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Chapter 2

Graph-Theoretic Foundations
The study of distributed algorithms is closely related to graphs: we will
interpret a computer network as a graph, and we will study compu-
tational problems related to this graph. In this section we will give a
summary of the graph-theoretic concepts that we will use.

2.1 Terminology

A simple undirected graph is a pair G = (V, E), where V is the set of nodes
(vertices) and E is the set of edges. Each edge e ∈ E is a 2-subset of nodes,
that is, e = {u, v} where u ∈ V , v ∈ V , and u ̸= v. Unless otherwise
mentioned, we assume that V is a non-empty finite set; it follows that E
is a finite set. Usually, we will draw graphs using circles and lines—each
circle represents a node, and a line that connects two nodes represents
an edge.

2.1.1 Adjacency

If e = {u, v} ∈ E, we say that node u is adjacent to v, nodes u and v are
neighbors, node u is incident to e, and edge e is also incident to u. If
e1, e2 ∈ E, e1 ≠ e2, and e1∩ e2 ̸=∅ (i.e., e1 and e2 are distinct edges that
share an endpoint), we say that e1 is adjacent to e2.

The degree of a node v ∈ V in graph G is

degG(v) =
�

�

�

u ∈ V : {u, v} ∈ E
	�

�.
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Figure 2.1: Node u is adjacent to node v. Nodes u and v are incident to
edge e. Edge e1 is adjacent to edge e2.

That is, v has degG(v) neighbors; it is adjacent to degG(v) nodes and
incident to degG(v) edges. A node v ∈ V is isolated if degG(v) = 0.
Graph G is k-regular if degG(v) = k for each v ∈ V .

2.1.2 Subgraphs

Let G = (V, E) and H = (V2, E2) be two graphs. If V2 ⊆ V and E2 ⊆ E,
we say that H is a subgraph of G. If V2 = V , we say that H is a spanning
subgraph of G.

If V2 ⊆ V and E2 = { {u, v} ∈ E : u ∈ V2, v ∈ V2 }, we say that
H = (V2, E2) is an induced subgraph; more specifically, H is the subgraph
of G induced by the set of nodes V2.

If E2 ⊆ E and V2 =
⋃

E2, we say that H is an edge-induced subgraph;
more specifically, H is the subgraph of G induced by the set of edges E2.

2.1.3 Walks

A walk of length ℓ from node v0 to node vℓ is an alternating sequence

w= (v0, e1, v1, e2, v2, . . . , eℓ, vℓ)

where vi ∈ V , ei ∈ E, and ei = {vi−1, vi} for all i; see Figure 2.2. The
walk is empty if ℓ= 0. We say that walk w visits the nodes v0, v1, . . . , vℓ,
and it traverses the edges e1, e2, . . . , eℓ. In general, a walk may visit the
same node more than once and it may traverse the same edge more than
once. A non-backtracking walk does not traverse the same edge twice
consecutively, that is, ei−1 ≠ ei for all i. A path is a walk that visits each
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Figure 2.2: (a) A walk of length 5 from s to t. (b) A non-backtracking
walk. (c) A path of length 4. (d) A path of length 2; this is a shortest path
and hence distG(s, t) = 2.
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Figure 2.3: (a) A cycle of length 6. (b) A cycle of length 3; this is a shortest
cycle and hence the girth of the graph is 3.

node at most once, that is, vi ≠ v j for all 0≤ i < j ≤ ℓ. A walk is closed
if v0 = vℓ. A cycle is a non-empty closed walk with vi ̸= v j and ei ̸= e j
for all 1≤ i < j ≤ ℓ; see Figure 2.3. Note that the length of a cycle is at
least 3.

2.1.4 Connectivity and Distances

For each graph G = (V, E), we can define a relation⇝ on V as follows:
u⇝ v if there is a walk from u to v. Clearly⇝ is an equivalence relation.
Let C ⊆ V be an equivalence class; the subgraph induced by C is called
a connected component of G.

If u and v are in the same connected component, there is at least
one shortest path from u to v, that is, a path from u to v of the smallest
possible length. Let ℓ be the length of a shortest path from u to v; we
define that the distance between u and v in G is distG(u, v) = ℓ. If u and
v are not in the same connected component, we define distG(u, v) =∞.
Note that distG(u, u) = 0 for any node u.
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Figure 2.4: Neighborhoods.
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For each node v and for a non-negative integer r, we define the
radius-r neighborhood of v as follows (see Figure 2.4):

ballG(v, r) = {u ∈ V : distG(u, v)≤ r }.

A graph is connected if it consists of one connected component. The
diameter of graph G, in notation diam(G), is the length of a longest
shortest path, that is, the maximum of distG(u, v) over all u, v ∈ V ; we
have diam(G) =∞ if the graph is not connected.

The girth of graph G is the length of a shortest cycle in G. If the
graph does not have any cycles, we define that the girth is∞; in that
case we say that G is acyclic.

A tree is a connected, acyclic graph. If T = (V, E) is a tree and
u, v ∈ V , then there exists precisely one path from u to v. An acyclic
graph is also known as a forest—in a forest each connected component
is a tree. A pseudotree has at most one cycle, and in a pseudoforest each
connected component is a pseudotree.

A path graph is a graph that consists of one path, and a cycle graph
is a graph that consists of one cycle. Put otherwise, a path graph is a
tree in which all nodes have degree at most 2, and a cycle graph is a
2-regular pseudotree. Note that any graph of maximum degree 2 consists
of disjoint paths and cycles, and any 2-regular graph consists of disjoint
cycles.

2.1.5 Isomorphism

An isomorphism from graph G1 = (V1, E1) to graph G2 = (V2, E2) is a
bijection f : V1→ V2 that preserves adjacency: {u, v} ∈ E1 if and only if
{ f (u), f (v)} ∈ E2. If an isomorphism from G1 to G2 exists, we say that
G1 and G2 are isomorphic.

If G1 and G2 are isomorphic, they have the same structure; informally,
G2 can be constructed by renaming the nodes of G1 and vice versa.
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2.2 Packing and Covering

A subset of nodes X ⊆ V is

(a) an independent set if each edge has at most one endpoint in X , that
is, |e ∩ X | ≤ 1 for all e ∈ E,

(b) a vertex cover if each edge has at least one endpoint in X , that is,
e ∩ X ̸=∅ for all e ∈ E,

(c) a dominating set if each node v /∈ X has at least one neighbor in X ,
that is, ballG(v, 1)∩ X ̸=∅ for all v ∈ V .

A subset of edges X ⊆ E is

(d) a matching if each node has at most one incident edge in X , that
is, {t, u} ∈ X and {t, v} ∈ X implies u= v,

(e) an edge cover if each node has at least one incident edge in X , that
is,
⋃

X = V ,

(f) an edge dominating set if each edge e /∈ X has at least one neighbor
in X , that is, e ∩

�⋃

X
�

̸=∅ for all e ∈ E.

See Figure 2.5 for illustrations.
Independent sets and matchings are examples of packing problems—

intuitively, we have to “pack” elements into set X while avoiding conflicts.
Packing problems are maximization problems. Typically, it is trivial to find
a feasible solution (for example, an empty set), but it is more challenging
to find a large solution.

Vertex covers, edge covers, dominating sets, and edge dominating
sets are examples of covering problems—intuitively, we have to find a set
X that “covers” the relevant parts of the graph. Covering problems are
minimization problems. Typically, it is trivial to find a feasible solution if
it exists (for example, the set of all nodes or all edges), but it is more
challenging to find a small solution.

The following terms are commonly used in the context of maximiza-
tion problems; it is important not to confuse them:
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Figure 2.5: Packing and covering problems; see Section 2.2.

(a) maximal: a maximal solution is not a proper subset of another
feasible solution,

(b) maximum: a maximum solution is a solution of the largest possible
cardinality.

Similarly, in the context of minimization problems, analogous terms are
used:

(a) minimal: a minimal solution is not a proper superset of another
feasible solution,

(b) minimum: a minimum solution is a solution of the smallest possi-
ble cardinality.

Using this convention, we can define the terms maximal independent
set, maximum independent set, maximal matching, maximum matching,
minimal vertex cover, minimum vertex cover, etc.

For example, Figure 2.5a shows a maximal independent set: it is not
possible to greedily extend the set by adding another element. However,
it is not a maximum independent set: there exists an independent set of
size 3. Figure 2.5d shows a matching, but it is not a maximal matching,
and therefore it is not a maximum matching either.
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Typically, maximal and minimal solutions are easy to find—you can
apply a greedy algorithm. However, maximum and minimum solutions
can be very difficult to find—many of these problems are NP-hard opti-
mization problems.

A minimum maximal matching is precisely what the name suggests: it
is a maximal matching of the smallest possible cardinality. We can define
a minimum maximal independent set, etc., in an analogous manner.

2.3 Labelings and Partitions

We will often encounter functions of the form

f : V → {1, 2, . . . , k}.

There are two interpretations that are often helpful:

(i) Function f assigns a label f (v) to each node v ∈ V . Depending on
the context, the labels can be interpreted as colors, time slots, etc.

(ii) Function f is a partition of V . More specifically, f defines a parti-
tion V = V1∪V2∪· · ·∪Vk where Vi = f −1(i) = { v ∈ V : f (v) = i }.

Similarly, we can study a function of the form

f : E→ {1, 2, . . . , k}

and interpret it either as a labeling of edges or as a partition of E.
Many graph problems are related to such functions. We say that a

function f : V → {1,2, . . . , k} is

(a) a proper vertex coloring if f −1(i) is an independent set for each i,

(b) a weak coloring if each non-isolated node u has a neighbor v with
f (u) ̸= f (v),

(c) a domatic partition if f −1(i) is a dominating set for each i.

A function f : E→ {1, 2, . . . , k} is
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Figure 2.6: Partition problems; see Section 2.3.

(d) a proper edge coloring if f −1(i) is a matching for each i,

(e) an edge domatic partition if f −1(i) is an edge dominating set for
each i.

See Figure 2.6 for illustrations.
Usually, the term coloring refers to a proper vertex coloring, and the

term edge coloring refers to a proper edge coloring. The value of k is
the size of the coloring or the number of colors. We will use the term
k-coloring to refer to a proper vertex coloring with k colors; the term
k-edge coloring is defined in an analogous manner.

A graph that admits a 2-coloring is a bipartite graph. Equivalently, a
bipartite graph is a graph that does not have an odd cycle.
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Graph coloring is typically interpreted as a minimization problem. It
is easy to find a proper vertex coloring or a proper edge coloring if we
can use arbitrarily many colors; however, it is difficult to find an optimal
coloring that uses the smallest possible number of colors.

On the other hand, domatic partitions are a maximization problem.
It is trivial to find a domatic partition of size 1; however, it is difficult to
find an optimal domatic partition with the largest possible number of
disjoint dominating sets.

2.4 Factors and Factorizations

Let G = (V, E) be a graph, let X ⊆ E be a set of edges, and let H = (U , X )
be the subgraph of G induced by X . We say that X is a d-factor of G if
U = V and degH(v) = d for each v ∈ V .

Equivalently, X is a d-factor if X induces a spanning d-regular sub-
graph of G. Put otherwise, X is a d-factor if each node v ∈ V is incident
to exactly d edges of X .

A function f : E→ {1, 2, . . . , k} is a d-factorization of G if f −1(i) is a
d-factor for each i. See Figure 2.7 for examples.

We make the following observations:

(a) A 1-factor is a maximum matching. If a 1-factor exists, a maximum
matching is a 1-factor.

(b) A 1-factorization is an edge coloring.

(c) The subgraph induced by a 2-factor consists of disjoint cycles.

A 1-factor is also known as a perfect matching.

2.5 Approximations

So far we have encountered a number of maximization problems and
minimization problems. More formally, the definition of a maximization
problem consists of two parts: a set of feasible solutionsS and an objective
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Figure 2.7: (a) A 1-factorization of a 3-regular graph. (b) A 2-factorization
of a 4-regular graph.
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function g : S → R. In a maximization problem, the goal is to find a
feasible solution X ∈ S that maximizes g(X ). A minimization problem
is analogous: the goal is to find a feasible solution X ∈ S that minimizes
g(X ).

For example, the problem of finding a maximum matching for a
graph G is of this form. The set of feasible solutions S consists of all
matchings in G, and we simply define g(M) = |M | for each matching
M ∈ S .

As another example, the problem of finding an optimal coloring is
a minimization problem. The set of feasible solutions S consists of all
proper vertex colorings, and g( f ) is the number of colors in f ∈ S .

Often, it is infeasible or impossible to find an optimal solution; hence
we resort to approximations. Given a maximization problem (S , g),
we say that a solution X is an α-approximation if X ∈ S , and we have
αg(X ) ≥ g(Y ) for all Y ∈ S . That is, X is a feasible solution, and the
size of X is within factor α of the optimum.

Similarly, if (S , g) is a minimization problem, we say that a solution
X is an α-approximation if X ∈ S , and we have g(X ) ≤ αg(Y ) for all
Y ∈ S . That is, X is a feasible solution, and the size of X is within factor
α of the optimum.

Note that we follow the convention that the approximation ratio α
is always at least 1, both in the case of minimization problems and max-
imization problems. Other conventions are also used in the literature.

2.6 Directed Graphs and Orientations

Unless otherwise mentioned, all graphs that we encounter are undirected.
However, we will occasionally need to refer to so-called orientations,
and hence we need to introduce some terminology related to directed
graphs.

A directed graph is a pair G = (V, E), where V is the set of nodes and
E is the set of directed edges. Each edge e ∈ E is a pair of nodes, that is,
e = (u, v) where u, v ∈ V . Put otherwise, E ⊆ V × V .
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Intuitively, an edge (u, v) is an “arrow” that points from node u to
node v; it is an outgoing edge for u and an incoming edge for v. The
outdegree of a node v ∈ V , in notation outdegreeG(v), is the number
of outgoing edges, and the indegree of the node, indegreeG(v), is the
number of incoming edges.

Now let G = (V, E) be a graph and let H = (V, E′) be a directed graph
with the same set of nodes. We say that H is an orientation of G if the
following holds:

(a) For each {u, v} ∈ E we have either (u, v) ∈ E′ or (v, u) ∈ E′, but
not both.

(b) For each (u, v) ∈ E′ we have {u, v} ∈ E.

Put otherwise, in an orientation of G we have simply chosen an arbitrary
direction for each undirected edge of G. It follows that

indegreeH(v) + outdegreeH(v) = degG(v)

for all v ∈ V .

2.7 Quiz

Construct a simple undirected graph G = (V, E) with the following
property: If you take any set X that is a maximal independent set of G,
then X is not a minimum dominating set of G.

Present the graph in the set formalism by listing the sets of nodes
and edges. For example, a cycle on three nodes can be encoded as
V = {1, 2,3} and E = {{1,2}, {2, 3}, {3, 1}}.

2.8 Exercises

Exercise 2.1 (independence and vertex covers). Let I ⊆ V and define
C = V \ I . Show that

(a) if I is an independent set then C is a vertex cover and vice versa,
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(b) if I is a maximal independent set then C is a minimal vertex cover
and vice versa,

(c) if I is a maximum independent set then C is a minimum vertex
cover and vice versa,

(d) it is possible that C is a 2-approximation of minimum vertex cover
but I is not a 2-approximation of maximum independent set,

(e) it is possible that I is a 2-approximation of maximum independent
set but C is not a 2-approximation of minimum vertex cover.

Exercise 2.2 (matchings). Show that

(a) any maximal matching is a 2-approximation of a maximum match-
ing,

(b) any maximal matching is a 2-approximation of a minimum maxi-
mal matching,

(c) a maximal independent set is not necessarily a 2-approximation
of maximum independent set,

(d) a maximal independent set is not necessarily a 2-approximation
of minimum maximal independent set.

Exercise 2.3 (matchings and vertex covers). Let M be a maximal match-
ing, and let C =

⋃

M , i.e., C consists of all endpoints of matched edges.
Show that

(a) C is a 2-approximation of a minimum vertex cover,

(b) C is not necessarily a 1.999-approximation of a minimum vertex
cover.

Would you be able to improve the approximation ratio if M was a mini-
mum maximal matching?

Exercise 2.4 (independence and domination). Show that

(a) a maximal independent set is a minimal dominating set,
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(b) a minimal dominating set is not necessarily a maximal independent
set,

(c) a minimum maximal independent set is not necessarily a minimum
dominating set.

Exercise 2.5 (graph colorings and partitions). Show that

(a) a weak 2-coloring always exists,

(b) a domatic partition of size 2 does not necessarily exist,

(c) if a domatic partition of size 2 exists, then a weak 2-coloring is a
domatic partition of size 2,

(d) a weak 2-coloring is not necessarily a domatic partition of size 2.

Show that there are 2-regular graphs with the following properties:

(e) any 3-coloring is a domatic partition of size 3,

(f) no 3-coloring is a domatic partition of size 3.

Assume that G is a graph of maximum degree ∆; show that

(g) there exists a (∆+ 1)-coloring,

(h) a ∆-coloring does not necessarily exist.

Exercise 2.6 (isomorphism). Construct non-empty 3-regular connected
graphs G and H such that G and H have the same number of nodes and
G and H are not isomorphic. Just giving a construction is not sufficient
—you have to prove that G and H are not isomorphic.

⋆ Exercise 2.7 (matchings and edge domination). Show that

(a) a maximal matching is a minimal edge dominating set,

(b) a minimal edge dominating set is not necessarily a maximal match-
ing,

(c) a minimum maximal matching is a minimum edge dominating set,
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(d) any maximal matching is a 2-approximation of a minimum edge
dominating set.

▷ hint A

⋆ Exercise 2.8 (Petersen 1891). Show that any 2d-regular graph G =
(V, E) has an orientation H = (V, E′) such that

indegreeH(v) = outdegreeH(v) = d

for all v ∈ V . Show that any 2d-regular graph has a 2-factorization.

2.9 Bibliographic Notes

The connection between maximal matchings and approximations of
vertex covers (Exercise 2.3) is commonly attributed to Gavril and Yan-
nakakis—see, e.g., Papadimitriou and Steiglitz [4]. The connection
between minimum maximal matchings and minimum edge dominating
sets (Exercise 2.7) is due to Allan and Laskar [1] and Yannakakis and
Gavril [7]. Exercise 2.8 is a 120-year-old result due to Petersen [5]. The
definition of a weak coloring is from Naor and Stockmeyer [3].

Diestel’s book [2] is a good source for graph-theoretic background,
and Vazirani’s book [6] provides further information on approximation
algorithms.
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2.11 Hints

A. Assume that D is an edge dominating set; show that you can
construct a maximal matching M with |M | ≤ |D|.
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