {0, 1} is the value of bit number i(u) in c0(u).

Finally, node u chooses

c(u) = 2i(u) + b(u)

as its new color.

1.4.3 An Example

Let x = 8, i.e., nodes are colored with 8-bit numbers. Assume that we
have a node u of color 123, and u has a successor v of color 47; see

8



node input output
u c0(u) c1(u) i(u) b(u) c(u)

· · · · · · · · · · · · · · · · · ·
↓
© 011110112 001011112 2 0 4
↓
© 001011112 011010112 2 1 5
↓
© 011010112 · · · · · · · · · · · ·
↓
· · · · · ·
· · · · · · · · · · · · · · · · · ·
↓
© 011110112 001011112 2 0 4
↓
© 001011112 011011112 6 0 12
↓
© 011011112 · · · · · · · · · · · ·
↓
· · · · · ·

Table 1.2: Fast color reduction algorithm for directed paths: reducing
the number of colors from 2x to 2x , for x = 8. There are two interesting
cases: either i(u) is the same for two neighbors (first example), or they
are different (second example). In the first case, the values b(u) will differ,
and in the second case, the values i(u) will differ. In both cases, the final
colors c(u) will be different.

9



Table 1.2 for an illustration. In binary, we have

c0(u) = 011110112,

c1(u) = 001011112.

Counting from the least significant bit, node u can see that:

• bit number 0 is the same in both c0(u) and c1(u),
• bit number 1 is the same in both c0(u) and c1(u),
• bit number 2 is different in c0(u) and c1(u).

Hence we will set

i(u) = 2, b(u) = 0, c(u) = 2 · 2+ 0= 4.

That is, node picks 4 as its new color. If all other nodes run the same
algorithm, this will be a valid choice—as we will argue next, both the
predecessor and the successor of u will pick a color that is different
from 4.

1.4.4 Correctness

Clearly, the value c(u) is in the range {0, 1, . . . , 2x−1}. However, it is not
entirely obvious that these values actually produce a proper 2x-coloring
of the path. To see this, consider a pair of nodes u and v so that v is
the successor of u. By definition, c1(u) = c0(v). We need to show that
c(u) 6= c(v). There are two cases—see Table 1.2 for an example:

(a) i(u) = i(v) = i: We know that b(u) is bit number i of c0(u), and
b(v) is bit number i of c1(u). By the definition of i(u), we also
know that these bits differ. Hence b(u) 6= b(v) and c(u) 6= c(v).

(b) i(u) 6= i(v): No matter how we choose b(u) ∈ {0,1} and b(v) ∈
{0, 1}, we have c(u) 6= c(v).

We have argued that c(u) 6= c(v) for any pair of two adjacent nodes u
and v, and the value of c(u) is an integer between 0 and 2x − 1 for each
node u. Hence the algorithm finds a proper 2x-coloring in one round.

10



1.4.5 Iteration

The algorithm that we presented in this section can reduce the number
of colors from 2x to 2x in one round; put otherwise, we can reduce the
number of colors from x to O(log x) in one round.

If we iterate the algorithm, we can reduce the number of colors from
x to 6 in O(log∗ x) rounds (please refer to Section 1.12 for the definition
of the log∗ function if you are not familiar with it).

Once we have reduced the number of colors to 6, we can use the
simple color reduction algorithm from Section 1.3 to reduce the number
of colors from 6 to 3 in 3 rounds. The details of the analysis are left as
Exercises 1.5 and 1.6.

1.5 Coloring with Randomized Algorithms

So far we have used unique identifiers to break symmetry. Another
possibility is to use randomness. Here is a simple randomized distributed
algorithm that finds a proper 3-coloring of a path: nodes try to pick
colors from the palette {1, 2, 3} uniformly at random, and they stop once
they succeed in picking a color that is different from the colors of their
neighbors.

1.5.1 Algorithm

Let us formalize the simple randomized 3-coloring algorithm that we
sketched above. Each node u has a flag s(u) ∈ {0, 1} indicating whether
it has stopped, and a variable c(u) ∈ {1, 2, 3} that stores its current color.
If s(u) = 1, a node has stopped and its output is c(u).

In each step, each node u with s(u) = 0 picks a new color c(u) ∈
{1,2,3} uniformly at random. Then each node sends its current color
c(u) to its neighbors. If c(u) is different from the colors of its neighbors,
u will set s(u) = 1 and stop; otherwise it tries again in the next round.

11



1.5.2 Analysis

It is easy to see that in each step, a node u will stop with probability at
least 1/3: after all, no matter what its neighbors do, there is at least one
choice for c(u) ∈ {1,2, 3} that does not conflict with its neighbors.

Fix a positive constant C . Consider what happens if we run the
algorithm for

k = (C + 1) log3/2 n

steps, where n is the number of nodes in the network. Now the proba-
bility that a given node u has not stopped after k steps is at most

(1− 1/3)k =
1

nC+1
.

By the union bound, the probability that there is a node that has not
stopped is at most 1/nC . Hence with probability at least 1− 1/nC , all
nodes have stopped after k steps.

1.5.3 With High Probability

Let us summarize what we have achieved: for any given constant C ,
there is an algorithm that runs for k = O(log n) rounds and produces a
proper 3-coloring of a path with probability 1− 1/nC . We say that the
algorithm runs in time O(log n) with high probability—here the phrase
“high probability” means that we can choose any constant C and the
algorithm will succeed at least with a probability of 1− 1/nC . Note that
even for a moderate value of C , say, C = 10, the success probability
approaches 1 very rapidly as n increases.

1.6 Summary

In this chapter we have seen three different distributed algorithms for
3-coloring paths:

12



• A simple 3-coloring algorithm, Section 1.3: A deterministic al-
gorithm for paths with unique identifiers. Runs in O(n) rounds,
where n is the number of nodes.

• A fast 3-coloring algorithm, Section 1.4: A deterministic algorithm
for directed paths with unique identifiers. Runs in O(log∗ x) rounds,
where x is the largest identifier.

• A simple randomized 3-coloring algorithm, Section 1.5: A ran-
domized algorithm for paths without unique identifiers. Runs in
O(log n) rounds with high probability.

We will explore and analyze these algorithms and their variants in more
depth in the exercises.

1.7 Quiz

Construct a directed path of 3 nodes that is labeled with unique identifiers
(of any size) such that the following holds: After two iterations of the
fast color reduction algorithm from Section 1.4.2, the color of the first
node is 7.

It is enough to just list the three unique identifiers (in decimal); there
is no need to explain anything else.

1.8 Exercises

Exercise 1.1 (maximal independent sets). A maximal independent set is
a set of nodes I that satisfies the following properties:

• for each node v ∈ I , none of its neighbors are in I ,
• for each node v /∈ I , at least one of its neighbors is in I .

Here is an example—the nodes labeled with a “1” form a maximal
independent set:

13



01 11 00 10

Your task is to design a distributed algorithm that finds a maximal inde-
pendent set in any path graph, for each of the following settings:

(a) a deterministic algorithm for paths with arbitrarily large unique
identifiers,

(b) a fast deterministic algorithm for directed paths with 128-bit unique
identifiers,

(c) a randomized algorithm that does not need unique identifiers.

In part (a), use the techniques presented in Section 1.3, in part (b),
use the techniques presented in Section 1.4, and in part (c), use the
techniques presented in Section 1.5.

Exercise 1.2 (stopped nodes). Rewrite the greedy algorithm of Table 1.1
so that stopped nodes do not need to send messages. Be precise: explain
your algorithm in detail so that you could easily implement it.

Exercise 1.3 (undirected paths). The fast 3-coloring algorithm from
Section 1.4 finds a 3-coloring very fast in any directed path. Design an
algorithm that is almost as fast and works in any path, even if the edges
are not directed.

. hint A

Exercise 1.4 (randomized and fast). The simple randomized 3-coloring
algorithm finds a 3-coloring in time O(log n) with high probability, and
it does not need any unique identifiers. Can you design a randomized
algorithm that finds a 3-coloring in time o(log n) with high probability?
You can assume that n is known.

. hint B

Exercise 1.5 (asymptotic analysis). Analyze the fast 3-coloring algo-
rithm from Section 1.4:

(a) Assume that we are given a coloring with x colors; the colors are
numbers from {1, 2, . . . , x}. Show that we can find a 3-coloring in
time O(log∗ x).

14



(b) Assume that we are given unique identifiers that are polynomial
in n, that is, there is a constant c = O(1) such that the unique
identifiers are a subset of {1,2, . . . , nc}. Show that we can find a
3-coloring in time O(log∗ n).

? Exercise 1.6 (tight analysis). Analyze the fast 3-coloring algorithm
from Section 1.4: Assume that we are given a coloring with x colors, for
any integer x ≥ 6; the colors are numbers from {1, 2, . . . , x}. Show that
we can find a 6-coloring in time log∗(x), and therefore a 3-coloring in
time log∗(x) + 3.

. hint C

? Exercise 1.7 (oblivious algorithms). The simple 3-coloring algorithm
works correctly even if we do not know how many nodes there are in
the network, or what is the range of unique identifiers—we say that
the algorithm is oblivious. Adapt the fast 3-coloring algorithm from
Section 1.4 so that it is also oblivious.

. hint D

1.9 Bibliographic Notes

The fast 3-coloring algorithm (Section 1.4) was originally presented
by Cole and Vishkin [1] and further refined by Goldberg et al. [2]; in
the literature, it is commonly known as the “Cole–Vishkin algorithm”.
Exercise 1.7 was inspired by Korman et al. [3].

1.10 Bibliography

[1] Richard Cole and Uzi Vishkin. Deterministic coin tossing with ap-
plications to optimal parallel list ranking. Information and Control,
70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

[2] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Par-
allel symmetry-breaking in sparse graphs. SIAM Journal on Discrete
Mathematics, 1(4):434–446, 1988. doi:10.1137/0401044.

15

https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1137/0401044


[3] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward
more localized local algorithms: removing assumptions concerning
global knowledge. In Proc. 30th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2011), 2011. doi:10.1145/1993806.
1993814.

1.11 Hints

A. Use the local maxima and minima to partition the path in subpaths
so that within each subpath we have unique identifiers given in an
increasing order. Use this ordering to orient each subpath. Then
we can apply the fast color reduction algorithm in each subpath.
Finally, combine the solutions.

B. Design a randomized algorithm that finds a coloring with a large
number of colors quickly. Then apply the technique of the fast
3-coloring algorithm from Section 1.4 to reduce the number of
colors to 3 quickly.

C. Consider the following cases separately:

(i) log∗ x ≤ 2, (ii) log∗ x = 3, (iii) log∗ x ≥ 4.

In case (iii), prove that after log∗(x)− 3 iterations, the number of
colors is at most 64.

D. One possible strategy is this: Choose some threshold, e.g., d = 10.
Focus on the nodes that have identifiers smaller than d, and find
a proper 3-coloring in those parts, in time O(log∗ d). Remove the
nodes that are properly colored. Then increase threshold d, and
repeat. Be careful with the way in which you increase d. Show
that you can achieve a running time of O(log∗ x), where x is the
largest identifier, without knowing x in advance.

16

https://doi.org/10.1145/1993806.1993814
https://doi.org/10.1145/1993806.1993814


1.12 Appendix: Mathematical Preliminaries

In the analysis of distributed algorithms, we will encounter power towers
and iterated logarithms.

1.12.1 Power Tower

We write power towers with the notation

i2= 22·
·2

,

where there are i twos in the tower. Power towers grow very fast; for
example,

12= 2,
22= 4,
32= 16,
42= 65536,
52= 265536 > 1019728.

1.12.2 Iterated Logarithm

The iterated logarithm of x , in notation log∗ x or log∗(x), is defined
recursively as follows:

log∗(x) =

¨

0 if x ≤ 1,

1+ log∗(log2 x) otherwise.

In essence, this is the inverse of the power tower function. For all positive
integers i, we have

log∗(i2) = i.

17



As power towers grow very fast, iterated logarithms grow very slowly;
for example,

log∗ 2= 1, log∗ 16= 3, log∗ 1010 = 5,

log∗ 3= 2, log∗ 17= 4, log∗ 10100 = 5,

log∗ 4= 2, log∗ 65536= 4, log∗ 101000 = 5,

log∗ 5= 3, log∗ 65537= 5, log∗ 1010000 = 5, . . .

18


	Running Example: Coloring Paths
	Challenges of Distributed Algorithm
	Coloring with Unique Identifiers
	Faster Coloring with Unique Identifiers
	Algorithm Overview
	Algorithm for One Step
	An Example
	Correctness
	Iteration

	Coloring with Randomized Algorithms
	Algorithm
	Analysis
	With High Probability

	Summary
	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints
	Appendix: Mathematical Preliminaries
	Power Tower
	Iterated Logarithm


