
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · September 20, 2023

Chapter 10

Sinkless Orientation
In this chapter we will study the complexity of sinkless orientation, a
problem that was introduced in the previous chapter. This is a problem
that is understood well: we will design algorithms and show that these
are asymptotically optimal.

Recall that sinkless orientation is the problem of orienting the edges
of the tree so that each internal node has got at least one outgoing edge.
We begin by studying sinkless orientation on paths (or (2,2)-biregular
trees), and show that we can easily argue about local neighborhoods to
prove a tight lower bound result. However, when we switch to (3,3)-
biregular trees, we will need the round elimination technique to do the
same.

10.1 Sinkless Orientation on Paths

We define sinkless orientation on paths to be the following bipartite locally
verifiable problem Π = (Σ,A,P). The alphabet is Σ = {I,O}, with the
interpretation that I indicates that the edge is oriented towards the active
node (“incoming”) and O indicates that the edge is oriented away from
the active node (“outgoing”). Each active node must label at least one
incident edge with O, and thus the active configurations are

A=
�

[O, I], [O,O]
	

.

1

https://jukkasuomela.fi/da2020/


Figure 10.1: Propagation of a sinkless orientation on paths. Orienting a
single edge (orange) forces the orientation of the path all the way to the
other endpoint.

Each passive node must have at least one incident edge labeled with I,
and thus the passive configurations are

P=
�

[I,O], [I, I]
	

.

As previously, nodes of degree 1 are unconstrained; the edges incident
to them can be labeled arbitrarily.

10.1.1 Hardness of Sinkless Orientation

We begin by showing that solving sinkless orientation requires Ω(n)
rounds on (2,2)-biregular trees.

Lemma 10.1. Solving sinkless orientation on (2, 2)-biregular trees in the
bipartite PN-model requires at least n/4−1 rounds, even if the nodes know
the value n.

Let us first see why the lemma is intuitively true. Consider a path,
as illustrated in Figure 10.1. Each active node u must choose some
label for its incident edges, and at least one of these labels must be O.
Then its passive neighbor v over the edge labeled with O must have its
other incident edge labeled I. This further implies that the other active
neighbor w of v must label its other edge with O. The original output of
u propagates through the path and the outputs of other nodes far away
from u depend on the output of u.

Let us now formalize this intuition.

Proof of Lemma 10.1. Consider any algorithm A running in T (n) = o(n)
rounds. Then there exists n0 such that for all n ≥ n0, we have that
T(n) ≤ (n− 5)/4. Now fix such an integer n and let T = T(n) denote
the running time of the algorithm.

2



1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

v OI

v1 OI

v2 OI

Figure 10.2: Sinkless orientation lower bound. Assume T = 4. Top: any
algorithm must fix some output labeling with an outgoing edge for a fixed
neighborhood ballN (v, 4). Bottom: Copying the same 4-neighborhood
twice, and arranging the copies towards the same node creates an input
N ′ where the two nodes orient towards the middle. There is no legal way
to label the rest of the path.

Consider an active node v in the middle of a path N on n nodes. Let
ballN (v, T ) denote the T -neighborhood of v. Assume that ballN (v, T ) is
consistently port-numbered from left to right, as illustrated in Figure 10.2.
Node v must use the output label O on one of its incident edges; without
loss of generality, assume that this is port 1. We can now construct a
counterexample N ′ as follows. Take two copies of ballN (v, T ), denoted
by ballN ′(v1, T) and ballN ′(v2, T). In particular, this includes the port-
numbering in ballN (v, T). Add one new node that is connected to the
right endpoint of both ballN ′(v1, T ) and ballN ′(v2, T ). Finally, add leaves
at the other endpoints of ballN ′(v1, T ) and ballN ′(v2, T ); see Figure 10.2
for an illustration. We claim that the algorithm A fails on N ′.

By definition, edges must be labeled alternatively O and I starting
from both v1 and v2. Therefore we must eventually find an active node
labeled [I, I] or a passive node labeled [O,O], an incorrect solution.

The total number of nodes in N ′ is n = 2(2T + 1) + 3 = 4T + 5,
giving T = (n− 5)/4. Thus solving sinkless orientation requires at least
T + 1= (n− 5)/4+ 1≥ n/4− 1 rounds, as required.

3



10.1.2 Solving Sinkless Orientation on Paths

The proof of Lemma 10.1 shows that it is impossible to solve sinkless
orientation on paths in sublinear number of rounds. Now we will show
a linear upper bound: it is possible to solve sinkless orientation once all
nodes see an endpoint of the path.

Lemma 10.2. Sinkless orientation can be solved in ⌊n/2⌋ rounds in the
bipartite PN-model on (2,2)-biregular trees.

Proof. The idea of the algorithm is the following: initially send messages
from the leaves towards the middle of the path. Orient edges against
the incoming messages, i.e., toward the closest leaf. Once the messages
reach the midpoint of the path, all edges have been correctly oriented
away from the midpoint.

The algorithm works as follows. Initially all non-leaf nodes wait.
The leaf nodes send a message to their neighbor and stop. If they are
active, they output I on their incident edge. Whenever a node receives a
message for the first time, in the next round it sends a message to the
other port and stops. If it is an active node, it outputs O in the port
from which it received the message, and I in the other port. That is, it
orients its incident edges towards the closer leaf. If a node receives two
messages in the same round, it is the midpoint of the path; it does not
send any further messages. If it is an active node, it outputs O on both
of its incident edges.

The algorithm runs in ⌊n/2⌋ rounds: on paths with an even number
of nodes, all nodes have received a message in round n/2− 1, and thus
stop in the next round. On paths with an odd number of nodes, the
middle node receives two messages in round ⌊n/2⌋ and stops.

It remains to show that our algorithm is correct. All leaf nodes
are trivially labeled correctly. Any active non-leaf node always has an
incident label O. Now consider a passive node u: there is an active v
that sends u a message before stopping. This node will output I on {u, v},
and thus u is also correctly labeled.

Theorem 10.3. The complexity of sinkless orientation on paths is Θ(n).

4



Proof. Follows from Lemmas 10.1 and 10.2.

10.2 Sinkless Orientation on Trees

In Section 10.1 we saw that if we require that degree-2 nodes have at
least one outgoing edge, we arrive at a problem that is hard already in
the case of paths. The proof of hardness was a straightforward argument
that used local neighborhoods.

However, what happens if we relax the problem slightly and allow
any orientation around degree-2 nodes? The proof of hardness from
Section 10.1.1 no longer works, but does the problem get easier to solve?

For concreteness, let us consider trees of maximum degree 3, that is,
both active and passive nodes have degree at most 3; the case of higher
degrees is very similar. We define the problem so that nodes of degree
1 and 2 are unconstrained, but nodes of degree 3 must have at least
one outgoing edge. We can encode it as follows as a bipartite locally
verifiable problem Π0 = (Σ0,A0,P0):

Σ0 = {O, I},

A0 =
�

[O], [I], [O,O], [O, I], [I, I], [O, I, I], [O,O, I], [O,O,O]
	

,

P0 =
�

[O], [I], [O,O], [O, I], [I, I], [I,O,O], [I, I,O], [I, I, I]
	

.

Here we have listed all possible configurations for nodes of degrees 1, 2,
and 3.

10.2.1 Solving Sinkless Orientation on Trees

The algorithm for solving sinkless orientation on trees uses ideas similar
to the algorithm on paths: each node u must determine the closest
unconstrained node v, i.e., a node of degree 1 or 2, and the path from
u to v is oriented away from u. This will make all nodes happy: each
active node of degree 3 has an outgoing edge, and all other nodes are
unconstrained.

5



Let us call nodes of degree 1 and 2 special nodes. We must be careful
in how the nodes choose the special node: the algorithm would fail if
two nodes want to orient the same edge in different directions.

The algorithm functions as follows. In the first round, only special
nodes are sending messages, broadcasting to each port. Then the special
nodes stop and, if they are active nodes, they output I on each edge.
Nodes of degree 3 wake up in the first round in which they receive at least
one message. In the next round they broadcast to each port from which
they did not receive a message in the previous round. After sending
this message, the nodes stop. If they are active nodes, they orient their
incident edges towards the smallest port from which they received a
message: output O on that edge, and I on the other edges.

Correctness. Assume that the closest special nodes are at distance
t from some node u. Assume that v is one of those nodes, and let
(v1, v2, . . . , vt+1) denote the unique path from v = v1 to u = vt+1. We
claim that in each round i, node vi broadcasts to vi+1. By assumption, v
is also one of the closest special nodes to all vi; otherwise there would
be a closer special node to u as well. In particular, there will never be
a broadcast from vi+1 to vi, as then vi+1 would have a different closer
special node. Therefore each vi will broadcast to vi+1 in round i. This
implies that in round t, node u will receive a broadcast from vt .

All nodes that receive a broadcast become happy: Active nodes
output O on one of the edges from which they received a broadcast,
making them happy. They output I on the other edges, so each passive
node is guaranteed that every edge from which it receives a broadcast
has the label I.

Time Complexity. It remains to bound the round by which all nodes
have received a broadcast. To do this, we observe that each node is at
distance O(log n) from a special node.

Consider a fragment of a 3-regular tree centered around some node v,
and assume that there are no special nodes near v. Then at distance 1
from v there are 3 nodes, at distance 2 there are 6 nodes, at distance 3

6



there are 12 nodes, and so on. In general, if we do not have any special
nodes within distance i, then at distance i there are 3 · 2i−1 > 2i nodes
in the tree. At distance i = log2 n, we would have more than n nodes.
Thus, within distance log2 n, there has to be a special node. Since each
node can stop once it has received a broadcast, the running time of the
algorithm is O(log n).

10.2.2 Roadmap: Next Steps

We have seen that sinkless orientation in trees can be solved in O(log n)
rounds. We would like to now prove a matching lower bound and
show that sinkless orientation cannot be solved in o(log n) rounds. We
will apply the round elimination technique from Chapter 9 to do this.
However, we will need one further refinement to the round elimination
technique that will make our life a lot easier: we can ignore all non-
maximal configurations. We will explain this idea in detail in Section 10.3,
and then we are ready to prove the hardness result in Section 10.4.

10.3 Maximal Output Problems

In Chapter 9 we saw how to use the round elimination technique to
construct the output problem Π′ = re(Π) for any given bipartite locally
verifiable problem Π. We will now make an observation that allows
us to simplify the description of output problems. We will change the
definition of output problems to include this simplification.

Consider an output problem Π′ = (Σ,A,P). Recall that Σ now con-
sists of sets of labels. Assume that there are two configurations

X = [X1, X2, . . . , Xd],

Y = [Y1, Y2, . . . , Yd],

in A. We say that Y contains X if we have X i ⊆ Yi for all i.
If Y contains X , then configuration X is redundant; whenever an

algorithm solving Π′ would like to use the configuration X , it can equally
well use Y instead:

7



• Active nodes are still happy if active nodes switch from X to Y : By
assumption, Y is also a configuration in A.

• Passive nodes are still happy if active nodes switch from X to Y :
Assume that Z = [Z1, Z2, . . . , Zδ] is a passive configuration in P.
As this is a passive configuration of re(Π), it means that there is a
choice zi ∈ Zi such that [z1, z2, . . . , zδ] is an active configuration in
the original problem Π. But now if we replace each Zi with a su-
perset Z ′i ⊇ Zi , then we can still make the same choice zi ∈ Z ′i , and
hence Z ′ = [Z ′1, Z ′2, . . . , Z ′

δ
] also has to be a passive configuration

in P. Therefore replacing a label with its superset is always fine
from the perspective of passive nodes, and in particular switching
from X to Y is fine.

Therefore we can omit all active configurations that are contained in an-
other active configuration and only include the maximal configurations,
i.e., configurations that are not contained in any other configuration.

We get the following mechanical process for constructing the output
problem re(Π) = (Σ,A,P).

(a) Construct the output problem re(Π) = (Σ,A,P) as described in
Section 9.2.2.

(b) Remove all non-maximal active configurations from A.
(c) Remove all unused elements from Σ.
(d) Remove all passive configurations containing labels not in Σ.

The resulting problem is exactly as hard to solve as the original
problem:

• Since the simplified sets of configurations are subsets of the original
sets of configurations, any solution to the simplified problem is a
solution to the original problem, and thus the original problem is
at most as hard as the simplified problem.

• By construction, any algorithm solving the original output problem
can solve the simplified problem equally fast, by replacing some

8



labels by their supersets as appropriate. Therefore the original
problem is at least as hard as the simplified problem.

We will apply this simplification when we use the round elimination
technique to analyze the sinkless orientation problem.

10.4 Hardness of Sinkless Orientation on Trees

We will now show that sinkless orientation requires Ω(log n) rounds on
(3, 3)-biregular trees—and therefore also in trees of maximum degree 3,
as (3, 3)-biregular trees are a special case of such trees.

Let us first write down the sinkless orientation problem as a bipartite
locally verifiable problem Π0 = (Σ0,A0,P0) in (3,3)-biregular trees;
as before, we will only keep track of the configurations for nodes of
degree 3, as leaf nodes are unconstrained:

Σ0 = {O, I},

A0 =
�

[O, x , y]
�

� x , y ∈ Σ
	

,

P0 =
�

[I, x , y]
�

� x , y ∈ Σ
	

.

10.4.1 First Step

Lemma 10.4. Let Π0 be the sinkless orientation problem. Then the output
problem is Π1 = re(Π0) = (Σ1,A1,P1), where

Σ1 =
�

{I}, {O, I}
	

,

A1 =
¦

�

{I}, {O, I}, {O, I}
�

©

,

P1 =
¦

�

{O, I}, x , y
�

�

�

� x , y ∈ Σ1

©

.

Proof. Let us follow the procedure from Section 10.3. First, we arrive at
alphabet Σ1 that contains all non-empty subsets of Σ0:

Σ1 =
�

{O}, {I}, {O, I}
	

.

9



The active configurations A1 consist of all multisets [X , Y, Z] such that
no matter how we choose x ∈ X , y ∈ Y , and z ∈ Z , at least one element
of the multiset [x , y, z] is I. This happens exactly when at least one of
the labels X , Y , and Z is the singleton set {I}. We get that

A1 =
¦

[{I}, X , Y ]
�

� X , Y ⊆ {O, I}
©

=
¦

�

{I}, {I}, {I}
�

,
�

{I}, {I}, {O}
�

,
�

{I}, {I}, {O, I}
�

,
�

{I}, {O}, {O}
�

,
�

{I}, {O}, {O, I}
�

,
�

{I}, {O, I}, {O, I}
�

©

.

Next we remove all non-maximal configurations. We note that all
other active configurations are contained in the configuration

�

{I}, {O, I}, {O, I}
�

.

This becomes the only active configuration:

A1 =
¦

�

{I}, {O, I}, {O, I}
�

©

.

Since the label {O} is never used, we may remove it from the alphabet,
too: we get that

Σ1 =
�

{I}, {O, I}
	

.

The passive configurations are all multisets such that at least one
label contains O. Thus the simplified passive configurations are

P1 =
¦

�

{O, I}, {O, I}, {O, I}
�

,
�

{O, I}, {O, I}, {I}
�

,
�

{O, I}, {I}, {I}
�

©

.

10



10.4.2 Equivalent Formulation

Now let us simplify the notation slightly. We say that a problem Π′ is
equivalent to another problem Π if a solution of Π′ can be converted in
zero rounds to a solution of Π and vice versa. In particular, equivalent
problems are exactly as hard to solve.

Lemma 10.5. Let Π0 be the sinkless orientation problem. Then the output
problem re(Π0) is equivalent to Π1 = (Σ1,A1,P1), where

Σ1 = {A,B},

A1 =
�

[A,B,B]
	

,

P1 =
�

[B, x , y]
�

� x , y ∈ Σ1

	

.

Proof. Rename the labels of re(Π0) as follows to arrive at Π1:

A= {I},
B= {O, I}.

In what follows, we will use Π1 and re(Π0) interchangeably, as they are
equivalent.

10.4.3 Fixed Points in Round Elimination

As we will see soon, problem Π1 is a fixed point in round elimination:
when round elimination is applied to Π1, the output problem is again Π1
(or, more precisely, a problem equivalent to Π1).

This means that if we assume that Π1 can be solved in T rounds,
then by applying round elimination T times we get a 0-round algorithm
for Π1. It can be shown that Π1 is not 0-round solvable. This would
seem to imply that Π1, and thus sinkless orientation, are not solvable at
all, which would contradict the existence of the O(log n)-time algorithm
presented in Section 10.2.1!

To resolve this apparent contradiction, we must take a closer look at
the assumptions that we have made. The key step in round elimination

11



happens when a node u simulates the possible outputs of its neighbors.
The correctness of this step assumes that the possible T -neighborhoods
of the neighbors are independent given the (T − 1)-neighborhood of u.
When T is so large in comparison with n that the T -neighborhoods of
the neighbors put together might already imply the existence of more
than n nodes, this assumption no longer holds—see Figure 10.3 for an
example.

For the remainder of this chapter we consider algorithms that know
the value n, the number of nodes in the graph. This allows us to define
a standard form for algorithms that run in T = T(n) rounds, where
T(n) is some function of n: since n is known, each node can calculate
T (n), gather everything up to distance T (n), and simulate any T (n)-time
algorithm.

In (d,δ)-biregular trees, where d > 2, it can be shown that round
elimination can be applied if the initial algorithm is assumed to have run-
ning time T (n) = o(log n): this guarantees the independence property in
the simulation step. However, round elimination fails for some function
T (n) = Θ(log n); calculating this threshold is left as Exercise 10.7.

Any problem that can be solved in time T (n) can be solved in time
T (n) with an algorithm in the standard form. If the problem is a fixed
point and T (n) = o(log n), we can apply round elimination. We get the
following lemma.

Lemma 10.6. Assume that bipartite locally verifiable problem Π on (d, d)-
biregular trees, for d > 2, is a fixed point. Then the deterministic complexity
of Π in the bipartite PN-model is either 0 rounds or Ω(log n) rounds, even
if the number of nodes n is known.

10.4.4 Sinkless Orientation Gives a Fixed Point

We will now show that the output problem Π1 = re(Π0) of the sinkless
orientation problem Π0 is a fixed point, that is, re(Π1) is a problem
equivalent to Π1 itself. Since this problem cannot be solved in 0 rounds,
it requires Ω(log n) rounds. As sinkless orientation requires, by defini-

12



(a)

(b)

(c)

Figure 10.3: If we know that, e.g., n= 35, then orange, green, and blue
extensions are no longer independent of each other: inputs (a) and (b)
are possible but we cannot combine them arbitrarily to form e.g. input (c).

13



tion, one more round than its output problem, sinkless orientation also
requires Ω(log n) rounds.

Lemma 10.7. The output problem Π1 = (Σ1,A1,P1) of sinkless orienta-
tion, given by

Σ1 = {A,B},

A1 =
�

[A,B,B]
	

,

P1 =
�

[B, x , y]
�

� x , y ∈ Σ1

	

,

is a fixed point.

Proof. Let Π2 = re(Π1) = (Σ2,A2,P2) denote the output problem of Π1.
Again, we have that

Σ2 =
�

{A}, {B}, {A,B}
	

.

The active configurations A2 are

A2 =
¦

�

{B}, x , y
�

�

�

� x , y ⊆ {A,B}
©

.

That is, one set must be the singleton {B} to satisfy P1 for all choices,
and the remaining sets are arbitrary.

Next we determine the maximal configurations. Again, there is a
single active configuration that covers the other configurations:

A2 =
¦

�

{B}, {A,B}, {A,B}
�

©

.

The alphabet is immediately simplified to

Σ2 =
�

{B}, {A,B}
	

,

as the label {A} is never used by any active configuration.
The passive configurations P2 are all multisets that contain the active

configuration [A,B,B]. Since A is now only contained in {A,B}, we get

14



that

P2 =
¦

�

{A,B}, {A,B}, {A,B}
�

,
�

{A,B}, {A,B}, {B}
�

,
�

{A,B}, {B}, {B}
�

©

.

Now we may do a simple renaming trick to see that Π2 is equivalent to
Π1: rename {B} → A and {A,B} → B. Written this way, we have that
Π2 is equivalent to the following problem:

Σ2 = {A,B},

A2 =
�

[A,B,B]
	

,

P2 =
�

[B, x , y]
�

� x , y ∈ Σ2

	

,

which is exactly the same problem as Π1.

10.5 Quiz

Calculate the number of different 2-round algorithms in the PN model on
(3,3)-biregular trees for bipartite locally verifiable problems with the
binary alphabet Σ= {0, 1}.

Here two algorithms A1 and A2 are considered to be different if there
is some port-numbered network N and some edge e such that the label
edge e in the output of A1 is different from the label of the same edge
e in algorithm A2. Note that A1 and A2 might solve the same problem,
they just solved it differently. Please remember to take into account that
in a (3,3)-biregular tree each node has degree 1 or 3.

Please give your answer in the scientific notation with two significant
digits: your answer should be a number of the form a · 10b, where a is
rounded to two decimal digits, we have 1≤ a < 10, and b is a natural
number.

15



10.6 Exercises

Exercise 10.1 (0-round solvability). Prove that the following problems
are not 0-round solvable.

(a) (d + 1)-edge coloring in (d, d)-biregular trees (see Section 9.1.2).

(b) Maximal matching in (d, d)-biregular trees (see Section 9.1.2).

(c) Π1, the output problem of sinkless orientation, in (3, 3)-biregular
trees (see Section 10.4.2).

▷ hint A

Exercise 10.2 (higher degrees). Generalize the sinkless orientation
problem from (3,3)-biregular trees to (10,10)-biregular trees. Apply
round elimination and show that you get again a fixed point.

Exercise 10.3 (non-bipartite sinkless orientation). Define non-bipartite
sinkless orientation as the following problem Π = (Σ,A,P) on (3,2)-
biregular trees:

Σ= {O, I},

A=
�

[O, x , y]
�

� x , y ∈ Σ
	

,

P=
�

[I,O]
	

.

Prove that applying round elimination to Π leads to a period-2 point,
that is, to a problem Π′ such that Π′ = re(re(Π′)).

Exercise 10.4 (matching lower bound). Let us define sloppy perfect
matching in trees as a matching such that all non-leaf nodes are matched.
Encode this problem as a bipartite locally verifiable problem on (3,3)-
biregular trees. Show that solving it requires Ω(log n) rounds in the
PN-model with deterministic algorithms.

Exercise 10.5 (matching upper bound). Consider the sloppy perfect
matching problem from Exercise 10.4. Design an algorithm for solving
it with a deterministic PN-algorithm on (3, 3)-biregular trees in O(log n)
rounds.

▷ hint B

16



Exercise 10.6 (sinkless and sourceless). Sinkless and sourceless orien-
tation is the problem of orienting the edges of the graph so that each
non-leaf node has at least one outgoing edge and at least one incoming
edge. Encode the sinkless and sourceless orientation problem as a binary
locally verifiable labeling problem on (5, 5)-biregular trees. Design an al-
gorithm for solving sinkless and sourceless orientation on (5, 5)-biregular
trees.

Exercise 10.7 (failure of round elimination). In Section 10.4.3 we
discussed that round elimination fails if in the simulation step the T (n)-
neighborhoods of the neighbors are dependent from each other. This
happens when there exist T -neighborhoods of the neighbors such that the
resulting tree would have more than n nodes. Consider (d, d)-biregular
trees. Calculate the bound for F(n) such that round elimination fails for
algorithms with running time T (n)≥ F(n).

⋆ Exercise 10.8. Design an algorithm for solving sinkless and sourceless
orientation on (3, 3)-biregular trees.

10.7 Bibliographic Notes

Brandt et al. [2] introduced the sinkless orientation problem and proved
that it cannot be solved in o(log log n) rounds with randomized algo-
rithms, while Chang et al. [3] showed that it cannot be solved in o(log n)
rounds with deterministic algorithms. Ghaffari and Su [5] gave matching
upper bounds.

Exercises 10.4 and 10.5 are inspired by [1], and Exercises 10.6 and
10.8 are inspired by [4].

10.8 Bibliography

[1] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic
Maus, Dennis Olivetti, and Jukka Suomela. Classification of dis-
tributed binary labeling problems. In Proc. 34th International Sympo-

17



sium on Distributed Computing (DISC 2020), 2020. arXiv:1911.13294,
doi:10.4230/LIPIcs.DISC.2020.17.

[2] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo
Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower
bound for the distributed Lovász local lemma. In Proc. 48th ACM
Symposium on Theory of Computing (STOC 2016), 2016. arXiv:
1511.00900, doi:10.1145/2897518.2897570.

[3] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential
separation between randomized and deterministic complexity in
the LOCAL model. In Proc. 57th IEEE Symposium on Foundations of
Computer Science (FOCS 2016), pages 615–624. IEEE, 2016. arXiv:
1602.08166, doi:10.1109/FOCS.2016.72.

[4] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka
Suomela, and Jara Uitto. Improved distributed degree splitting and
edge coloring. Distributed Computing, 33:293–310, 2020. arXiv:
1706.04746, doi:10.1007/s00446-018-00346-8.

[5] Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting,
edge coloring, and orientations. In Proc. 28th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2017), 2017. arXiv:1608.03220, doi:
10.1137/1.9781611974782.166.

10.9 Hints

A. Show that a 0-round algorithm consists of choosing one active
configuration and assigning its labels to the ports. Show that for
any way of assigning the outputs to the ports, there exists a port
numbering such that a the incident edges of a passive node are
not labeled according to any passive configuration.

B. Decompose the graph into layers (V0, V1, . . . , VL), where nodes in
layer i have distance i to the closest leaf. Then iteratively solve

18

https://arxiv.org/abs/1911.13294
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://arxiv.org/abs/1511.00900
https://arxiv.org/abs/1511.00900
https://doi.org/10.1145/2897518.2897570
https://arxiv.org/abs/1602.08166
https://arxiv.org/abs/1602.08166
https://doi.org/10.1109/FOCS.2016.72
https://arxiv.org/abs/1706.04746
https://arxiv.org/abs/1706.04746
https://doi.org/10.1007/s00446-018-00346-8
https://arxiv.org/abs/1608.03220
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611974782.166


the problem, starting from layer VL: match all nodes in layer VL,
VL−1, and so on.

19


	Sinkless Orientation on Paths
	Hardness of Sinkless Orientation
	Solving Sinkless Orientation on Paths

	Sinkless Orientation on Trees
	Solving Sinkless Orientation on Trees
	Roadmap: Next Steps

	Maximal Output Problems
	Hardness of Sinkless Orientation on Trees
	First Step
	Equivalent Formulation
	Fixed Points in Round Elimination
	Sinkless Orientation Gives a Fixed Point

	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints

