
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · September 20, 2023

Chapter 3

PN Model: Port Numbering
Now that we have introduced the essential graph-theoretic concepts, we
are ready to define what a “distributed algorithm” is. In this chapter, we
will study one variant of the theme: deterministic distributed algorithms
in the “port-numbering model”. We will use the abbreviation PN for the
port-numbering model, and we will also use the term “PN-algorithm”
to refer to deterministic distributed algorithms in the port-numbering
model. For now, everything will be deterministic—randomized algo-
rithms will be discussed in later chapters.

3.1 Introduction

The basic idea of the PN model is best explained through an example.
Suppose that I claim the following:

• A is a deterministic distributed algorithm that finds a 2-approxi-
mation of a minimum vertex cover in the port-numbering model.

Or, in brief:

• A is a PN-algorithm for finding a 2-approximation of a minimum
vertex cover.

Informally, this entails the following:

(a) We can take any simple undirected graph G = (V, E).

1

https://jukkasuomela.fi/da2020/

(b) We can then put together a computer network N with the same
structure as G. A node v ∈ V corresponds to a computer in N , and
an edge {u, v} ∈ E corresponds to a communication link between
the computers u and v.

(c) Communication takes place through communication ports. A node
of degree d corresponds to a computer with d ports that are labeled
with numbers 1,2, . . . , d in an arbitrary order.

(d) Each computer runs a copy of the same deterministic algorithm A.
All nodes are identical; initially they know only their own degree
(i.e., the number of communication ports).

(e) All computers are started simultaneously, and they follow algo-
rithm A synchronously in parallel. In each synchronous communi-
cation round, all computers in parallel

(1) send a message to each of their ports,

(2) wait while the messages are propagated along the communi-
cation channels,

(3) receive a message from each of their ports, and

(4) update their own state.

(f) After each round, a computer can stop and announce its local
output: in this case the local output is either 0 or 1.

(g) We require that all nodes eventually stop—the running time of the
algorithm is the number of communication rounds it takes until
all nodes have stopped.

(h) We require that

C = { v ∈ V : computer v produced output 1 }

is a feasible vertex cover for graph G, and its size is at most 2 times
the size of a minimum vertex cover.

Sections 3.2 and 3.3 will formalize this idea.

2

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 3.1: A port-numbered network N = (V, P, p). There are four nodes,
V = {a, b, c, d}; the degree of node a is 3, the degrees of nodes b and c are
2, and the degree of node d is 1. The connection function p is illustrated
with arrows—for example, p(a, 3) = (d, 1) and conversely p(d, 1) = (a, 3).
This network is simple.

c, 3
c, 2
c, 1

a, 1
a, 2

b, 1
b, 2

d, 4
d, 3

d, 1
d, 2

Figure 3.2: A port-numbered network N = (V, P, p). There is a loop at
node a, as p(a, 1) = (a, 1), and another loop at node d, as p(d, 3) = (d, 4).
There are also multiple connections between c and d. Hence the network
is not simple.

3.2 Port-Numbered Network

A port-numbered network is a triple N = (V, P, p), where V is the set of
nodes, P is the set of ports, and p : P → P is a function that specifies the
connections between the ports. We make the following assumptions:

(a) Each port is a pair (v, i) where v ∈ V and i ∈ {1,2, . . . }.

(b) The connection function p is an involution, that is, for any port
x ∈ P we have p(p(x)) = x .

See Figures 3.1 and 3.2 for illustrations.

3

1
2

2
1

2

1 13

(a) (b)

Figure 3.3: (a) An alternative drawing of the simple port-numbered
network N from Figure 3.1. (b) The underlying graph G of N .

3.2.1 Terminology

If (v, i) ∈ P, we say that (v, i) is the port number i in node v. The
degree degN (v) of a node v ∈ V is the number of ports in v, that is,
degN (v) = |{ i ∈ N : (v, i) ∈ P }|.

Unless otherwise mentioned, we assume that the port numbers are
consecutive: for each v ∈ V there are ports (v, 1), (v, 2), . . . , (v, degN (v))
in P.

We use the shorthand notation p(v, i) for p((v, i)). If p(u, i) = (v, j),
we say that port (u, i) is connected to port (v, j); we also say that port
(u, i) is connected to node v, and that node u is connected to node v.

If p(v, i) = (v, j) for some j, we say that there is a loop at v—note
that we may have i = j or i ̸= j. If p(u, i1) = (v, j1) and p(u, i2) = (v, j2)
for some u ̸= v, i1 ̸= i2, and j1 ̸= j2, we say that there are multiple
connections between u and v. A port-numbered network N = (V, P, p) is
simple if there are no loops or multiple connections.

3.2.2 Underlying Graph

For a simple port-numbered network N = (V, P, p) we define the underly-
ing graph G = (V, E) as follows: {u, v} ∈ E if and only if u is connected
to v in network N . Observe that degG(v) = degN (v) for all v ∈ V . See
Figure 3.3 for an illustration.

4

1
2

2 1
2

1 13

(a) (b)

00

10

010 0

Figure 3.4: (a) A graph G = (V, E) and a matching M ⊆ E. (b) A port-
numbered network N ; graph G is the underlying graph of N . The node
labeling f : V → {0,1}∗ is an encoding of matching M .

3.2.3 Encoding Input and Output

In a distributed system, nodes are the active elements: they can read
input and produce output. Hence we will heavily rely on node labelings:
we can directly associate information with each node v ∈ V .

Assume that N = (V, P, p) is a simple port-numbered network, and
G = (V, E) is the underlying graph of N . We show that a node label-
ing f : V → Y can be used to represent the following graph-theoretic
structures; see Figure 3.4 for an illustration.

Node labeling g : V → X . Trivial: we can choose Y = X and f = g.

Subset of nodes X ⊆ V . We can interpret a subset of nodes as a node
labeling g : V → {0, 1}, where g is the indicator function of set X .
That is, g(v) = 1 iff v ∈ X .

Edge labeling g : E→ X . For each node v, its label f (v) encodes the
values g(e) for all edges e incident to v, in the order of increasing
port numbers. More precisely, if v is a node of degree d, its label is
a vector f (v) ∈ X d . If (v, j) ∈ P and p(v, j) = (u, i), then element
j of vector f (v) is g({u, v}).

Subset of edges X ⊆ E. We can interpret a subset of edges as an edge
labeling g : E→ {0, 1}.

5

Orientation H = (V, E′). For each node v, its label f (v) indicates which
of the edges incident to v are outgoing edges, in the order of
increasing port numbers.

It is trivial to compose the labelings. For example, we can easily
construct a node labeling that encodes both a subset of nodes and a
subset of edges.

3.2.4 Distributed Graph Problems

A distributed graph problem Π associates a set of solutions Π(N) with
each simple port-numbered network N = (V, P, p). A solution f ∈ Π(N)
is a node labeling f : V → Y for some set Y of local outputs.

Using the encodings of Section 3.2.3, we can interpret all of the
following as distributed graph problems: independent sets, vertex covers,
dominating sets, matchings, edge covers, edge dominating sets, colorings,
edge colorings, domatic partitions, edge domatic partitions, factors,
factorizations, orientations, and any combinations of these.

To make the idea more clear, we will give some more detailed exam-
ples.

(a) Vertex cover: f ∈ Π(N) if f encodes a vertex cover of the underlying
graph of N .

(b) Minimal vertex cover: f ∈ Π(N) if f encodes a minimal vertex
cover of the underlying graph of N .

(c) Minimum vertex cover: f ∈ Π(N) if f encodes a minimum vertex
cover of the underlying graph of N .

(d) 2-approximation of minimum vertex cover: f ∈ Π(N) if f encodes
a vertex cover C of the underlying graph of N ; moreover, the size
of C is at most two times the size of a minimum vertex cover.

(e) Orientation: f ∈ Π(N) if f encodes an orientation of the underly-
ing graph of N .

6

(f) 2-coloring: f ∈ Π(N) if f encodes a 2-coloring of the underlying
graph of N . Note that we will have Π(N) = ∅ if the underlying
graph of N is not bipartite.

3.3 Distributed Algorithms in the Port-Numbering
Model

We will now give a formal definition of a distributed algorithm in the
port-numbering model. In essence, a distributed algorithm is a state
machine (not necessarily a finite-state machine). To run the algorithm
on a certain port-numbered network, we put a copy of the same state
machine at each node of the network.

The formal definition of a distributed algorithm plays a similar role
as the definition of a Turing machine in the study of non-distributed
algorithms. A formally rigorous foundation is necessary to study ques-
tions such as computability and computational complexity. However,
we do not usually present algorithms as Turing machines, and the same
is the case here. Once we become more familiar with distributed algo-
rithms, we will use higher-level pseudocode to define algorithms and
omit the tedious details of translating the high-level description into a
state machine.

3.3.1 State Machine

A distributed algorithm A is a state machine that consists of the following
components:

(i) InputA is the set of local inputs,

(ii) StatesA is the set of states,

(iii) OutputA ⊆ StatesA is the set of stopping states (local outputs),

(iv) MsgA is the set of possible messages.

7

Moreover, for each possible degree d ∈ N we have the following func-
tions:

(v) initA,d : InputA→ StatesA initializes the state machine,

(vi) sendA,d : StatesA→Msgd
A constructs outgoing messages,

(vii) receiveA,d : StatesA×Msgd
A→ StatesA processes incoming messages.

We require that receiveA,d(x , y) = x whenever x ∈ OutputA. The idea
is that a node that has already stopped and printed its local output no
longer changes its state.

3.3.2 Execution

Let A be a distributed algorithm, let N = (V, P, p) be a port-numbered
network, and let f : V → InputA be a labeling of the nodes. A state vector
is a function x : V → StatesA. The execution of A on (N , f) is a sequence
of state vectors x0, x1, . . . defined recursively as follows.

The initial state vector x0 is defined by

x0(u) = initA,d(f (u)),

where u ∈ V and d = degN (u).
Now assume that we have defined state vector x t−1. Define mt : P →

MsgA as follows. Assume that (u, i) ∈ P, (v, j) = p(u, i), and degN (v) = ℓ.
Let mt(u, i) be component j of the vector sendA,ℓ(x t−1(v)).

Intuitively, mt(u, i) is the message received by node u from port
number i on round t. Equivalently, it is the message sent by node
v to port number j on round t—recall that ports (u, i) and (v, j) are
connected.

For each node u ∈ V with d = degN (u), we define the message vector

mt(u) =
�

mt(u, 1), mt(u, 2), . . . , mt(u, d)
�

.

Finally, we define the new state vector x t by

x t(u) = receiveA,d

�

x t−1(u), mt(u)
�

.

8

We say that algorithm A stops in time T if xT (u) ∈ OutputA for each
u ∈ V . We say that A stops if A stops in time T for some finite T . If A
stops in time T , we say that g = xT is the output of A, and xT (u) is the
local output of node u.

3.3.3 Solving Graph Problems

Now we will define precisely what it means if we say that a distributed
algorithm A solves a certain graph problem.

Let F be a family of simple undirected graphs. Let Π and Π′ be
distributed graph problems (see Section 3.2.4). We say that distributed
algorithm A solves problem Π on graph family F given Π′ if the following
holds: assuming that

(a) N = (V, P, p) is a simple port-numbered network,
(b) the underlying graph of N is in F , and
(c) the input f is in Π′(N),

the execution of algorithm A on (N , f) stops and produces an output
g ∈ Π(N). If A stops in time T (|V |) for some function T : N→ N, we say
that A solves the problem in time T .

Obviously, A has to be compatible with the encodings of Π and Π′.
That is, each f ∈ Π′(N) has to be a function of the form f : V → InputA,
and each g ∈ Π(N) has to be a function of the form g : V → OutputA.

Problem Π′ is often omitted. If A does not need the input f , we
simply say that A solves problem Π on graph family F . More precisely, in
this case we provide a trivial input f (v) = 0 for each v ∈ V .

In practice, we will often specify F , Π, Π′, and T implicitly. Here
are some examples of common parlance:

(a) Algorithm A finds a maximum matching in any path graph: here F
consists of all path graphs; Π′ is omitted; and Π is the problem of
finding a maximum matching.

(b) Algorithm A finds a maximal independent set in k-colored graphs
in time k: here F consists of all graphs that admit a k-coloring;

9

Π′ is the problem of finding a k-coloring; Π is the problem of
finding a maximal independent set; and T is the constant function
T : n 7→ k.

3.4 Example: Coloring Paths

Recall the fast 3-coloring algorithm for paths from Section 1.3. We
will now present the algorithm in a formally precise manner as a state
machine. Let us start with the problem definition:

• F is the family of path graphs.
• Π is the problem of coloring graphs with 3 colors.
• Π′ is the problem of coloring graphs with any number of colors.

We will present algorithm A that solves problem Π on graph family F
given Π′. Note that in Section 1.3 we assumed that we have unique
identifiers, but it is sufficient to assume that we have some graph coloring,
i.e., a solution to problem Π′.

The set of local inputs is determined by what we assume as input:

InputA = Z
+.

The set of stopping states is determined by the problem that we are
trying to solve:

OutputA = {1, 2,3}.

In our algorithm, each node only needs to store one positive integer (the
current color):

StatesA = Z+.

Messages are also integers:

MsgA = Z
+.

Initialization is trivial: the initial state of a node is its color. Hence for
all d we have

initA,d(x) = x .

10

In each step, each node sends its current color to each of its neighbors.
As we assume that all nodes have degree at most 2, we only need to
define sendA,d for d ≤ 2:

sendA,0(x) = ().

sendA,1(x) = (x).

sendA,2(x) = (x , x).

The nontrivial part of the algorithm is hidden in the receive function. To
define it, we will use the following auxiliary function that returns the
smallest positive number not in X :

g(X) =min(Z+ \ X).

Again, we only need to define receiveA,d for degrees d ≤ 2:

receiveA,0(x , ()) =

¨

g(∅) if x /∈ {1,2, 3},
x otherwise.

receiveA,1(x , (y)) =

g({y}) if x /∈ {1,2, 3}
and x > y,

x otherwise.

receiveA,2(x , (y, z)) =

g({y, z}) if x /∈ {1, 2,3}
and x > y , x > z,

x otherwise.

This algorithm does precisely the same thing as the algorithm that
was described in pseudocode in Table 1.1. It can be verified that this
algorithm indeed solves problem Π on graph family F given Π′, in the
sense that we defined in Section 3.3.3.

We will not usually present distributed algorithms in the low-level
state-machine formalism. Typically we are happy with a higher-level
presentation (e.g., in pseudocode), but it is important to understand
that any distributed algorithm can be always translated into the state
machine formalism.

11

In the next two sections we will give some non-trivial examples of
PN-algorithms. We will give informal descriptions of the algorithms; in
the exercises we will see how to translate these algorithms into the state
machine formalism.

3.5 Example: Maximal Matching in Two-Colored
Graphs

In this section we present a distributed bipartite maximal matching algo-
rithm: it finds a maximal matching in 2-colored graphs. That is,F is the
family of bipartite graphs, we are given a 2-coloring f : V → {1, 2}, and
the algorithm will output an encoding of a maximal matching M ⊆ E.

3.5.1 Algorithm

In what follows, we say that a node v ∈ V is white if f (v) = 1, and it is
black if f (v) = 2. During the execution of the algorithm, each node is in
one of the states

{UR, MR(i), US, MS(i) },

which stand for “unmatched and running”, “matched and running”,
“unmatched and stopped”, and “matched and stopped”, respectively. As
the names suggest, US and MS(i) are stopping states. If the state of a
node v is MS(i) then v is matched with the neighbor that is connected
to port i.

Initially, all nodes are in state UR. Each black node v maintains
variables M(v) and X (v), which are initialized

M(v)←∅, X (v)← {1,2, . . . , deg(v)}.

The algorithm is presented in Table 3.1; see Figure 3.5 for an illustration.

3.5.2 Analysis

The following invariant is useful in order to analyze the algorithm.

12

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

rounds 1–2 rounds 3–4 rounds 5–6

Figure 3.5: The bipartite maximal matching algorithm; the illustration
shows the algorithm both from the perspective of the port-numbered
network N and from the perspective of the underlying graph G. Arrows
pointing right are proposals, and arrows pointing left are acceptances.
Wide gray edges have been added to matching M .

13

Round 2k− 1, white nodes:

• State UR, k ≤ degN (v): Send ‘proposal’ to port (v, k).

• State UR, k > degN (v): Switch to state US.

• State MR(i): Send ‘matched’ to all ports.
Switch to state MS(i).

Round 2k− 1, black nodes:

• State UR: Read incoming messages.
If we receive ‘matched’ from port i, remove i from X (v).
If we receive ‘proposal’ from port i, add i to M(v).

Round 2k, black nodes:

• State UR, M(v) ̸=∅: Let i =min M(v).
Send ‘accept’ to port (v, i). Switch to state MS(i).

• State UR, X (v) =∅: Switch to state US.

Round 2k, white nodes:

• State UR: Process incoming messages.
If we receive ‘accept’ from port i, switch to state MR(i).

Table 3.1: The bipartite maximal matching algorithm; here k = 1,2,

14

Lemma 3.1. Assume that u is a white node, v is a black node, and (u, i) =
p(v, j). Then at least one of the following holds:

(a) element j is removed from X (v) before round 2i,
(b) at least one element is added to M(v) before round 2i.

Proof. Assume that we still have M(v) = ∅ and j ∈ X (v) after round
2i−2. This implies that v is still in state UR, and u has not sent ‘matched’
to v. In particular, u is in state UR or MR(i) after round 2i − 2. In the
former case, u sends ‘proposal’ to v on round 2i − 1, and j is added to
M(v) on round 2i−1. In the latter case, u sends ‘matched’ to v on round
2i − 1, and j is removed from X (v) on round 2i − 1.

Now it is easy to verify that the algorithm actually makes some
progress and eventually halts.

Lemma 3.2. The bipartite maximal matching algorithm stops in time
2∆+ 1, where ∆ is the maximum degree of N.

Proof. A white node of degree d stops before or during round 2d + 1≤
2∆+ 1.

Now let us consider a black node v. Assume that we still have j ∈ X (v)
on round 2∆. Let (u, i) = p(v, j); note that i ≤∆. By Lemma 3.1, at least
one element has been added to M(v) before round 2∆. In particular, v
stops before or during round 2∆.

Moreover, the output is correct.

Lemma 3.3. The bipartite maximal matching algorithm finds a maximal
matching in any two-colored graph.

Proof. Let us first verify that the output correctly encodes a matching.
In particular, assume that u is a white node, v is a black node, and
p(u, i) = (v, j). We have to prove that u stops in state MS(i) if and only
if v stops in state MS(j). If u stops in state MS(i), it has received an
‘accept’ from v, and v stops in state MS(j). Conversely, if v stops in state
MS(j), it has received a ‘proposal’ from u and it sends an ‘accept’ to u,
after which u stops in state MS(i).

15

Let us then verify that M is indeed maximal. If this was not the
case, there would be an unmatched white node u that is connected to
an unmatched black node v. However, Lemma 3.1 implies that at least
one of them becomes matched before or during round 2∆.

3.6 Example: Vertex Covers

We will now give a distributed minimum vertex cover 3-approximation
algorithm; we will use the bipartite maximal matching algorithm from
the previous section as a building block.

So far we have seen algorithms that assume something about the
input (e.g., we are given a proper coloring of the network). The algorithm
that we will see in this section makes no such assumptions. We can
run the minimum vertex cover 3-approximation algorithm in any port-
numbered network, without any additional input. In particular, we do
not need any kind of coloring, unique identifiers, or randomness.

3.6.1 Virtual 2-Colored Network

Let N = (V, P, p) be a port-numbered network. We will construct another
port-numbered network N ′ = (V ′, P ′, p′) as follows; see Figure 3.6 for
an illustration. First, we double the number of nodes—for each node
v ∈ V we have two nodes v1 and v2 in V ′:

V ′ = { v1, v2 : v ∈ V },
P ′ = { (v1, i), (v2, i) : (v, i) ∈ P }.

Then we define the connections. If p(u, i) = (v, j), we set

p′(u1, i) = (v2, j),

p′(u2, i) = (v1, j).

With these definitions we have constructed a network N ′ such that the
underlying graph G′ = (V ′, E′) is bipartite. We can define a 2-coloring

16

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

v

v1

v2

v

Figure 3.6: Construction of the virtual network N ′ in the minimum vertex
cover 3-approximation algorithm.

17

f ′ : V ′→ {1,2} as follows:

f ′(v1) = 1 and f ′(v2) = 2 for each v ∈ V.

Nodes of color 1 are called white and nodes of color 2 are called black.

3.6.2 Simulation of the Virtual Network

Now N is our physical communication network, and N ′ is merely a
mathematical construction. However, the key observation is that we can
use the physical network N to efficiently simulate the execution of any
distributed algorithm A on (N ′, f ′). Each physical node v ∈ V simulates
nodes v1 and v2 in N ′:

(a) If v1 sends a message m1 to port (v1, i) and v2 sends a message
m2 to port (v2, i) in the simulation, then v sends the pair (m1, m2)
to port (v, i) in the physical network.

(b) If v receives a pair (m1, m2) from port (v, i) in the physical network,
then v1 receives message m2 from port (v1, i) in the simulation,
and v2 receives message m1 from port (v2, i) in the simulation.

Note that we have here reversed the messages: what came from a
white node is received by a black node and vice versa.

In particular, we can take the bipartite maximal matching algorithm
of Section 3.5 and use the network N to simulate it on (N ′, f ′). Note that
network N is not necessarily bipartite and we do not have any coloring of
N ; hence we would not be able to apply the bipartite maximal matching
algorithm on N .

3.6.3 Algorithm

Now we are ready to present the minimum vertex cover 3-approximation
algorithm:

(a) Simulate the bipartite maximal matching algorithm in the virtual
network N ′. Each node v waits until both of its copies, v1 and v2,
have stopped.

18

(b) Node v outputs 1 if at least one of its copies v1 or v2 becomes
matched.

3.6.4 Analysis

Clearly the minimum vertex cover 3-approximation algorithm stops, as
the bipartite maximal matching algorithm stops. Moreover, the running
time is 2∆+ 1 rounds, where ∆ is the maximum degree of N .

Let us now prove that the output is correct. To this end, let G = (V, E)
be the underlying graph of N , and let G′ = (V ′, E′) be the underlying
graph of N ′. The bipartite maximal matching algorithm outputs a maxi-
mal matching M ′ ⊆ E′ for G′. Define the edge set M ⊆ E as follows:

M =
�

{u, v} ∈ E : {u1, v2} ∈ M ′ or {u2, v1} ∈ M ′
	

. (3.1)

See Figure 3.7 for an illustration. Furthermore, let C ′ ⊆ V ′ be the set of
nodes that are incident to an edge of M ′ in G′, and let C ⊆ V be the set
of nodes that are incident to an edge of M in G; equivalently, C is the
set of nodes that output 1. We make the following observations.

(a) Each node of C ′ is incident to precisely one edge of M ′.
(b) Each node of C is incident to one or two edges of M .
(c) Each edge of E′ is incident to at least one node of C ′.
(d) Each edge of E is incident to at least one node of C .

We are now ready to prove the main result of this section.

Lemma 3.4. Set C is a 3-approximation of a minimum vertex cover of G.

Proof. First, observation (d) above already shows that C is a vertex cover
of G.

To analyze the approximation ratio, let C∗ ⊆ V be a vertex cover of
G. By definition each edge of E is incident to at least one node of C∗; in
particular, each edge of M is incident to a node of C∗. Therefore C∗ ∩ C
is a vertex cover of the subgraph H = (C , M).

By observation (b) above, graph H has a maximum degree of at
most 2. Set C consists of all nodes in H. We will then argue that any

19

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

Figure 3.7: Set M ⊆ E (left) and matching M ′ ⊆ E′ (right).

20

(b)(a)

Figure 3.8: (a) In a cycle with n nodes, any vertex cover contains at least
n/2 nodes. (b) In a path with n nodes, any vertex cover contains at least
n/3 nodes.

vertex cover C∗ contains at least a fraction 1/3 of the nodes in H; see
Figure 3.8 for an example. Then it follows that C is at most 3 times as
large as a minimum vertex cover.

To this end, let Hi = (Ci , Mi), i = 1, 2, . . . , k, be the connected compo-
nents of H; each component is either a path or a cycle. Now C∗i = C∗∩Ci
is a vertex cover of Hi .

A node of C∗i is incident to at most two edges of Mi . Therefore

|C∗i | ≥ |Mi|/2.

If Hi is a cycle, we have |Ci|= |Mi| and

|C∗i | ≥ |Ci|/2.

If Hi is a path, we have |Mi|= |Ci| − 1. If |Ci| ≥ 3, it follows that

|C∗i | ≥ |Ci|/3.

21

The only remaining case is a path with two nodes, in which case trivially
|C∗i | ≥ |Ci|/2.

In conclusion, we have |C∗i | ≥ |Ci|/3 for each component Hi. It
follows that

|C∗| ≥ |C∗ ∩ C |=
k
∑

i=1

|C∗i | ≥
k
∑

i=1

|Ci|/3= |C |/3.

In summary, the minimum vertex cover algorithm finds a 3-approx-
imation of a minimum vertex cover in any graph G. Moreover, if the
maximum degree of G is small, the algorithm is fast: we only need O(∆)
rounds in a network of maximum degree ∆.

3.7 Quiz

Construct a simple port-numbered network N = (V, P, p) and its underly-
ing graph G = (V, E) that has as few nodes as possible and that satisfies
the following properties:

• We have E ̸=∅.
• The set M =

�

{u, v} ∈ E : p(u, 1) = (v, 2)
	

is a perfect matching in
graph G.

Please answer by listing all elements of sets V , E, and P, and by listing
all values of p. For example, you might specify a network with two nodes
as follows: V = {1, 2}, E = {{1, 2}}, P = {(1, 1), (2, 1)}, p(1, 1) = (2, 1),
and p(2, 1) = (1,1).

3.8 Exercises

Exercise 3.1 (formalizing bipartite maximal matching). Present the
bipartite maximal matching algorithm from Section 3.5 in a formally
precise manner, using the definitions of Section 3.3. Try to make MsgA
as small as possible.

22

Exercise 3.2 (formalizing vertex cover approximation). Present the
minimum vertex cover 3-approximation algorithm from Section 3.6 in
a formally precise manner, using the definitions of Section 3.3. Try to
make both MsgA and StatesA as small as possible.

▷ hint A

Exercise 3.3 (stopped nodes). In the formalism of this chapter, a node
that stops will repeatedly send messages to its neighbors. Show that this
detail is irrelevant, and we can always re-write algorithms so that such
messages are ignored. Put otherwise, a node that stops can also stop
sending messages.

More precisely, assume that A is a distributed algorithm that solves
problem Π on family F given Π′ in time T . Show that there is another
algorithm A′ such that (i) A′ solves problem Π on family F given Π′ in
time T +O(1), and (ii) in A′ the state transitions never depend on the
messages that are sent by nodes that have stopped.

Exercise 3.4 (more than two colors). Design a distributed algorithm
that finds a maximal matching in k-colored graphs. You can assume that
k is a known constant.

Exercise 3.5 (analysis of vertex cover approximation). Is the analysis of
the minimum vertex cover 3-approximation algorithm tight? That is, is
it possible to construct a network N such that the algorithm outputs a
vertex cover that is exactly 3 times as large as the minimum vertex cover
of the underlying graph of N?

⋆ Exercise 3.6 (implementation). Using your favorite programming
language, implement a simulator that lets you play with distributed
algorithms in the port-numbering model. Implement the algorithms for
bipartite maximal matching and minimum vertex cover 3-approximation
and try them out in the simulator.

⋆ Exercise 3.7 (composition). Assume that algorithm A1 solves problem
Π1 on family F given Π0 in time T1, and algorithm A2 solves problem
Π2 on family F given Π1 in time T2.

23

Is it always possible to design an algorithm A that solves problem Π2
on family F given Π0 in time O(T1 + T2)?

▷ hint B

3.9 Bibliographic Notes

The concept of a port numbering is from Angluin’s [1]work. The bipartite
maximal matching algorithm is due to Hańćkowiak et al. [2], and the
minimum vertex cover 3-approximation algorithm is from a paper with
Polishchuk [3].

3.10 Bibliography

[1] Dana Angluin. Local and global properties in networks of processors.
In Proc. 12th Annual ACM Symposium on Theory of Computing (STOC
1980), 1980. doi:10.1145/800141.804655.

[2] Michał Hańćkowiak, Michał Karoński, and Alessandro Panconesi.
On the distributed complexity of computing maximal matchings.
In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1998), 1998.

[3] Valentin Polishchuk and Jukka Suomela. A simple local 3-
approximation algorithm for vertex cover. Information Processing
Letters, 109(12):642–645, 2009. arXiv:0810.2175, doi:10.1016/j.ipl.
2009.02.017.

3.11 Hints

A. For the purposes of the minimum vertex cover algorithm, it is suf-
ficient to know which nodes are matched in the bipartite maximal
matching algorithm—we do not need to know with whom they
are matched.

24

https://doi.org/10.1145/800141.804655
https://arxiv.org/abs/0810.2175
https://doi.org/10.1016/j.ipl.2009.02.017
https://doi.org/10.1016/j.ipl.2009.02.017

B. This exercise is not trivial. If T1 was a constant function T1(n) = c,
we could simply run A1, and then start A2 at time c, using the
output of A1 as the input of A2. However, if T1 is an arbitrary
function of |V |, this strategy is not possible—we do not know in
advance when A1 will stop.

25

	Introduction
	Port-Numbered Network
	Terminology
	Underlying Graph
	Encoding Input and Output
	Distributed Graph Problems

	Distributed Algorithms in the PN model
	State Machine
	Execution
	Solving Graph Problems

	Example: Coloring Paths
	Example: Bipartite Maximal Matching
	Algorithm
	Analysis

	Example: Vertex Covers
	Virtual 2-Colored Network
	Simulation of the Virtual Network
	Algorithm
	Analysis

	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints

