
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · December 10, 2020

Chapter 9

Round Elimination

In this chapter we introduce the basic idea of a proof technique, called
round elimination. Round elimination is based on the following idea.
Assume that there exists a distributed algorithm S0 with complexity
T solving a problem Π0. Then there exists a distributed algorithm S1
with complexity T − 1 for solving another problem Π1. That is, if we
can solve problem Π0 in T communication rounds, then we can solve
a related problem Π1 exactly one round faster—we can “eliminate one
round”. If this operation is repeated T times, we end up with some
algorithm ST with round complexity 0 for some problem ΠT . If ΠT is
not a trivial problem, that is, cannot be solved in 0 rounds, we have
reached a contradiction: therefore the assumption that Π0 can be solved
in T rounds has to be wrong. This is a very useful approach, as it is
much easier to reason about 0-round algorithms than about algorithms
in general.

9.1 Bipartite Model and Biregular Trees

When dealing with round elimination, we will consider a model that is a
variant of the PN model from Chapter 3. We will restrict our attention
to specific families of graphs (see Figure 9.1):

(a) Bipartite. The set of nodes V is partitioned into two sets: the
active nodes VA and the passive nodes VP . The partitioning forms a

1

https://jukkasuomela.fi/da2020/

(a)

(b)

Figure 9.1: The bipartite model; black nodes are active and white nodes
are passive. (a) A (3, 3)-biregular tree. (b) A (3, 2)-biregular tree.

proper 2-coloring of the graph, i.e., each edge connects an active
node with a passive node. The role of a node—active or passive—
is part of the local input.

(b) Biregular trees. We will assume that the input graphs are biregular
trees: the graph is connected, there are no cycles, each node in
VA has degree d or 1, and each node in VP has degree δ or 1.
We say that such a tree is (d,δ)-biregular. See Figure 9.1 for an
illustration.

9.1.1 Bipartite Locally Verifiable Problem

We consider a specific family of problems, called bipartite locally verifiable
problems. Such a problem is defined as a 3-tuple Π= (Σ,A,P), where:

2

• Σ is a finite alphabet.

• A and P are finite collections of multisets, where each multiset
A ∈ A and P ∈ P consists of a finite number of elements from Σ.
These are called the active and passive configurations.

Recall that multisets are sets that allow elements to be repeated. We use
the notation [x1, x2, . . . , xk] for a multiset that contains k elements; for
example, [1,1, 2,2, 2] is a multiset with two 1s and three 2s. Note that
the order of elements does not matter, for example, [1, 1, 2] = [1, 2, 1] =
[2,1, 1].

In problem Π, each active node v ∈ VA must label its incident deg(v)
edges with elements of Σ such that the labels of the incident edges,
considered as a multiset, form an element of A. The order of the labels
does not matter. The passive nodes do not have outputs. Instead, we
require that for each passive node the labels of its incident edges, again
considered as a multiset, form an element of P. A labeling ϕ : E→ Σ is
a solution to Π if and only if the incident edges of all active and passive
nodes are labeled according to some configuration.

In this chapter we will only consider labelings such that all nodes of
degree 1 accept any configuration: these will not be explicitly mentioned
in what follows. Since we only consider problems in (d,δ)-biregular
trees, each active configuration will have d elements and each passive
configuration δ elements.

9.1.2 Examples

To illustrate the definition of bipartite locally verifiable labelings, we
consider some examples (see Figure 9.2).

Edge Coloring. A c-edge coloring is an assignment of labels from
{1, 2, . . . , c} to the edges such that no node has two incident edges with
the same label.

Consider the problem of 5-edge coloring (3, 3)-biregular trees. The
alphabet Σ consists of the five edge colors {1,2,3,4,5}. The active

3

3 2

4
52

1
3 1

2

1
2

3
5 2

3

1 4

4
3

P P

P
MU

U
P P

P

M
U

M
U M

U

P M

P
M

O
I

I
OO

O
I O

O

O
I

O
I O

I

O O

O
I

1
1

2

2

2
2

2 2
3

3

3 1

3
1

1

1

1

1 1

1

1

3
3

(a)

(b)

(c)

(d)

Figure 9.2: Bipartite locally verifiable labeling problems. (a) 5-edge
coloring in a (3,3)-biregular tree. (b) Maximal matching in a (3,3)-
biregular tree. (c) Sinkless orientation in a (3, 3)-biregular tree. (d) Weak
3-labeling in a (3,2)-biregular tree.

4

configurations consist of all multisets of three elements [x , y, z], such
that all elements are distinct and come fromΣ. The problem is symmetric,
and the passive configurations consist of the same multisets:

A= P=
�

[1,2, 3], [1, 2,4], [1,2, 5], [1,3, 4], [1, 3,5],

[1,4, 5], [2, 3,4], [2,3, 5], [2,4, 5], [3, 4,5]
	

.

Maximal Matching. A maximal matching M is a subset of the edges
such that no two incident edges are in M and no edge can be added
to M .

Consider maximal matching on (3,3)-biregular trees. To encode
a matching, we could use just two labels: M for matched and U for
unmatched. Such a labeling, however, has no way of guaranteeing
maximality. We use a third label P, called a pointer:

Σ= {M,P,U}.

The active nodes either output [M,U,U], denoting that the edge marked
M is in the matching, or they output [P,P,P], denoting that they are
unmatched, and thus all passive neighbors must be matched with another
active node:

A=
�

[M,U,U], [P,P,P]
	

.

Passive nodes must verify that they are matched with at most one node,
and that if they have an incident label P, then they also have an incident
label M (to ensure maximality). Hence the passive configurations are

P=
�

[M,P,P], [M,P,U], [M,U,U], [U,U,U]
	

.

Sinkless Orientation. A sinkless orientation is an orientation of the
edges such that each node has an edge oriented away from it. That is,
no node is a sink. We will consider here sinkless orientation in (3,3)-
biregular trees; leaf nodes can be sinks, but nodes of degree 3 must have
at least one outgoing edge.

To encode sinkless orientation, each active node chooses an orienta-
tion of its incident edges: outgoing edges are labeled O and incoming

5

edges I. Thus the alphabet is Σ = {O, I}. Each node must have an outgo-
ing edge, so the active configurations are all multisets that contain at
least one O:

A=
�

[O, x , y]
�

� x , y ∈ Σ
	

.

The passive configurations are similar, but the roles of the labels are
reversed: an outgoing edge for an active node is an incoming edge for a
passive node. Therefore each passive node requires that at least one of
its incident edges is labeled I, and the passive configurations are

P=
�

[I, x , y]
�

� x , y ∈ Σ
	

.

Weak Labeling. We will use the following problem as the example in
the remainder of this chapter. Consider (3,2)-biregular trees. A weak
3-labeling is an assignment of labels from the set {1,2,3} to the edges
such that each active node has at least two incident edges labeled with
different labels. Each passive node must have its incident edges labeled
with the same label. The problem can be formalized as

Σ= {1,2, 3},

A=
�

[1,1, 2], [1, 1,3], [1, 2,2], [1,2, 3], [1, 3,3], [2,2, 3], [2,3, 3]
	

,

P=
�

[1,1], [2,2], [3, 3]
	

.

9.2 Introducing Round Elimination

Round elimination is based on the following basic idea. Assume that
we can solve some bipartite locally verifiable problem Π0 in T commu-
nication rounds on (d,δ)-biregular trees. Then there exists a bipartite
locally verifiable problem Π1, called the output problem of Π0, that can
be solved in T − 1 rounds on (δ, d)-biregular trees. The output problem
is uniquely defined, and we refer to the output problem of Π as re(Π).
The definition of output problem will be given in Section 9.2.2.

A single round elimination step is formalized in the following lemma.

6

Lemma 9.1 (Round elimination lemma). Let Π be bipartite locally ver-
ifiable problem that can be solved in T rounds in (d,δ)-biregular trees.
Then the output problem re(Π) of Π can be solved in T − 1 rounds in
(δ, d)-biregular trees.

9.2.1 Impossibility Using Iterated Round Elimination

Lemma 9.1 can be iterated, applying it to the output problem of the
previous step. This will yield a sequence of T + 1 problems

Π0→ Π1→ ·· · → ΠT ,

where Πi+1 = re(Πi) for each i = 0, 1, . . . , T − 1.
If we assume that there is a T -round algorithm for Π0, then by an

iterated application of Lemma 9.1, there is a (T − 1)-round algorithm
for Π1, a (T − 2)-round algorithm for Π2, and so on. In particular, there
is a 0-round algorithm for ΠT .

Algorithms that run in 0 rounds are much easier to reason about
than algorithms in general. Since there is no communication, each active
node must simply map its input, essentially its degree, to some output.
In particular, we can try to show that there is no 0-round algorithm
for ΠT . If this is the case, we have a contradiction with our original
assumption: there is no T -round algorithm for Π0.

We will now proceed to formally define output problems.

9.2.2 Output Problems

For each locally verifiable problem Π we will define a unique output
problem re(Π).

Let Π0 = (Σ0,A0,P0) be a bipartite locally verifiable problem on
(d,δ)-biregular trees. We define the output problem Π1 = re(Π0) =
(Σ1,A1,P1) of Π0 on (δ, d)-biregular trees as follows—note that we
swapped the degrees of active vs. passive nodes here.

The alphabetΣ1 consists of all possible non-empty subsets ofΣ0. The
roles of the active and passive nodes are inverted, and new configurations
are computed as follows.

7

(a) The active configurations A1 consist of all multisets

[X1, X2, . . . , Xδ], where X i ∈ Σ1 for all i = 1, . . . ,δ,

such that for every choice of x1 ∈ X1, x2 ∈ X2, . . . , xδ ∈ Xδ we
have [x1, x2, . . . , xδ] ∈ P0, i.e., it is a passive configuration of Π0.

(b) The passive configurations P1 consist of all multisets

[Y1, Y2, . . . , Yd], where Yi ∈ Σ1 for all i = 1, . . . , d,

for which there exists a choice y1 ∈ Y1, y2 ∈ Y2, . . . , yd ∈ Yd with
[y1, y2, . . . , yd] ∈ A0, i.e., it is an active configuration of Π0.

9.2.3 Example: Weak 3-labeling

To illustrate the definition, let us construct the output problem re(Π0) =
(Σ1,A1,P1) of weak 3-labeling problem Π0 = (Σ0,A0,P0). Recall that

Σ0 = {1,2, 3},

A0 =
�

[1,1, 2], [1, 1,3], [1,2, 2], [1,2, 3], [1, 3,3], [2,2, 3], [2, 3,3]
	

,

P0 =
�

[1,1], [2,2], [3, 3]
	

.

The alphabet Σ1 consists of all possible (non-empty) subsets of Σ0:

Σ1 =
�

{1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}, {1,2, 3}
	

.

The active configurations A1 are all multisets [X , Y] with X , Y ∈ Σ1
such that all choices of elements x ∈ X and y ∈ Y result in a multiset
[x , y] ∈ P0. For example X = {1} and Y = {1,2} is not a valid choice:
we could choose x = 1 and y = 2 to construct [1,2] /∈ P0. In general,
whenever |X |> 1 or |Y |> 1, we can find x ∈ X , y ∈ Y with x 6= y , and
then [x , y] /∈ P0. Therefore the only possibilities are |X |= |Y |= 1, and
then we must also have X = Y . We obtain

A1 =
¦

�

{1}, {1}
�

,
�

{2}, {2}
�

,
�

{3}, {3}
�

©

.

8

But since the active configurations only allow singleton sets, we can
restrict ourselves to them when listing the possible passive configurations;
we obtain simply

P1 =
¦

�

{1}, {1}, {2}
�

,
�

{1}, {1}, {3}
�

,
�

{1}, {2}, {2}
�

,
�

{1}, {2}, {3}
�

,
�

{1}, {3}, {3}
�

,
�

{2}, {2}, {3}
�

,
�

{2}, {3}, {3}
�

©

.

9.2.4 Complexity of Output Problems

In this section we prove Lemma 9.1 that states that the output problem
re(Π) of Π can be solved one round faster than Π.

The proof is by showing that we can truncate the execution of a
T -round algorithm and output the set of possible outputs. As we will see,
this is a solution to the output problem.

Proof of Lemma 9.1. Assume that we can solve some problem Π0 =
(Σ0,A0,P0) on (d,δ)-biregular trees in T rounds using some determin-
istic PN-algorithm S. We want to design an algorithm that works in
(δ, d)-biregular trees and solves Π1 = re(Π0) in T − 1 rounds.

Note that we are considering the same family of networks, but we
are only switching the sides that are marked as active and passive. We
will call these Π0-active and Π1-active sides, respectively.

The algorithm for solving Π1 works as follows. Let N = (V, P, p) be
any port-numbered network with a (δ, d)-biregular tree as the underlying
graph. Each Π1-active node u, in T − 1 rounds, gathers its full (T − 1)-
neighborhood ballN (u, T − 1). Now it considers all possible outputs of
its Π0-active neighbors under the algorithm S, and outputs these.

Formally, this is done as follows. When N is a port-numbered net-
work, we use ballN (u, r) to refer to the information within distance r
from node u, including the local inputs of the nodes in this region, as well
as the port numbers of the edges connecting nodes within this region.
We say that a port-numbered network H is compatible with ballN (u, r) if
there is a node v ∈ H such that ballH(v, r) is isomorphic to ballN (u, r).

9

121 23
1

2
3

2

1

1

2
3

1 2

1

2
32

1 2

1
2

3

1

1 2 3
2

1

1

2

2
3

1

1 2 3
2

1

12
3

1 2 2 3
1

1
2

2
31

1

2
2

3

1
2

1

12 3

2
1

3

1

2

v u w
ball(v, 4)

ball(u, 3)

ball(w, 4)

Figure 9.3: Illustration of the round elimination step. A fragment of a
(2,3)-biregular tree. The 3-neighborhood of node u consists of the gray
area. The 4-neighborhoods of nodes v and w consist of the blue and
orange areas, respectively. Since the input is a tree, these intersect exactly
in the 3-neighborhood of u.

For each neighbor v of u, node u constructs all possible fragments
ballH(v, T) such that H is compatible with ballN (u, T − 1) and has a
(δ, d)-biregular tree as its underlying graph. Then u simulates the Π0-
algorithm S on ballH(v, T). The algorithm outputs some label x ∈ Σ0
on the edge {u, v}. Node u adds each such label x to set S(u, v); finally
node u will label edge {u, v} with S(u, v).

By construction, S(u, v) is a nonempty set of labels from Σ0, i.e.,
S(u, v) ∈ Σ1. We now prove that the sets S(u, v) form a solution to Π1.
We use the assumption that the underlying graph G is a tree. Let H be
any port-numbered network compatible with ballN (u, T − 1). Consider
any two neighbors v and w of u: since there are no cycles, we have

ballH(v, T)∩ ballH(w, T) = ballH(u, T − 1) = ballN (u, T − 1).

In particular, once ballH(u, T − 1) is fixed, the outputs of v and w, re-
spectively, depend on the structures of ballH(v, T) \ ballH(u, T − 1) and
ballH(w, T) \ ballH(u, T − 1), which are completely distinct. See Fig-
ure 9.3 for an illustration. Therefore, if there exist x ∈ S(u, v) and

10

y ∈ S(u, w), then there exists a port-numbered network H such that
running S, node v outputs x on {v, u} and node w outputs y on {w, u}.
This further implies that since S is assumed to work correctly on all port-
numbered networks, for any combination of x1 ∈ S(u, v1), x2 ∈ S(u, v2),
. . . , xδ ∈ S(u, vδ), we must have that

[x1, x2, . . . , xδ] ∈ P0.

This implies that

[S(u, v1), S(u, v2), . . . , S(u, vδ)] ∈ A1.

It remains to show that for each Π0-active node v, it holds that the
sets S(u1, v), S(u2, v), . . . , S(ud , v), where ui are neighbors of v, form a
configuration in P1. To see this, note that theΠ1-active nodes ui simulate
S on every port-numbered fragment, including the true neighborhood
ballN (v, T) of v. This implies that the output of v on {v, ui} running
S in network N is included in S(ui , v). Since S is assumed to be a
correct algorithm, these true outputs x1 ∈ S(u1, v), x2 ∈ S(u2, v), . . . ,
xd ∈ S(ud , v) form a configuration

[x1, x2, . . . , xd] ∈ A0,

which implies that

[S(u1, v), S(u2, v), . . . , S(ud , v)] ∈ P1,

as required.

9.2.5 Example: Complexity of Weak 3-labeling

Now we will apply the round elimination technique to show that the
weak 3-labeling problem is not solvable in 1 round. To do this, we show
that the output problem of weak 3-labeling is not solvable in 0 rounds.

Lemma 9.2. Weak 3-labeling is not solvable in 1 round in the PN-model
on (3,2)-biregular trees.

11

Proof. In Section 9.2.3 we saw the output problem of weak 3-labeling.
We will now show that this problem is not solvable in 0 rounds on (2, 3)-
biregular trees. By Lemma 9.1, weak 3-labeling is then not solvable in 1
round on (3, 2)-biregular trees. Let Π1 = (Σ1,A1,P1) denote the output
problem of weak 3-labeling.

In a 0-round algorithm an active node v sees only its own side (active
or passive) and its own port numbers. Since

A1 =
¦

�

{1}, {1}
�

,
�

{2}, {2}
�

,
�

{3}, {3}
�

©

,

each active node v must output the same label X ∈
�

{1}, {2}, {3}
	

on
both of its incident edges.

Since all active nodes look the same, they all label their incident
edges with exactly one label X . Since [X , X , X] is not in P1 for any
X ∈ Σ1, we have proven the claim.

9.2.6 Example: Iterated Round Elimination

We will finish this chapter by applying round elimination twice to weak
3-labeling. We will see that the problem

Π2 = re(Π1) = re(re(Π0))

obtained this way is 0-round solvable.
Let us first construct Π2. Note that this is again a problem on (3, 2)-

biregular trees. We first simplify notation slightly; the labels ofΠ1 are sets
and labels ofΠ2 would be sets of sets, which gets awkward to write down.
But the configurations in Π1 only used singleton sets. Therefore we can
leave out all non-singleton sets without changing the problem, and then
we can rename each singleton set {x} to x . After these simplifications,
we have got

Σ1 = {1,2, 3},

A1 =
�

[1,1], [2,2], [3, 3]
	

,

P1 =
�

[1,1, 2], [1, 1,3], [1,2, 2], [1,2, 3], [1, 3,3], [2,2, 3], [2, 3,3]
	

.

12

Alphabet Σ2 consists of all non-empty subsets of Σ1, that is

Σ2 =
�

{1}, {2}, {3}, {1, 2}, {1,3}, {2,3}, {1,2, 3}
	

.

The active configurations are all multisets [X1, X2, X3]where X1, X2, X3 ∈
Σ2 such that any way of choosing x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3 is
a configuration in P1. There are many cases to check, the following
observation will help here (the proof is left as Exercise 9.4):

• P1 consists of all 3-element multisets over Σ1 where at least one
of the elements is not 1, at least one of the elements is not 2, and
at least one of the elements is not 3.

• It follows that A2 consists of all 3-element multisets over Σ2 where
at least one of the elements does not contain 1, at least one of the
elements does not contain 2, and at least one of the elements does
not contain 3.

It follows that we can enumerate all possible configurations e.g. as
follows (here X , Y, Z ∈ Σ2):

A2 =
¦

�

X , Y, Z
� �

� X ⊆ {1, 2}, Y ⊆ {1, 3}, Z ⊆ {2, 3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {1}, Y ⊆ {2, 3}, Z ⊆ {1,2, 3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {2}, Y ⊆ {1, 3}, Z ⊆ {1,2, 3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {3}, Y ⊆ {1, 2}, Z ⊆ {1,2, 3}
©

.

(9.1)

On the passive side, P2 consists of all multisets [X , Y] where we can
choose x ∈ X and y ∈ Y with [x , y] ∈ A1. But [x , y] ∈ A1 is equivalent
to x = y, and hence P2 consists of all multisets [X , Y] where we can
choose some x ∈ X and choose the same value x ∈ Y . Put otherwise,

P2 =
¦

�

X , Y
� �

� X ∈ Σ2, Y ∈ Σ2, X ∩ Y 6=∅
©

.

Lemma 9.3. Let Π0 denote the weak 3-labeling problem. The problem
Π2 = re(re(Π0)) = (Σ2,A2,P2) is solvable in 0 rounds.

13

Proof. The active nodes always choose the configuration
�

{1,2}, {1,3}, {2,3}
�

∈ A2

and assign the sets in some way using the port numbers, e.g., the edge
incident to port 1 is labeled with {2,3}, the edge incident to port 2 is
labeled with {1, 3}, and the edge incident to port 3 is labeled with {1, 2}.

Since each pair of these sets has a non-empty intersection, no matter
which sets are assigned to the incident edges of passive nodes, these
form a valid passive configuration in P2.

9.3 Quiz

Consider the following bipartite locally verifiable labeling problem Π=
(Σ,A,P) on (2, 2)-biregular trees:

Σ= {1,2, 3,4, 5,6},

A=
�

[1,6], [2, 5], [3, 4]
	

, and

P=
�

[x , y]
�

� x ∈ {3,5, 6}, y ∈ {1,2, 3,4, 5,6}
	

∪
�

[x , y]
�

� x ∈ {4,5, 6}, y ∈ {2,3, 4,5, 6}
	

.

Give a 0-round algorithm for solving Π.

9.4 Exercises

Exercise 9.1 (encoding graph problems). Even if a graph problem is
defined for general (not bipartite) graphs, we can often represent it in
the bipartite formalism. If we take a d-regular tree G and subdivide
each edge, we arrive at a (d, 2)-biregular tree H, where the active nodes
represent the nodes of G and passive nodes represent the edges of G.

Use this idea to encode the following graph problems as bipartite
locally verifiable labelings in (d, 2)-biregular trees. Give a brief expla-
nation of why your encoding is equivalent to the original problem. You

14

can ignore the leaf nodes and their constraints; it is sufficient to spec-
ify constraints for the active nodes of degree d and passive nodes of
degree 2.

(a) Vertex coloring with d + 1 colors.
(b) Maximal matching.
(c) Dominating set.
(d) Minimal dominating set.

Exercise 9.2 (algorithms in the bipartite model). The bipartite model
can be used to run algorithms from the standard PN and LOCAL models.
Using the idea of Exercise 9.1, we encode the maximal independent set
problem in 3-regular trees as the following bipartite locally verifiable
problem Π= (Σ,A,P) in (3,2)-biregular trees:

Σ= {I,O,P},

A=
�

[I, I, I], [P,O,O]
	

,

P=
�

[I,P], [I,O], [O,O]
	

.

In A, the first configuration corresponds to a node in the independent
set X , and the second configuration to a node not in X . A node not in X
points to a neighboring active node with the label P: the node pointed to
has to be in X . The passive configurations ensure that two active nodes
connected by a passive node are not both in X , and that the pointer P
always points to a node in X .

Assume that the active nodes are given a 4-coloring c as input. That is,
c : VA→ {1, 2, 3, 4} satisfies c(v) 6= c(u) whenever the active nodes v, u ∈
VA share a passive neighbor w ∈ VP . The nodes also know whether they
are active or passive, but the nodes do not have any other information.

Present a PN-algorithm in the state machine formalism for solving Π.
Prove that your algorithm is correct. What is its running time? How
does it compare to the complexity of solving maximal independent set
in the PN model, given a 4-coloring?

Exercise 9.3 (Round Eliminator). There is a computer program, called
Round Eliminator, that implements the round elimination technique and
that you can try out in a web browser:

15

https://github.com/olidennis/round-eliminator

Let Π0 be the weak 3-labeling problem defined in Section 9.1.2. Use the
Round Eliminator to find out what are Π1 = re(Π0) and Π2 = re(Π1).
In your answer you need to show how to encode Π0 in a format that is
suitable for the Round Eliminator, what were the answers you got from
the Round Eliminator, and how to turn the answers back into our usual
mathematical formalism.

Exercise 9.4 (iterated round elimination). Fill in the missing details
in Section 9.2.6 to show that formula (9.1) is a correct definition of
the active configurations for problem Π2 (i.e., it contains all possible
configurations and only them).

Exercise 9.5 (solving weak 3-labeling). Present a 2-round deterministic
PN-algorithm for solving weak 3-labeling in (3,2)-biregular trees.

Exercise 9.6 (sinkless orientation). Consider the sinkless orientation
problem, denoted by Π, on (3,3)-biregular trees from Section 9.1.2.
Compute the output problems re(Π) and re(re(Π)); include a justification
for your results.

9.5 Bibliographic Notes

Linial’s [3] lower bound for vertex coloring in cycles already used a proof
technique that is similar to round elimination. However, for a long time
it was thought that this is an ad-hoc technique that is only applicable to
this specific problem. This started to change in 2016, when the same
idea found another very different application [2]. Round elimination as
a general-purpose technique was defined and formalized by Brandt [1]
in 2019, and implemented as a computer program by Olivetti [4].

9.6 Bibliography

[1] Sebastian Brandt. An automatic speedup theorem for distributed
problems. In Proc. 38th ACM Symposium on Principles of Dis-

16

https://github.com/olidennis/round-eliminator

tributed Computing (PODC 2019), 2019. arXiv:1902.09958, doi:
10.1145/3293611.3331611.

[2] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo
Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower
bound for the distributed Lovász local lemma. In Proc. 48th ACM
Symposium on Theory of Computing (STOC 2016), 2016. arXiv:
1511.00900, doi:10.1145/2897518.2897570.

[3] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[4] Dennis Olivetti. Round Eliminator: a tool for automatic speedup sim-
ulation, 2020. URL: https://github.com/olidennis/round-eliminator.

17

http://arxiv.org/abs/1902.09958
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
http://arxiv.org/abs/1511.00900
http://arxiv.org/abs/1511.00900
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1137/0221015
https://github.com/olidennis/round-eliminator

	Bipartite Model and Biregular Trees
	Bipartite Locally Verifiable Problem
	Examples

	Introducing Round Elimination
	Impossibility Using Iterated Round Elimination
	Output Problems
	Example: Weak 3-labeling
	Complexity of Output Problems
	Example: Complexity of Weak 3-labeling
	Example: Iterated Round Elimination

	Quiz
	Exercises
	Bibliographic Notes
	Bibliography

