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Chapter 6

Randomized Algorithms
All models of computing that we have studied so far were based on the
formalism that we introduced in Chapter 3: a distributed algorithm A
is a state machine whose state transitions are determined by functions
initA,d , sendA,d , and receiveA,d . Everything has been fully deterministic:
for a given network and a given input, the algorithm will always produce
the same output. In this chapter, we will extend the model so that we
can study randomized distributed algorithms.

6.1 Definitions

Let us first define a randomized distributed algorithms in the PN model
or, in brief, a randomized PN algorithm. We extend the definitions of
Section 3.3 so that the state transitions are chosen randomly according
to some probability distribution that may depend on the current state
and incoming messages.

More formally, the values of the functions init and receive are discrete
probability distributions over StatesA. The initial state of a node u is a
random variable x0(u) chosen from a discrete probability distribution

initA,d( f (u))

that may depend on the local input f (u). The state at time t is a random
variable x t(u) chosen from a discrete probability distribution

receiveA,d

�

x t−1(u), mt(u)
�
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that may depend on the previous state x t−1(u) and on the incoming
messages mt(u). All other parts of the model are as before. In particular,
function sendA,d is deterministic.

Above we have defined randomized PN algorithms. We can now
extend the definitions in a natural manner to define randomized algo-
rithms in the LOCAL model (add unique identifiers) and randomized
algorithms in the CONGEST model (add unique identifiers and limit the
size of the messages).

6.2 Probabilistic Analysis

In randomized algorithms, performance guarantees are typically proba-
bilistic. For example, we may claim that algorithm A stops in time T with
probability p.

Note that all probabilities here are over the random choices in the
state transitions. We do not assume that our network or the local inputs
are chosen randomly; we still require that the algorithm performs well
with worst-case inputs. For example, if we claim that algorithm A solves
problem Π on graph family F in time T (n) with probability p, then we
can take any graph G ∈ F and any port-numbered network N with G as
its underlying graph, and we guarantee that with probability at least p
the execution of A in N stops in time T (n) and produces a correct output
g ∈ Π(G); as usual, n is the number of nodes in the network.

We may occasionally want to emphasize the distinction between
“Monte Carlo” and “Las Vegas” type algorithms:

• Monte Carlo: Algorithm A always stops in time T (n); the output
is a correct solution to problem Π with probability p.

• Las Vegas: Algorithm A stops in time T (n)with probability p; when
it stops, the output is always a correct solution to problem Π.

However, Monte Carlo algorithms are not as useful in the field of dis-
tributed computing as they are in the context of classical centralized
algorithms. In centralized algorithms, we can usually take a Monte Carlo
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algorithm and just run it repeatedly until it produces a feasible solution;
hence we can turn a Monte Carlo algorithm into a Las Vegas algorithm.
This is not necessarily the case with distributed algorithms: verifying
the output of an algorithm may require global information on the entire
output, and gathering such information may take a long time. In this
chapter, we will mainly focus on Las Vegas algorithms, i.e., algorithms
that are always correct but may occasionally be slow, but in the exercises
we will also encounter Monte Carlo algorithms.

6.3 With High Probability

We will use the word failure to refer to the event that the algorithm did
not meet its guarantees—in the case of a Las Vegas algorithm, it did not
stop in time T (n), and in the case of Monte Carlo algorithms, it did not
produce a correct output. The word success refers to the opposite case.

Usually we want to show that the probability of a failure is negligible.
In computer science, we are usually interested in asymptotic analysis,
and hence in the context of randomized algorithms, it is convenient if
we can show that the success probability approaches 1 when n increases.
Even better, we would like to let the user of the algorithm choose how
quickly the success probability approaches 1.

This idea is captured in the phrase “with high probability” (commonly
abbreviated w.h.p.). Please note that this phrase is not a vague subjective
statement but it carries a precise mathematical meaning: it refers to the
success probability of 1−1/nc , where we can choose any constant c > 0.
(Unfortunately, different sources use slightly different definitions; for
example, it may also refer to the success probability of 1−O(1)/nc for
any constant c > 0.)

In our context, we say that algorithm A solves problem Π on graph
family F in time O(T (n)) with high probability if the following holds:

• I can choose any constant c > 0. Algorithm A may depend on this
constant.
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• Then if I run A in any network N that has its underlying graph
in F , the algorithm will stop in time O(T (n)) with probability at
least 1− 1/nc , and the output is a feasible solution to problem Π.

Note that the O(·) notation in the running time is used to hide the
dependence on c. This is a crucial point. For example, it would not make
much sense to say that the running time is at most log n with probability
1− 1/nc for any constant c > 0. However, it is perfectly reasonable to
say that the running time is, e.g., at most c log n or 2c log n or simply
O(log n) with probability 1− 1/nc for any constant c > 0.

6.4 Randomized Coloring in Bounded-Degree
Graphs

In Chapter 4 we presented a deterministic algorithm that finds a (∆+ 1)-
coloring in a graph of maximum degree∆. In this section, we will design
a randomized algorithm that solves the same problem. The running times
are different:

• the deterministic algorithm runs in O(∆+ log∗ n) rounds.
• the randomized algorithm runs in O(log n) rounds with high prob-

ability.

Hence for large values of ∆, the randomized algorithm can be much
faster.

6.4.1 Algorithm Idea

A running time of O(log n) is very typical for a randomized distributed
algorithm. Often randomized algorithms follow the strategy that in each
step each node picks a value randomly from some probability distribution.
If the value conflicts with the values of the neighbors, the node will try
again next time; otherwise the node outputs the current value and stops.
If we can prove that each node stops in each round with a constant
probability, we can prove that after Θ(log n) all nodes have stopped
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w.h.p. This is precisely what we saw in the analysis of the randomized
path-coloring algorithm in Section 1.5.

However, adapting the same strategy to graphs of maximum degree
∆ requires some thought. If each node just repeatedly tries to pick a
random color from {1, 2, . . . ,∆+1}, the success probability may be fairly
low for large values of ∆.

Therefore we will adopt a strategy in which nodes are slightly less
aggressive. Nodes will first randomly choose whether they are active or
passive in this round; each node is passive with probability 1/2. Only
active nodes will try to pick a random color among those colors that are
not yet used by their neighbors.

Informally, the reason why this works well is the following. Assume
that we have a node v with d neighbors that have not yet stopped. Then
there are at least d + 1 colors among which v can choose whenever it is
active. If all of the d neighbors were also active and if they happened to
pick distinct colors, we would have only a

1
d + 1

chance of picking a color that is not used by any of the neighbors. How-
ever, in our algorithm on average only d/2 neighbors are active. If we
have at most d/2 active neighbors, we will succeed in picking a free
color with probability at least

d + 1− d/2
d + 1

>
1
2

,

regardless of what the active neighbors do.

6.4.2 Algorithm

Let us now formalize the algorithm. For each node u, let

C(u) = {1, 2, . . . , degG(u) + 1}

be the color palette of the node; node u will output one of the colors of
C(u).

In the algorithm, node u maintains the following variables:
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• State s(u) ∈ {0, 1}
• Color c(u) ∈ {⊥} ∪ C(u).

Initially, s(u)← 1 and c(u)←⊥. When s(u) = 1 and c(u) ̸= ⊥, node u
stops and outputs color c(u).

In each round, node u always sends c(u) to each port. The incoming
messages are processed as follows, depending on the current state of the
node:

• s(u) = 1 and c(u) ̸=⊥:

– This is a stopping state; ignore incoming messages.

• s(u) = 1 and c(u) =⊥:

– Let M(u) be the set of messages received.

– Let F(u) = C(u) \M(u) be the set of free colors.

– With probability 1/2, set c(u)←⊥; otherwise choose a c(u) ∈
F(u) uniformly at random.

– Set s(u)← 0.

• s(u) = 0:

– Let M(u) be the set of messages received.

– If c(u) ∈ M(u), set c(u)←⊥.

– Set s(u)← 1.

Informally, the algorithm proceeds as follows. For each node u, its
state s(u) alternates between 1 and 0:

• When s(u) = 1, the node either decides to be passive and sets
c(u) = ⊥, or it decides to be active and picks a random color
c(u) ∈ F(u). Here F(u) is the set of colors that are not yet used by
any of the neighbors that are stopped.
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• When s(u) = 0, the node verifies its choice. If the current color c(u)
conflicts with one of the neighbors, we go back to the initial state
s(u)← 1 and c(u)←⊥. However, if we were lucky and managed
to pick a color that does not conflict with any of our neighbors, we
keep the current value of c(u) and switch to the stopping state.

6.4.3 Analysis

It is easy to see that if the algorithm stops, then the output is a proper
(∆+ 1)-coloring of the underlying graph. Let us now analyze how long
it takes for the nodes to stop.

In the analysis, we will write st(u) and ct(u) for values of variables
s(u) and c(u) after round t = 0, 1, . . . , and Mt(u) and Ft(u) for the values
of M(u) and F(u) during round t = 1,2, . . . . We also write

Kt(u) =
�

v ∈ V : {u, v} ∈ E, st−1(v) = 1, ct−1(v) =⊥
	

for the set of competitors of node u during round t = 1,3,5, . . . ; these
are the neighbors of u that have not yet stopped.

First, let us prove that with probability at least 1/4, a running node
succeeds in picking a color that does not conflict with any of its neighbors.

Lemma 6.1. Fix a node u ∈ V and time t = 1,3,5, . . . . Assume that
st−1(u) = 1 and ct−1(u) =⊥, i.e., u has not stopped before round t. Then
with probability at least 1/4, we have st+1(u) = 1 and ct+1(u) ̸=⊥, i.e., u
will stop after round t + 1.

Proof. Let f = |Ft(u)| be the number of free colors during round t, and
let k = |Kt(u)| be the number of competitors during round t. Note that
f ≥ k + 1, as the size of the palette is one larger than the number of
neighbors.

Let us first study the case that u is active. As we have got f free
colors, for any given color x ∈ N we have

Pr
�

ct(u) = x
�

� ct(u) ̸=⊥
�

≤ 1/ f .
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In particular, this holds for any color x = ct(v) chosen by any active
competitor v ∈ Kt(u):

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥, ct(v) ̸=⊥
�

≤ 1/ f .

That is, we conflict with an active competitor with probability at most
1/ f . Naturally, we cannot conflict with a passive competitor:

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥, ct(v) =⊥
�

= 0.

As a competitor is active with probability

Pr
�

ct(v) ̸=⊥
�

= 1/2,

and the random variables ct(u) and ct(v) are independent, the probability
that we conflict with a given competitor v ∈ Kt(u) is

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥
�

≤
1

2 f
.

By the union bound, the probability that we conflict with some competitor
is

Pr
�

ct(u) = ct(v) for some v ∈ Kt(u)
�

� ct(u) ̸=⊥
�

≤
k

2 f
,

which is less than 1/2 for all k ≥ 0 and all f ≥ k + 1. Put otherwise,
node u will avoid conflicts with probability

Pr
�

ct(u) ̸= ct(v) for all v ∈ Kt(u)
�

� ct(u) ̸=⊥
�

>
1
2

.

So far we have studied the conditional probabilities assuming that u
is active. This happens with probability

Pr
�

ct(u) ̸=⊥
�

= 1/2.

Therefore node u will stop after round t + 1 with probability

Pr
�

ct+1(u) ̸=⊥] =

Pr
�

ct(u) ̸=⊥ and ct(u) ̸= ct(v) for all v ∈ Kt(u)]> 1/4.
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Now we can continue with the same argument as what we used in
Section 1.5 to analyze the running time. Fix a constant c > 0. Define

T (n) = 2(c + 1) log4/3 n.

We will prove that the algorithm stops in T(n) rounds. First, let us
consider an individual node. Note the exponent c + 1 instead of c in the
statement of the lemma; this will be helpful later.

Lemma 6.2. Fix a node u ∈ V . The probability that u has not stopped
after T (n) rounds is at most 1/nc+1.

Proof. By Lemma 6.1, if node u has not stopped after round 2i, it will
stop after round 2i+2 with probability at least 1/4. Hence the probability
that it has not stopped after T (n) rounds is at most

(3/4)T (n)/2 =
1

(4/3)(c+1) log4/3 n
=

1
nc+1

.

Now we are ready to analyze the time until all nodes stop.

Theorem 6.3. The probability that all nodes have stopped after T(n)
rounds is at least 1− 1/nc .

Proof. Follows from Lemma 6.2 by the union bound.

Note that T(n) = O(log n) for any constant c. Hence we conclude
that the algorithm stops in O(log n) rounds with high probability, and
when it stops, it outputs a vertex coloring with ∆+ 1 colors.

6.5 Quiz

Consider a cycle with 10 nodes, and label the nodes with a random
permutation of the numbers 1, 2, . . . , 10 (uniformly at random). A node
is a local maximum if its label is larger than the labels of its two neighbors.
Let X be the number of local maxima. What is the expected value of X?
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6.6 Exercises

Exercise 6.1 (larger palette). Assume that we have a graph without any
isolated nodes. We will design a graph-coloring algorithm A that is a bit
easier to understand and analyze than the algorithm of Section 6.4. In
algorithm A, each node u proceeds as follows until it stops:

• Node u picks a color c(u) from {1, 2, . . . , 2d} uniformly at random;
here d is the degree of node u.

• Node u compares its value c(u) with the values of all neighbors. If
c(u) is different from the values of its neighbors, u outputs c(u)
and stops.

Present this algorithm in a formally precise manner, using the state-
machine formalism. Analyze the algorithm, and prove that it finds a
2∆-coloring in time O(log n) with high probability.

Exercise 6.2 (unique identifiers). Design a randomized PN algorithm A
that solves the following problem in O(1) rounds:

• As input, all nodes get value |V |.
• Algorithm outputs a labeling f : V → {1,2, . . . ,χ} for some χ =
|V |O(1).

• With high probability, f (u) ̸= f (v) for all nodes u ̸= v.

Analyze your algorithm and prove that it indeed solves the problem
correctly.

In essence, algorithm A demonstrates that we can use randomness
to construct unique identifiers, assuming that we have some information
on the size of the network. Hence we can take any algorithm B designed
for the LOCAL model, and combine it with algorithm A to obtain a PN
algorithm B′ that solves the same problem as B (with high probability).

▷ hint A

Exercise 6.3 (large independent sets). Design a randomized PN al-
gorithm A with the following guarantee: in any graph G = (V, E) of
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maximum degree ∆, algorithm A outputs an independent set I such that
the expected size of the I is |V |/O(∆). The running time of the algorithm
should be O(1). You can assume that all nodes know ∆.

▷ hint B

Exercise 6.4 (max cut problem). Let G = (V, E) be a graph. A cut
is a function f : V → {0,1}. An edge {u, v} ∈ E is a cut edge in f
if f (u) ̸= f (v). The size of cut f is the number of cut edges, and a
maximum cut is a cut of the largest possible size.

(a) Prove: If G = (V, E) is a bipartite graph, then a maximum cut has
|E| edges.

(b) Prove: If G = (V, E) has a cut with |E| edges, then G is bipartite.

(c) Prove: For any α > 1/2, there exists a graph G = (V, E) in which
the maximum cut has fewer than α|E| edges.

▷ hint C

Exercise 6.5 (max cut algorithm). Design a randomized PN algorithm
A with the following guarantee: in any graph G = (V, E), algorithm A
outputs a cut f such that the expected size of cut f is at least |E|/2. The
running time of the algorithm should be O(1).

Note that the analysis of algorithm A also implies that for any graph
there exists a cut with at least |E|/2.

▷ hint D

Exercise 6.6 (maximal independent sets). Design a randomized PN
algorithm that finds a maximal independent set in time O(∆+ log n)
with high probability.

▷ hint E

⋆ Exercise 6.7 (maximal independent sets quickly). Design a random-
ized distributed algorithm that finds a maximal independent set in time
O(log n) with high probability.

▷ hint F

11



6.7 Bibliographic Notes

Algorithm of Section 6.4 and the algorithm of Exercise 6.1 are from
Barenboim and Elkin’s book [1, Section 10.1].
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6.9 Hints

A. Pick the labels randomly from a sufficiently large set; this takes 0
communication rounds.

B. Each node u picks a random number f (u). Nodes that are local
maxima with respect to the labeling f will join I .

C. For the last part, consider a complete graph with a sufficiently
large number of nodes.

D. Each node chooses an output 0 or 1 uniformly at random and stops;
this takes 0 communication rounds. To analyze the algorithm,
prove that each edge is a cut edge with probability 1/2.

E. Use the randomized coloring algorithm.

F. Look up “Luby’s algorithm”.
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