
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · September 20, 2023

Chapter 7

Covering Maps
Chapters 3–6 have focused on positive results; now we will turn our
attention to techniques that can be used to prove negative results. We
will start with so-called covering maps—we will use covering maps to
prove that many problems cannot be solved at all with deterministic
PN-algorithms.

7.1 Definition

A covering map is a topological concept that finds applications in many
areas of mathematics, including graph theory. We will focus on one
special case: covering maps between port-numbered networks.

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be port-numbered networks,
and let φ : V → V ′. We say that φ is a covering map from N to N ′ if the
following holds:

(a) φ is a surjection: φ(V) = V ′.

(b) φ preserves degrees: degN (v) = degN ′(φ(v)) for all v ∈ V .

(c) φ preserves connections and port numbers: p(u, i) = (v, j)
implies p′(φ(u), i) = (φ(v), j).

See Figures 7.1–7.3 for examples.
We can also consider labeled networks, for example, networks with

local inputs. Let f : V → X and f ′ : V ′→ X . We say that φ is a covering

1

https://jukkasuomela.fi/da2020/

N:

N’:

a1, 3
a1, 2
a1, 1

b1, 1
b1, 2

c1, 1
c1, 2

d1, 1

a2, 3
a2, 2
a2, 1

b2, 1
b2, 2

c2, 1
c2, 2

d2, 1

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 7.1: There is a covering map φ from N to N ′ that maps ai 7→ a,
bi 7→ b, ci 7→ c, and di 7→ d for each i ∈ {1, 2}.

2

N:

N’:

v1, 1
v1, 2

v3, 1
v3, 2

v2, 1
v2, 2

v, 1
v, 2

Figure 7.2: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2,3}. Here N is a simple port-numbered network but N ′ is
not.

N:

N’: v, 1

v1, 1 v2, 1

Figure 7.3: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2}. Again, N is a simple port-numbered network but N ′ is
not.

3

map from (N , f) to (N ′, f ′) if φ is a covering map from N to N ′ and the
following holds:

(d) φ preserves labels: f (v) = f ′(φ(v)) for all v ∈ V .

7.2 Covers and Executions

Now we will study covering maps from the perspective of deterministic
PN-algorithms. The basic idea is that a covering map φ from N to N ′

fools any PN-algorithm A: a node v in N is indistinguishable from the
node φ(v) in N ′.

Without further ado, we state the main result and prove it—many
applications and examples will follow.

Theorem 7.1. Assume that

(a) A is a deterministic PN-algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are port-numbered networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions, and

(d) φ : V → V ′ is a covering map from (N , f) to (N ′, f ′).

Let

(e) x0, x1, . . . be the execution of A on (N , f), and

(f) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . and each v ∈ V we have x t(v) = x ′t(φ(v)).

Proof. We will use the notation of Section 3.3.2; the symbols with a
prime refer to the execution of A on (N ′, f ′). In particular, m′t(u

′, i) is
the message received by u′ ∈ V ′ from port i in round t in the execution
of A on (N ′, f ′), and m′t(u

′) is the vector of messages received by u′.
The proof is by induction on t. To prove the base case t = 0, let

v ∈ V , d = degN (v), and v′ = φ(v); we have

x ′0(v
′) = initA,d(f

′(v′)) = initA,d(f (v)) = x0(v).

4

For the inductive step, let (u, i) ∈ P, (v, j) = p(u, i), d = degN (u),
ℓ = degN (v), u′ = φ(u), and v′ = φ(v). Let us first consider the messages
sent by v and v′; by the inductive assumption, these are equal:

sendA,ℓ(x
′
t−1(v

′)) = sendA,ℓ(x t−1(v)).

A covering map φ preserves connections and port numbers: (u, i) =
p(v, j) implies (u′, i) = p′(v′, j). Hence mt(u, i) is component j of
sendA,ℓ(x t−1(v)), and m′t(u

′, i) is component j of sendA,ℓ(x ′t−1(v
′)). It

follows that mt(u, i) = m′t(u
′, i) and mt(u) = m′t(u

′). Therefore

x ′t(u
′) = receiveA,d

�

x ′t−1(u
′), m′t(u

′)
�

= receiveA,d

�

x t−1(u), mt(u)
�

= x t(u).

In particular, if the execution of A on (N , f) stops in time T , the exe-
cution of A on (N ′, f ′) stops in time T as well, and vice versa. Moreover,
φ preserves the local outputs: xT (v) = x ′T (φ(v)) for all v ∈ V .

7.3 Examples

We will give representative examples of negative results that we can easily
derive from Theorem 7.1. First, we will observe that a deterministic
PN-algorithm cannot break symmetry in a cycle—unless we provide
some symmetry-breaking information in local inputs.

Lemma 7.2. Let G = (V, E) be a cycle graph, let A be a deterministic
PN-algorithm, and let f be a constant function f : V → {0}. Then there is
a simple port-numbered network N = (V, P, p) such that

(a) the underlying graph of N is G, and

(b) if A stops on (N , f), the output is a constant function g : V → {c}
for some c.

Proof. Label the nodes V = { v1, v2, . . . , vn } along the cycle so that the
edges are

E =
�

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
	

.

5

Choose the port numbering p as follows:

p : (v1, 1) 7→ (v2, 2), (v2, 1) 7→ (v3, 2), . . . ,

(vn−1, 1) 7→ (vn, 2), (vn, 1) 7→ (v1, 2).

See Figure 7.2 for an illustration in the case n= 3.
Define another port-numbered network N ′ = (V ′, P ′, p′) with V ′ =

{v}, P ′ = {(v, 1), (v, 2)}, and p(v, 1) = (v, 2). Let f ′ : V ′→ {0}. Define a
function φ : V → V ′ by setting φ(vi) = v for each i.

Now we can verify that φ is a covering map from (N , f) to (N ′, f ′).
Assume that A stops on (N , f) and produces an output g. By Theorem 7.1,
A also stops on (N ′, f ′) and produces an output g ′. Let c = g ′(v). Now

g(vi) = g ′(φ(vi)) = g ′(v) = c

for all i.

In the above proof, we never assumed that the execution of A on
N ′ makes any sense—after all, N ′ is not even a simple port-numbered
network, and there is no underlying graph. Algorithm A was never
designed to be applied to such a strange network with only one node.
Nevertheless, the execution of A on N ′ is formally well-defined, and
Theorem 7.1 holds. We do not really care what A outputs on N ′, but the
existence of a covering map can be used to prove that the output of A
on N has certain properties. It may be best to interpret the execution
of A on N ′ as a thought experiment, not as something that we would
actually try to do in practice.

Lemma 7.2 has many immediate corollaries.

Corollary 7.3. Let F be the family of cycle graphs. Then there is no
deterministic PN-algorithm that solves any of the following problems onF :

(a) maximal independent set,
(b) 1.999-approximation of a minimum vertex cover,
(c) 2.999-approximation of a minimum dominating set,
(d) maximal matching,

6

(e) vertex coloring,
(f) weak coloring,
(g) edge coloring.

Proof. In each of these cases, there is a graph G ∈ F such that a constant
function is not a feasible solution in the network N that we constructed
in Lemma 7.2.

For example, consider the case of dominating sets; other cases are
similar. Assume that G = (V, E) is a cycle with 3k nodes. Then a
minimum dominating set consists of k nodes—it is sufficient to take every
third node. Hence a 2.999-approximation of a minimum dominating
set consists of at most 2.999k < 3k nodes. A solution D = V violates
the approximation guarantee, as D has too many nodes, while D =∅ is
not a dominating set. Hence if A outputs a constant function, it cannot
produce a 2.999-approximation of a minimum dominating set.

Lemma 7.4. There is no deterministic PN-algorithm that finds a weak
coloring for every 3-regular graph.

Proof. Again, we are going to apply the standard technique: pick a
suitable 3-regular graph G, find a port-numbered network N that has G
as its underlying graph, find a smaller network N ′ such that we have a
covering map φ from N to N ′, and apply Theorem 7.1.

However, it is not immediately obvious which 3-regular graph would
be appropriate; hence we try the simplest possible case first. Let G =
(V, E) be the complete graph on four nodes: V = { s, t, u, v }, and we have
an edge between any pair of nodes; see Figure 7.4. The graph is certainly
3-regular: each node is adjacent to the other three nodes.

Now it is easy to verify that the edges of G can be partitioned into
a 2-factor X and a 1-factor Y . The 2-factor consists of a cycle and a
1-factor consists of disjoint edges. We can use the factors to guide the
selection of port numbers in N .

In the cycle induced by X , we can choose symmetric port numbers
using the same idea as what we had in the proof of Lemma 7.2; one end
of each edge is connected to port 1 while the other end is connected to

7

X
Y

Y
X

X
s

X

t

uv

N:

N’:

s, 3
s, 2
s, 1

v, 3
v, 2
v, 1

u, 3
u, 2
u, 1

t, 3
t, 2
t, 1

G:

x, 3
x, 2
x, 1

Figure 7.4: Graph G is the complete graph on four nodes. The edges of G
can be partitioned into a 2-factor X and a 1-factor Y . Network N has G
as its underlying graph, and there is a covering map φ from N to N ′

8

port 2. For the edges of the 1-factor Y , we can assign port number 3 at
each end. We have constructed the port-numbered network N that is
illustrated in Figure 7.4.

Now we can verify that there is a covering mapφ from N to N ′, where
N ′ is the network with one node illustrated in Figure 7.4. Therefore
in any algorithm A, if we do not have any local inputs, all nodes of N
will produce the same output. However, a constant output is not a weak
coloring of G.

In the above proof, we could have also partitioned the edges of G
into three 1-factors, and we could have used the 1-factorization to guide
the selection of port numbers. However, the above technique is more
general: there are 3-regular graphs that do not admit a 1-factorization
but that can be partitioned into a 1-factor and a 2-factor.

So far we have used only one covering map in our proofs; the fol-
lowing lemma gives an example of the use of more than one covering
map.

Lemma 7.5. Let F = {G3, G4 }, where G3 is the cycle graph with 3 nodes,
and G4 is the cycle graph with 4 nodes. There is no deterministic PN-
algorithm that solves the following problem Π on F : in Π(G3) all nodes
output 3 and in Π(G4) all nodes output 4.

Proof. We again apply the construction of Lemma 7.2; for each i ∈
{3,4}, let Ni be the symmetric port-numbered network that has Gi as
the underlying graph.

Now it would be convenient if we could construct a covering map
from N4 to N3; however, this is not possible (see the exercises). Therefore
we proceed as follows. Construct a one-node network N ′ as in the
proof of Lemma 7.2, construct the covering map φ3 from N3 to N ′, and
construct the covering map φ4 from N4 to N ′; see Figure 7.5. The local
inputs are assumed to be all zeros.

Let A be a PN-algorithm, and let c be the output of the only node of
N ′. If we apply Theorem 7.1 to φ3, we conclude that all nodes of N3
output c; if A solves Π on G3, we must have c = 3. However, if we apply

9

N’:

N3: N4:

φ3 φ4

Figure 7.5: The structure of the proof of Lemma 7.5.

Theorem 7.1 to φ4, we learn that all nodes of N4 also output c = 3, and
hence A cannot solve Π on F .

We have learned that a deterministic PN-algorithm cannot determine
the length of a cycle. In particular, a deterministic PN-algorithm cannot
determine if the underlying graph is bipartite.

7.4 Quiz

Let G = (V, E) be a graph. A set X ⊆ V is a k-tuple dominating set if
for every v ∈ V we have |ballG(v, 1)∩ X | ≥ k. Consider the problem of
finding a minimum 2-tuple dominating set in cycles. What is the best
(i.e. smallest) approximation ratio we can achieve in the PN model?

7.5 Exercises

We use the following definition in the exercises. A graph G is homoge-
neous if there are port-numbered networks N and N ′ and a covering
map φ from N to N ′ such that N is simple, the underlying graph of N is

10

G, and N ′ has only one node. For example, Lemma 7.2 shows that all
cycle graphs are homogeneous.

Exercise 7.1 (finding port numbers). Consider the graph G and network
N ′ illustrated in Figure 7.6. Find a simple port-numbered network N
such that N has G as the underlying graph and there is a covering map
from N to N ′.

Exercise 7.2 (homogeneity). Assume that G is homogeneous and it
contains a node of degree at least two. Give several examples of graph
problems that cannot be solved with any deterministic PN-algorithm in
any family of graphs that contains G.

Exercise 7.3 (regular and homogeneous). Show that the following
graphs are homogeneous:

(a) graph G illustrated in Figure 7.7,

(b) graph G illustrated in Figure 7.6.

▷ hint A

Exercise 7.4 (complete graphs). Recall that we say that a graph G =
(V, E) is complete if for all nodes u, v ∈ V , u ̸= v, there is an edge
{u, v} ∈ E. Show that

(a) any 2k-regular graph is homogeneous,

(b) any complete graph with 2k nodes has a 1-factorization,

(c) any complete graph is homogeneous.

Exercise 7.5 (dominating sets). Let ∆ ∈ {2,3, . . . }, let ε > 0, and let
F consist of all graphs of maximum degree at most ∆. Show that it is
possible to find a (∆+1)-approximation of a minimum dominating set in
constant time in family F with a deterministic PN-algorithm. Show that
it is not possible to find a (∆+1−ε)-approximation with a deterministic
PN-algorithm.

▷ hint B

11

b, 3
b, 2
b, 1

c, 3
c, 2
c, 1

d, 3
d, 2
d, 1

a, 3
a, 2
a, 1

N’:

G:

Figure 7.6: Graph G and network N ′ for Exercises 7.1 and 7.3b.

Figure 7.7: Graph G for Exercise 7.3a.

12

Figure 7.8: Graph G for Exercise 7.7.

Exercise 7.6 (covers with covers). What is the connection between
covering maps and the vertex cover 3-approximation algorithm in Sec-
tion 3.6?

⋆ Exercise 7.7 (3-regular and not homogeneous). Consider the graph
G illustrated in Figure 7.8.

(a) Show that G is not homogeneous.

(b) Present a deterministic PN-algorithm A with the following prop-
erty: if N is a simple port-numbered network that has G as the
underlying graph, and we execute A on N , then A stops and pro-
duces an output where at least one node outputs 0 and at least
one node outputs 1.

(c) Find a simple port-numbered network N that has G as the under-
lying graph, a port-numbered network N ′, and a covering map
φ from N to N ′ such that N ′ has the smallest possible number of
nodes.

▷ hint C

⋆ Exercise 7.8 (covers and connectivity). Assume that N = (V, P, p) and
N ′ = (V ′, P ′, p′) are simple port-numbered networks such that there is a
covering map φ from N to N ′. Let G be the underlying graph of network
N , and let G′ be the underlying graph of network N ′.

(a) Is it possible that G is connected and G′ is not connected?

(b) Is it possible that G is not connected and G′ is connected?

13

⋆ Exercise 7.9 (k-fold covers). Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be
simple port-numbered networks such that the underlying graphs of N
and N ′ are connected, and assume that φ : V → V ′ is a covering map
from N to N ′. Prove that there exists a positive integer k such that
the following holds: |V | = k|V ′| and for each node v′ ∈ V ′ we have
|φ−1(v′)| = k. Show that the claim does not necessarily hold if the
underlying graphs are not connected.

7.6 Bibliographic Notes

The use of covering maps in the context of distributed algorithm was
introduced by Angluin [1]. The general idea of Exercise 7.7 can be traced
back to Yamashita and Kameda [5], while the specific construction in
Figure 7.8 is from Bondy and Murty’s textbook [3, Figure 5.10]. Parts of
exercises 7.1, 7.3, 7.4, and 7.5 are inspired by our work [2,4].

7.7 Bibliography

[1] Dana Angluin. Local and global properties in networks of processors.
In Proc. 12th Annual ACM Symposium on Theory of Computing (STOC
1980), 1980. doi:10.1145/800141.804655.

[2] Matti Åstrand, Valentin Polishchuk, Joel Rybicki, Jukka Suomela,
and Jara Uitto. Local algorithms in (weakly) coloured graphs, 2010.
arXiv:1002.0125.

[3] John A. Bondy and U. S. R. Murty. Graph Theory with Applications.
North-Holland, 1976.

[4] Jukka Suomela. Distributed algorithms for edge dominating sets. In
Proc. 29th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC 2010), pages 365–374, 2010. doi:10.1145/1835698.
1835783.

14

https://doi.org/10.1145/800141.804655
https://arxiv.org/abs/1002.0125
https://doi.org/10.1145/1835698.1835783
https://doi.org/10.1145/1835698.1835783

[5] Masafumi Yamashita and Tsunehiko Kameda. Computing on anony-
mous networks: part I—characterizing the solvable cases. IEEE
Transactions on Parallel and Distributed Systems, 7(1):69–89, 1996.
doi:10.1109/71.481599.

7.8 Hints

A. (a) Apply the result of Exercise 2.8. (b) Find a 1-factor.

B. For the lower bound, use the result of Exercise 7.4c.

C. Show that if a 3-regular graph is homogeneous, then it has a
1-factor. Show that G does not have any 1-factor.

15

https://doi.org/10.1109/71.481599

	Definition
	Covers and Executions
	Examples
	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints

