
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · September 20, 2023

Chapter 11

Hardness of Coloring
This week we will apply round elimination to coloring. We will show
that 3-coloring paths requires Ω(log∗ n) rounds. This matches the fast
coloring algorithms that we saw in Chapter 1.

To prove this result, we will see how to apply round elimination to
randomized algorithms. Previously round elimination was purely deter-
ministic: a T -round deterministic algorithm would imply a (T−1)-round
deterministic algorithm for the output problem. With randomized algo-
rithms, round elimination affects the success probability of the algorithm:
a T -round randomized algorithm implies a (T − 1)-round randomized
algorithm for the output problem with a worse success probability.

We will see how round elimination can be applied in the presence of
inputs. These inputs can be, in addition to randomness, e.g. a coloring or
an orientation of the edges. The critical property for round elimination
is that there are no long range dependencies in the input.

11.1 Coloring and Round Elimination

We begin by applying round elimination to coloring on paths, or (2, 2)-
biregular trees. For technical reasons, we also encode a consistent ori-
entation in the coloring. That is, in addition to computing a coloring,
we require that the nodes also orient the path consistently from one
endpoint to the other. This is a hard problem, as we saw in the previous
chapter; therefore we will assume that the input is already oriented. We

1

https://jukkasuomela.fi/da2020/


13 3 2 1

33 1 1 3 3 2 2 1 1

Figure 11.1: Encoding of 3-coloring in the bipartite formalism. On top, a
3-coloring of a path fragment. Below, the corresponding 3-coloring as a
bipartite locally verifiable problem. The path is assumed to be consistently
oriented, so each node has an incoming and an outgoing edge. They
use the regular label on the incoming edge, and the barred label on
the outgoing edge. Passive nodes verify that the colors differ and have
different type.

will show that 3-coloring a path requires Ω(log∗ n) rounds even if the
path is consistently oriented.

11.1.1 Encoding Coloring

We will study the problem of 3-coloring the active nodes of a (2,2)-
biregular tree. We will say that two active nodes are adjacent if they
share a passive neighbor.

To encode the orientation, we use two versions of each color label:
e.g. 1 and 1̄. We call these regular and barred labels, respectively. For
3-coloring, we have the following problem Π0 = (Σ0,A0,P0):

Σ0 = {1, 1̄, 2, 2̄, 3, 3̄},

A0 =
�

[1, 1̄], [2, 2̄], [3, 3̄]
	

,

P0 =
�

[1, 2̄], [1, 3̄], [2, 1̄], [2, 3̄], [3, 1̄], [3, 2̄]
	

.

The encoding of 3-coloring is shown in Figure 11.1. The active config-
urations ensure that each node chooses a color and an orientation of
its edges: we can think of the edges labeled with 1̄, 2̄ or 3̄ as outgoing
edges, and the regular labels as incoming edges. The passive configura-
tions ensure that adjacent active nodes are properly colored and that the
passive node is properly oriented (has incident labels of different types).

2



We will also need to define coloring with more colors. We say that a
label matches with its barred version: 1 ∼ 1̄, 2 ∼ 2̄ and so on. A label
does not match with the other labels: e.g. 1∼− 2̄.

We define c-coloring as the following problem Π= (Σ,A,P):

Σ= {1, 1̄, 2, 2̄, . . . , c, c̄},

A=
�

[x , x̄]
�

� x ∈ {1, 2, . . . , c}
	

,

P=
�

[x , ȳ]
�

� x , y ∈ {1,2, . . . , c}, x ∼− ȳ
	

.

11.1.2 Output Problem of Coloring

We start by assuming that we have a fast algorithm that solves the 3-
coloring problem Π0. Let us now compute the output problem Π1 =
re(Π0) of 3-coloring Π0.

Let Π1 = (Σ1,A1,P1) denote the output problem. For now, we will
let Σ1 consist of all non-empty subsets of Σ0, and prune it later.

Recall that passive configurations P0 consist of all non-matching pairs
of a regular and barred label. Therefore the active configurations in Π1
consist of all pairs of sets such that

• one set consists of regular and one of barred labels, and
• there are no matching labels.

We get that

A1 =
�

[X , Y ]
�

� X ⊆ {1, 2,3}, Y ⊆ {1̄, 2̄, 3̄},∀x ∈ X , y ∈ Y : x ∼− y
	

.

Next we make the sets maximal: when neither the regular or the
barred version of a label is contained in either set, we can add the corre-
sponding variant to either set. Thus the maximal active configurations
split the color set over their edges:

A1 =
¦

�

{1}, {2̄, 3̄}
�

,
�

{2}, {1̄, 3̄}
�

,
�

{3}, {1̄, 2̄}
�

,
�

{1̄}, {2, 3}
�

,
�

{2̄}, {1,3}
�

,
�

{3̄}, {1, 2}
�

©

3



No label can be added to any of the configurations, and the above labels
contain all active configurations.

We have the following alphabet:

Σ1 =
�

{1}, {2}, {3}, {1,2}, {1,3}, {2,3},

{1̄}, {2̄}, {3̄}, {1̄, 2̄}, {1̄, 3̄}, {2̄, 3̄}
	

.

Finally, the passive configurations consist of all pairs such that it is
possible to pick matching regular and barred labels, forming a configu-
ration in A0:

P1 =
�

[X , Y ]
�

� (1 ∈ X , 1̄ ∈ Y )∨ (2 ∈ X , 2̄ ∈ Y )∨ (3 ∈ X , 3̄ ∈ Y )
	

.

11.1.3 Simplification

The output problem of 3-coloring looks much more complicated than
the problem we started with. If we kept applying round elimination,
it would become extremely difficult to understand the structure of the
problem. Therefore we will simplify the problem: we will map it back to
a coloring with a larger number of colors.

The intuition is the following. Assume that our original labels consist
of some set of c colors, and the output problem has sets of these colors
as labels. Then there are at most 2c different sets. If adjacent nodes
have always different sets, we can treat it as a coloring with 2c colors by
mapping the sets to the labels 1,2, . . . , 2c .

Now consider the output problem of 3-coloring, Π1. We will treat
the different sets of the regular labels as the color classes. Each of them
is paired with a unique set of barred labels. Enumerating all options, we
rename the labels as follows to match the alphabet of 6-coloring:

{1} 7→ 1, {2̄, 3̄} 7→ 1̄,

{2} 7→ 2, {1̄, 3̄} 7→ 2̄,

{3} 7→ 3, {1̄, 2̄} 7→ 3̄,

{1,2} 7→ 4, {3̄} 7→ 4̄,

4



{1,3} 7→ 5, {2̄} 7→ 5̄,

{2,3} 7→ 6, {1̄} 7→ 6̄.

Now let us verify that this is indeed a 6-coloring. After renaming,
the active configurations are

A1 =
�

[1, 1̄], [2, 2̄], [3, 3̄],

[6̄, 6], [5̄, 5], [4̄, 4]
	

.

By rearrangement we can see that these match exactly the definition of
6-coloring. The passive configurations, before renaming, were the pairs
of sets, one consisting of the regular labels and the other of the barred
labels, that contained a matching label. We get that

P1 =
�

[1, x]
�

� x ∈ {2̄, 3̄, 6̄}
	

∪
�

[2, x]
�

� x ∈ {1̄, 3̄, 5̄}
	

∪
�

[3, x]
�

� x ∈ {1̄, 2̄, 4̄}
	

∪
�

[4, x]
�

� x ∈ {1̄, 2̄, 3̄, 5̄, 6̄}
	

∪
�

[5, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 6̄}
	

∪
�

[6, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 5̄}
	

.

We notice that these are a subset of the passive configurations of
6-coloring: colors 1, 2, and 3 cannot be paired with some of the non-
matching colors. This means that Π1 is at least as hard to solve as
6-coloring.

We may relax the output problem Π1 and construct a new problem
Π′1 = (Σ

′
1,A′1,P′1) as follows:

A′1 = A1,

P′1 =
�

[1, x]
�

� x ∈ {2̄, 3̄, 4̄, 5̄, 6̄}
	

∪
�

[2, x]
�

� x ∈ {1̄, 3̄, 4̄, 5̄, 6̄}
	

∪
�

[3, x]
�

� x ∈ {1̄, 2̄, 4̄, 5̄, 6̄}
	

5



∪
�

[4, x]
�

� x ∈ {1̄, 2̄, 3̄, 5̄, 6̄}
	

∪
�

[5, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 6̄}
	

∪
�

[6, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 5̄}
	

.

Note that Π′1 is exactly the 6-coloring problem. As we have got that
A′1 = A1 and P′1 ⊇ P1, any solution to Π1 is also a solution to Π′1. We
conclude that if we can solve problem Π0 in T rounds, we can solve
Π1 = re(Π0) exactly one round faster, and we can solve its relaxation Π′1
at least one round faster.

11.1.4 Generalizing Round Elimination for Coloring

Let us now see how to generalize the first round elimination step. In the
first step, we saw that 6-coloring is at least as easy to solve as the output
problem of 3-coloring.

Now consider applying round elimination to the c-coloring problem.
Let re(Π0) = Π1 = (Σ1,A1,P1) denote the output problem of c-coloring
Π0.

Again, the active configurations in A1 consist of all splits of the colors.
For a set X ⊆ {1,2, . . . , c}, let X̄ denote the barred complement of X :

X̄ = { x̄
�

� x ∈ {1,2, . . . , c} \ X }.

Then the active configurations are

A1 =
�

[X , X̄ ]
�

�∅ ̸= X ⊊ {1,2, . . . , c}
	

.

The labels are all non-empty and non-full subsets of the regular and
barred labels, respectively. The passive configurations in P1 consists of
pairs of sets such that it is possible to pick matching regular and barred
labels from them:

P1 =
�

[X , Y ]
�

� x ∈ X , x̄ ∈ Y : x ∼ x̄
	

.

We do the exact same renaming trick as in the previous section. There
are a total of 2c − 2 different sets on regular labels. We rename them in

6



some order with the integers from 1 to 2c − 2. For each set X renamed
to integer y, we rename the unique barred complement X̄ to ȳ. The
active configurations after renaming are

A1 =
�

[x , x̄]
�

� x ∈ {1, 2, . . . , 2c − 2}
	

.

We note that passive configurations never include [x , x̄] for any x . This
is because x̄ represents the complement of x as a set: it is not possible
to pick a matching element from x and x̄ . Therefore we may again relax
the passive configurations to be the configurations for c-coloring:

P1 =
�

[x , ȳ]
�

� x , y ∈ {1,2, . . . , 2c − 2}, x ∼− ȳ
	

.

The resulting problem is at least as easy as the output problem of c-
coloring: if c-coloring can be solved in T rounds, then coloring with
2c − 2 colors can be solved in at most T − 1 rounds.

Now in what follows, it will be awkward to use the expression 2c−2,
so we will simply round it up to 2c . Clearly, coloring with 2c colors is at
least as easy as coloring with 2c − 2 colors.

11.1.5 Sequence of Output Problems

We have shown that 2c-coloring is at least as easy as the output problem
of c-coloring. Now if we were to iteratively apply round elimination k
times in the PN-model we would get the following sequence of problems:

Π0 = 3-coloring→ Π1 = 23-coloring

→ Π2 = 223
-coloring

→ Π3 = 2223

-coloring

· · ·
→ Πk = C(k)-coloring,

where

C(k) = 22·
··

23

︸ ︷︷ ︸

k times 2 and one 3

.

7



Now if we show that coloring with C(k) colors cannot be solved in 0
rounds in the PN model with deterministic algorithms, it would imply
that 3-coloring cannot be solved in k rounds in the PN model. This
result, however, would not be very meaningful. As we have already
seen in Chapter 7, the vertex coloring problem cannot be solved at all
in the PN-model! Therefore we must strengthen the round elimination
technique itself to apply in the LOCAL model.

11.2 Round Elimination with Inputs

If we try to do round elimination in the LOCAL model, we run into
a technical challenge. In round elimination, the nodes simulate the
outputs of their neighbors. It is crucial that the inputs of the neighbors
are independent: for each combination of possible outputs, there must
exist a network in which the algorithm actually produces those outputs.
This step no longer holds in the LOCAL model: the identifiers are globally
unique, and therefore do not repeat. The inputs of the neighbors are
dependent: if one of the regions contains, e.g., a node with identifier 1,
then another region cannot contain identifier 1, and vice versa.

To overcome this difficulty, we will consider randomized algorithms.
In Exercise 6.2 we saw that randomness can be used to generate unique
identifiers. Therefore the PN-model, equipped with randomness, is at
least as powerful as the LOCAL model: if a problem Π can be solved in
time T (n) in the LOCAL model, then we can generate unique identifiers
with high probability and simulate the LOCAL-algorithm in T (n) rounds.
This clearly succeeds if the random identifiers were unique. Therefore
any impossibility results we prove for randomized algorithms also hold
for the LOCAL model.

For the remainder of the chapter, we assume that the nodes receive
two types of inputs.

(a) Random inputs. Each node receives some arbitrary but finite
number of uniform random bits as input. In addition, to simplify
the proof, we will assume that the port numbers are assigned

8



randomly. This latter assumption is made only for the purposes of
this proof, we do not change the standard assumptions about the
models.

(b) Consistent orientation. As we mentioned in the beginning, for
technical reasons we consider a variant of coloring that includes
an orientation. To solve this part of the problem easily, we include
the required orientation as input.

It is crucial that we can apply round elimination in the presence of these
inputs. First, consider the orientation. In the round elimination step,
each node must simulate the outputs of its neighbors over all possible
inputs. Now we add the promise that each node, in addition to its usual
inputs, receives an orientation of its edges as input. In particular, they
form a consistent orientation of the whole path from one end to the
other. Clearly nodes can include this input in their simulation, as the
orientation of the remaining edges is fixed after seeing the orientation
of just one edge. Similarly, random inputs do not have any long-range
dependencies. They do, however, affect the simulation step. We will
discuss randomized round elimination in the next section.

11.2.1 Randomized Round Elimination Step

We will now introduce a variant of the Round Elimination Lemma that
we proved in Chapter 9. Assume that we have a randomized algorithm
that solves problemΠ in T (n) rounds with local failure probability q: that
is, each active node chooses an active configuration of Π with probability
at least 1−q, and each passive node is labeled according to some passive
configuration of Π with probability at least 1 − q. Then we want to
show that there is an algorithm that solves the output problem re(Π)
in T (n)− 1 rounds with some local failure probability at most f (q) for
some function f .

The round elimination step works essentially as in the PN-model.
Each re(Π)-active node simulates the outputs of its Π-active nodes over
all possible inputs, including the random bits. We make one modification

9



12 1 2 1 2 2 1 12 A B C DH G F E

X YZW r1 r2 r3r4r5

Figure 11.2: The randomized round elimination step. Assume an algo-
rithm A for c-coloring with running time T = 3. The simulation functions
as follows. The active node gathers its (T − 1)-neighborhood, including
the assignment of random port numbers and random bits r1, r2, r3, r4 and
r5. Then it simulates A on its right and left neighbor. On the right, over
all possible assignments of ports A, B, C , D and random bit strings X , Y .
On the left, over all possible assignments of ports E, F, G, H and random
bit strings Z , W . For each edge, it outputs the set of labels that appear as
outputs for at least fraction t(q) of inputs.

to the model: we assume that the port numbers are assigned randomly
instead of being assigned by an adversary. This modification is made
to simplify the analysis that follows. It does not affect the power of
the model: the nodes could use their local randomness to shuffle the
ports and any algorithm designed for the worst-case port numbering
also works, by definition, with a random port numbering. We will also
only consider nodes that are internal nodes in the (2, 2)-biregular tree:
we assume that T -neighborhoods of the neighbors of re(Π)-active nodes
do not contain the endpoints of the path.

It no longer makes sense to construct the set of all possible outputs.
We can imagine an algorithm that tries to make round elimination hard:
it always uses each possible output label with at least one specific random
input labeling. These outputs would make no sense, but would cause the
set of possible output labels to always be the full set of labels. Since the
random inputs can be arbitrarily large (but finite!), the failure probability
this would add to the algorithm would be small.

To avoid this issue, we will define a threshold t(q): an output label
σ ∈ Σ is frequent if it appears as the output label with probability at
least t(q). More formally, for a fixed re(Π)-active node u, an assignment
of random inputs to ballN (u, T − 1), and a neighbor v, label σ ∈ Σ is
frequent for the edge {u, v} if the probability that v outputs σ on {u, v},

10



conditioned on fixing the random inputs in ballN (u, T − 1), is at least
t(q). We will fix the value of this threshold later.

The randomized simulation step is defined as follows. EachΠ1-active
node u gathers its (T−1)-neighborhood. Then it computes for each edge
{u, v} the set of frequent labels S(u, v) and outputs that set on {u, v}.
See Figure 11.2 for an illustration.

We will prove that randomized round elimination works for the
special case of c-coloring (2, 2)-biregular trees. This can be generalized
to cover all bipartite locally verifiable problems in (d,δ)-biregular trees,
for any parameters d and δ.

Lemma 11.1 (Randomized Round Elimination Lemma). Assume that
there is an algorithm that solves the c-coloring problem on (2, 2)-biregular
trees in the randomized PN-model in T (n) rounds with local failure proba-
bility at most q. Then there exists an algorithm that solves the 2c-coloring
problem in T (n)− 1 rounds with local failure probability at most 3cq1/3.

Intuitively the lemma is true, as in most neighborhoods the true
outputs must also appear frequently in the simulation. Similarly, com-
binations of non-configurations cannot be frequent too often, as this
would imply that the original algorithms also fails often.

We prove the lemma in Section 11.3.1. Next we will see how to
apply it to prove an impossibility result for 3-coloring.

11.3 Iterated Randomized Round Elimination

Given the randomized round elimination lemma, we will proceed as
follows.

(1) Assume there is a randomized (log∗ n − 4)-round algorithm for
solving 3-coloring on consistently oriented (2,2)-biregular trees.
Since randomized algorithms are assumed to succeed with high
probability, the local failure probability q0 must be at most 1/nk

for some constant k.

11



(2) Apply randomized round elimination T(n) = log∗ n− 4 times to
get a 0-round randomized algorithm for cT (n)-coloring with some
local failure probability qT (n). For the chosen value of T (n) show
that we have qT (n) < 1/cT (n).

(3) Prove that there are no 0-round algorithms for solving cT (n)-coloring
with local failure probability qT (n) < 1/cT (n).

We must show that fast coloring algorithms imply 0-round coloring al-
gorithms that do not fail with large enough probability. In Section 11.3.2
we will prove the following lemma.

Lemma 11.2. Assume that there is a (log∗ n− 4)-round 3-coloring algo-
rithm in the randomized PN-model. Then there is a 0-round c-coloring
algorithm with local failure probability q < 1/c.

We must also show that any 0-round c-coloring algorithm fails locally
with probability at least 1/c.

Lemma 11.3. Any 0-round c-coloring algorithm fails locally with proba-
bility at least 1/c.

Proof. Any 0-round c-coloring algorithm defines a probability distribu-
tion over the possible output colors. This distribution is the same for
each active node inside a path: they are indistinguishable from each
other in 0 rounds. The algorithm fails if two adjacent nodes select the
same color.

Let pi = bi + 1/c denote the probability that the algorithm outputs
color i. The terms bi denote the deviation of each probability pi from
the average: we must have that

c
∑

i=1

bi = 0.

12



The local failure probability is at least

c
∑

i=1

p2
i =

c
∑

i=1

(bi + 1/c)2

=
c
∑

i=1

�

b2
i + 2bi/c + 1/c2

�

= 1/c +
� c
∑

i=1

b2
i

�

+ 2/c ·
� c
∑

i=1

bi

�

= 1/c +
� c
∑

i=1

b2
i

�

+ 0.

This is clearly minimized by setting bi = 0 for all i. Thus the local failure
probability is minimized when pi = 1/c for all i, and we get that it is at
least 1/c.

The bound on the failure probability of 0-round coloring algorithms
combined with Lemma 11.2 shows that there is no 3-coloring algorithm
that runs in at most log∗ n−4 rounds in the randomized PN-model, even if
we know n and the path is consistently oriented. Since the randomized
PN-model can simulate the LOCAL model with high probability, this
implies that there is no (randomized) 3-coloring algorithm in the LOCAL
model that runs in at most log∗ n− 4 rounds.

Theorem 11.4. 3-coloring (in the bipartite formalism) cannot be solved
in the LOCAL model in less than log∗ n− 4 rounds.

Corollary 11.5. 3-coloring (in the usual sense) cannot be solved in the
LOCAL model in less than 1

2 log∗ n− 2 rounds.

Proof. Distances between nodes increase by a factor of 2 when we switch
to the bipartite encoding (see Figure 11.1).

This result is asymptotically optimal: already in Chapter 1 we saw
that paths can be colored with 3 colors in time O(log∗ n).

In the final two sections we give the proofs for Lemmas 11.1 and 11.2.

13



11.3.1 Proof of Lemma 11.1

In this section we prove Lemma 11.1. The proof consists of bound-
ing the local failure probability of the simulation algorithm given in
Section 11.2.1.

Proof of Lemma 11.1. Let Π0 = (Σ0,A0,P0) denote the c-coloring prob-
lem for some c, and let Π1 = re(Π0) = (Σ1,A1,P1) denote the output
problem of c-coloring. Assume that there is a T -round randomized
algorithm A for solving Π0 with local failure probability q. Consider
an arbitrary Π1-active node u with some fixed (T − 1)-neighborhood
ballN (u, T − 1) (including the random inputs).

The passive configurations P0 consist of pairs [x , ȳ] that do not
match. The algorithm A fails if it outputs any x and x̄ , or two labels
of the same type on the incident edges of a Π0-passive node. We say
that the (T − 1)-neighborhood ballN (u, T − 1) is lucky, if the algorithm
A fails in labeling the incident edges of u, given ballN (u, T − 1), with
probability less than t2. Here t is the probability threshold for frequent
labels; we will choose the value of t later.

We want to prove that most random bit assignments must be lucky,
and that in lucky neighborhoods the simulation succeeds with a good
probability. We will ignore the other cases, and simply assume that in
those cases the simulation can fail.

Consider any fixed ballN (u, T + 1) without the random bits and the
random port numbering: since we consider nodes inside the path, the re-
maining structure is the same for all nodes. The randomness determines
whether A succeeds around u. Let L denote the event that ballN (u, T −1)
is lucky. Since we know that A fails in any neighborhood with probability
at most q, we can bound the probability of a neighborhood not being
lucky as follows:

Pr[A fails at u]≥ Pr[A fails at u | not L] · Pr[not L]

=⇒ Pr[not L]≤
Pr[A fails at u]

Pr[A fails at u | not L]
<

q
t2

.

14



From now on we will assume that ballN (u, T − 1) is lucky. Let v and
w denote the passive neighbors of re(Π)-active node u. The simulation
fails if and only if the sets S(u, v) and S(u, w) contain labels x and y
such that [x , y] /∈ P0 (all choices do not yield a configuration in P0).
Since both of these labels are frequent (included in the output), each of
them must appear with probability at least t given ballN (u, T − 1). But
since these labels are frequent, we have that the original algorithm fails,
given ballN (u, T − 1) with probability at least t2, and the neighborhood
cannot be lucky. We can deduce that the simulation always succeeds in
lucky neighborhoods. Therefore we have that

Pr[simulation fails]≤ Pr[not L]<
q
t2

.

Next we must determine the failure probability of the simulation
around passive nodes. The re(Π)-passive nodes succeed when the true
output of the algorithm is contained in the sets of frequent outputs. For
a re(Π)-passive neighbor v, consider the event that its output on edge
{u, v} in the original algorithm is not contained in the set of frequent
outputs S(u, v) based on ballN (u, T − 1). By definition, for each fixed
ballN (u, T − 1) each infrequent label is the true output with probability
at most t. There are c colors, so by union bound one of these is the true
output color with probability at most c t. There are two neighbors, so by
another union bound the total failure probability for a passive node is at
most 2c t. Since the simulation can also fail when the original algorithm
fails, we get for each passive node that

Pr[simulation fails]≤ q+ 2c t.

To minimize the maximum of the two failure probabilities, we can for
example set t = q1/3 and get that

q
t2
= q1/3 ≤ q+ 2cq1/3 ≤ 3cq1/3.

15



11.3.2 Proof of Lemma 11.2

It remains to show that a fast 3-coloring algorithm implies a 0-round
c-coloring algorithm that fails locally with a probability less than 1/c.

Proof of Lemma 11.2. Assume there is a T -round 3-coloring algorithm
that succeeds with high probability. This implies that it has a local failure
probability q0 ≤ 1/nk for some constant k ≥ 1. Applying the round
elimination lemma, this implies the following coloring algorithms and
local failure probabilities qi:

C(0) = 3 colors: q0 ≤ 1/nk ≤ 1/n,

C(1) = 23 colors: q1 ≤ 3C(0) · q1/3
0 ,

C(2) = 223
colors: q2 ≤ 3C(1) · q1/3

1 = 3C(1) ·
�

3C(0) · q1/3
0

�1/3
.

Generalizing, we see that after T iterations, the local failure probability
is bounded by

qT ≤
� T
∏

i=0

31/3i

�� T
∏

i=0

C(T − i)1/3
i

�

· n−1/3T
,

and the algorithm uses

C(T ) = 22·
··

23

︸ ︷︷ ︸

T times 2
and one 3

< 22·
··

222

︸ ︷︷ ︸

T + 2 times 2

= T+22

colors. To finish the proof, we must show that for any T (n)≤ log∗ n− 4
and for a sufficiently large n we have that qT < 1/C(T ), or, equivalently,
qT · C(T )< 1 or

log qT + log C(T )< 0; (11.1)

16



here all logarithms are to the base 2. Evaluating the expression log qT ,
we get that

log qT ≤
T
∑

i=0

1
3i

log3+
T
∑

i=0

1
3i

log C(T − i)− 3−T log n

≤
3
2

log3+
3
2

log C(T )− 3−T log n,

since the sums are converging geometric sums. Therefore

log qT + log C(T )≤
3
2

log3+
5
2

log C(T )− 3−T log n. (11.2)

Note that
n≤ log∗ n2< 2n.

Therefore for T = log∗ n− 4 we have that

log C(T )< log T+22= log log log T+42< log log n. (11.3)

On the other hand, for a large enough n we have that

3T < 3log∗ n < 3log3 log log n < log log n,

and therefore

3−T log n>
log n

log log n
. (11.4)

Now (11.3) and (11.4) imply that for a sufficiently large n, term 3−T log n
will dominate the right hand side of (11.2), and we will eventually have

log qT + log C(T )< 0,

which is exactly what we needed for Equation (11.1).

17



11.4 Quiz

Construct the smallest possible (i.e., fewest nodes) properly 4-colored
cycle C such that the following holds: if you take any deterministic
0-round PN-algorithm A and apply it to C , then the output of A is not a
valid 3-coloring of C .

Please note that here we are working in the usual PN model, exactly
as it was originally specified in Chapter 3, and we are doing graph
coloring in the usual sense (we do not use the bipartite formalism here).
Please give the answer by listing the n colors of the n-cycle C .

11.5 Exercises

Exercise 11.1 (randomized 2-coloring). Prove that solving 2-coloring
paths in the randomized PN-model requires Ω(n) rounds.

Exercise 11.2 (coloring grids). Prove that 5-coloring 2-dimensional
grids in the deterministic LOCAL model requires Ω(log∗ n) rounds.

A 2-dimensional grid G = (V, E) consists of n2 nodes vi, j for i, j ∈
{1, . . . , n} such that if i < n, add {vi, j , vi+1, j} to E for each j, and if j < n
add {vi, j , vi, j+1} to E for each i.

▷ hint A

Exercise 11.3 (more colors). Prove that cycles cannot be colored with
O(log∗ n) colors in o(log∗ n) rounds in the deterministic LOCAL model.

▷ hint B

Exercise 11.4 (lying about n). Show that if a bipartite locally verifiable
labeling problem can be solved in o(log n) rounds in the deterministic
PN-model in (d,δ)-biregular trees, then it can be solved in O(1) rounds.

▷ hint C

Exercise 11.5 (hardness of sinkless orientation). Let Π denote the sink-
less orientation problem as defined in Chapter 10. Prove the following.

(a) Sinkless orientation requiresΩ(log log n) rounds in the randomized
PN-model.

18



(b) Sinkless orientation requires Ω(log log n) rounds in the determin-
istic and randomized LOCAL model.

▷ hint D

⋆ Exercise 11.6. Show that sinkless orientation requires Ω(log n) rounds
in the deterministic LOCAL model.

▷ hint E

11.6 Bibliographic Notes

Linial [1] showed that 3-coloring cycles with a deterministic algorithm
is not possible in o(log∗ n) rounds, and Naor [2] proved the same lower
bound for randomized algorithms. Our presentation uses the ideas from
these classic proofs, but in the modern round elimination formalism.

11.7 Bibliography

[1] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal
on Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[2] Moni Naor. A lower bound on probabilistic algorithms for distributive
ring coloring. SIAM Journal on Discrete Mathematics, 4(3):409–412,
1991. doi:10.1137/0404036.

11.8 Hints

A. Show that a fast 5-coloring algorithm could be simulated on any
path to 5-color it. Then turn a 5-coloring into a 3-coloring yielding
an algorithm that contradicts the 3-coloring lower bound.

B. Show that an O(log∗ n)-coloring could be used to color cycles fast,
which contradicts the lower bound for 3-coloring. Note that our
lower bound is for paths: why does it also apply to cycles?

19

https://doi.org/10.1137/0221015
https://doi.org/10.1137/0404036


C. Show that we can run an algorithm for graphs of size n0, for some
constant n0, on all networks of size n ≥ n0, and get a correct
solution. In particular, show that for any T(n) = o(log n) and
a sufficiently large n0, networks on n0 nodes are locally indis-
tinguishable from networks on n nodes, for n ≥ n0, in O(T(n))
rounds.

D. (a) Show that if re(Π) can be solved by a randomized PN-algorithm
in T rounds with local failure probability q, then it can be solved
in T − 1 rounds with local failure probability poly(q). Analyze the
failure probability over T iterations for T = o(log log n) and show
that it is ω(1).

E. One approach is the following. Prove that any deterministic o(log n)-
time algorithm for sinkless orientation implies an O(log∗ n)-time
deterministic algorithm for sinkless orientation. To prove this
speedup, “lie” to the algorithm about the size of the graph. Take
an algorithm A for (3,3)-biregular trees on n0 nodes, for a suf-
ficiently large constant n0. On any network N of size n > n0,
compute a coloring of N that locally looks like an assignment of
unique identifiers in a network of size n0. Then simulate A given
this identifier assignment to find a sinkless orientation.

20


	Coloring and Round Elimination
	Encoding Coloring
	Output Problem of Coloring
	Simplification
	Generalizing Round Elimination for Coloring
	Sequence of Output Problems

	Round Elimination with Inputs
	Randomized Round Elimination Step

	Iterated Randomized Round Elimination
	Proof of Lemma 11.1
	Proof of Lemma 11.2

	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints

