
Juho Hirvonen and Jukka Suomela:

Distributed Algorithms 2020
https://jukkasuomela.fi/da2020/ · September 20, 2023

Chapter 12

Conclusions
We have reached the end of this course. In this chapter we will review
what we have learned, and we will also have a brief look at what else is
there in the field of distributed algorithms. The exercises of this chapter
form a small research project related to the distributed complexity of
locally verifiable problems.

12.1 What Have We Learned?

By now, you have learned a new mindset—an entirely new way to
think about computation. You can reason about distributed systems,
which requires you to take into account many challenges that we do not
encounter in basic courses on algorithms and data structures:

• Dealing with unknown systems: you can design algorithms that
work correctly in any computer network, no matter how the com-
puters are connected together, no matter how we choose the port
numbers, and no matter how we choose the unique identifiers.

• Dealing with partial information: you can solve graph problems
in sublinear time, so that each node only sees a small part of the
network, and nevertheless the nodes produce outputs that are
globally consistent.

• Dealing with parallelism: you can design highly parallelized algo-
rithms, in which several nodes take steps simultaneously.

1

https://jukkasuomela.fi/da2020/


These skills are in no way specific to distributed algorithms—they play
a key role also in many other areas of modern computer science. For
example, dealing with unknown systems is necessary if we want to
design fault-tolerant algorithms, dealing with partial information is the
key element in e.g. online algorithms and streaming algorithms, and
parallelism is the cornerstone of any algorithm that makes the most out
of modern multicore CPUs, GPUs, and computing clusters.

12.2 What Else Exists?

Distributed computing is a vast topic and so far we have merely scratched
the surface. This course has focused on what is often known as distributed
graph algorithms or network algorithms, and we have only focused on
the most basic models of distributed graph algorithms. There are many
questions related to distributed computing that we have not addressed
at all; here are a few examples.

12.2.1 Distance vs. Bandwidth vs. Local Memory

Often we would like to understand computation in two different kinds
of distributed systems:

(a) Geographically distributed networks, e.g. the Internet. A key chal-
lenge is large distances and communication latency: some parts of
the input are physically far away from you, so in a fast algorithm
you have to act based on the information that is available in your
local neighborhood.

(b) Big data systems, e.g. data processing in large data centers. Typi-
cally all input data is nearby (e.g. in the same local-area network).
However, this does not make problems trivial to solve fast: indi-
vidual computers have a limited bandwidth and limited amount of
local memory.

The LOCAL model is well-suited for understanding computation in net-
works, but it does not make much sense in the study of big data systems:

2



if all information is available within one hop, then in LOCAL model it
would imply that everything can be solved in one communication round!

Congested Clique Model. Many other models have been developed
to study big data systems. From our perspective, perhaps the easiest to
understand is the congested clique model [3,7,9]. In brief, the model is
defined as follows:

• We work in the CONGEST model, as defined in Chapter 5.

• We assume that the underlying graph G is the complete graph on
n nodes, i.e., an n-clique. That is, every node is within one hop
from everyone else.

Here it would not make much sense to study graph problems related
to G itself, as the graph is fixed. However, here each node v gets some
local input f (v), and it has to produce some local output g(v). The
local inputs may encode e.g. some input graph H ̸= G (for example,
f (v) indicates which nodes are adjacent to v in H), but here it makes
also perfect sense to study other computational problem that are not
related to graphs. Consider, for example, the task of computing the
matrix product X = AB of two n× n matrices A and B. Here we may
assume that initially each node knows one column of A and one column
of B, and when the algorithms stops, each node has to hold one column
of X .

Other Big Data Models. There are many other models of big data
algorithms that have similar definitions—all input data is nearby, but
communication bandwidth and/or local memory is bounded; examples
include:

• BSP model (bulk-synchronous parallel) [10],
• MPC model (massively parallel computation) [5], and
• k-machine model [6].

3



Note that when we limit the amount of local memory, we also implicitly
limit communication bandwidth (you can only send what you have in
your memory). Conversely, if you have limited communication band-
width and a fast algorithm, you do not have time to accumulate a large
amount of data in your local memory, even if it was unbounded. Hence
all of these model and their variants often lead to similar algorithm
design challenges.

12.2.2 Asynchronous and Fault-Tolerant Algorithms

So far in this course we have assumed that all nodes start at the same
time, computation proceeds in a synchronous manner, and all nodes
always work correctly.

Synchronization. If we do not have any failures, it turns out we can
easily adapt all of the algorithms that we have covered in this course
also to asynchronous settings. Here is an example of a very simple
solution, known as the α-synchronizer [1]: all messages contain a piece
of information indicating “this is my message for round i”, and each
node first waits until it has received all messages for round i from its
neighbors before it processes the messages and switches to round i + 1.

Crash Faults and Byzantine Faults. Synchronizers no longer work
if nodes can fail. If we do not have any bounds on the relative speeds
of the communication channels, it becomes impossible to distinguish
between e.g. a node behind a very slow link and a node that has crashed.

Failures are challenging even if we work in a synchronous setting.
In a synchronous setting it is easy to tell if a nodes has crashed, but
if some nodes can misbehave in an arbitrary manner, many seemingly
simple tasks become very difficult to solve. The term Byzantine failure is
commonly used to refer to a node that may misbehave in an arbitrary
manner, and in the quiz (Section 12.3) we will explore some challenges
of solving the consensus problem in networks with Byzantine nodes.

4



Self-Stabilization. Another challenge is related to consistent initial-
ization. In our model of computing, we have assumed that all nodes
are initialized by using the initA,d function. However, it would be great
to have algorithms that converge to a correct output even if the initial
states of the nodes may have been corrupted in an arbitrary manner.
Such algorithms are called self-stabilizing algorithms [4].

If we have a deterministic T -time algorithms A designed in the LOCAL
model, it can be turned into a self-stabilizing algorithm in a mechanical
manner [8]: all nodes keep track of T possible states, indicating “what
would be my state if now was round i”, they send vectors of T messages,
indicating “what would be my message for round i”, and they repeatedly
update their states according to the messages that they receive from
their neighbors. However, if we tried to do something similar for a
randomized algorithm, it would no longer converge to a fixed output—
there are problems that are easy to solve with randomized Monte Carlo
LOCAL algorithms, but difficult to solve with self-stabilizing algorithms.

12.2.3 Other Directions

Shared Memory. Our models of computing can be seen as a message-
passing system: nodes send messages (data packets) to each other. A
commonly studied alternative is a system with shared memory: each
node has a shared register, and the nodes can communicate with each
other by reading and writing the shared registers.

Physical Models. Our models of computing are a good match with sys-
tems in which computers are connected to each other by physical wires.
If we connect the nodes by wireless links, the physical properties of radio
waves (e.g., reflection, refraction, multipath propagation, attenuation,
interference, and noise) give rise to new models and new algorithmic
challenges. The physical locations of the nodes as well as the properties
of the environment become relevant.

5



Robot Navigation. In our model, the nodes are active computational
entities, and they cannot move around in the network—they can only
send information around in the network. Another possibility is to study
computation with autonomous agents (“robots”) that can move around
in the network. Typically, the nodes are passive entities (corresponding
to possible physical locations), and the robots can communicate with
each other by e.g. leaving some tokens in the nodes.

Nondeterministic Algorithms. Just like we can study nondeterministic
Turing machines, we can study nondeterministic distributed algorithms.
In this setting, it is sufficient that there exists a certificate that can be
verified efficiently in a distributed setting; we do not need to construct the
certificate efficiently. Locally verifiable problems that we have studied
in this course are examples of problems that are easy to solve with
nondeterministic algorithms.

Complexity Measures. For us the main complexity measure has been
the number of synchronous communication rounds. Many other possi-
bilities exist: e.g., how many messages do we need to send in total?

Practical Aspects of Networking. This course has focused on the
theory of distributed algorithms. There is of course also the practical
side: We need physical computers to run our algorithms, and we need
networking hardware to transmit information between computers. We
need modulation techniques, communication protocols, and standard-
ization to make things work together, and good software engineering
practices, programming languages, and reusable libraries to keep the
task of implementing algorithms manageable. In the real world, we will
also need to worry about privacy and security. There is plenty of room
for research in computer science, telecommunications engineering, and
electrical engineering in all of these areas.

6



12.2.4 Research in Distributed Algorithms

There are two main conferences related to the theory of distributed
computing:

• PODC, the ACM Symposium on Principles of Distributed Comput-
ing: https://www.podc.org/

• DISC, the International Symposium on Distributed Computing:
http://www.disc-conference.org/

The proceedings of the recent editions of these conferences provide a
good overview of the state-of-the-art of this research area.

12.3 Quiz

In the binary consensus problem the task is this: Each node gets 0 or 1
as input, and each node has to produce 0 or 1 as output. All outputs
must be the same: you either have to produce all-0 or all-1 as output.
Moreover, if the input is all-0, your output has to be all-0, and if the
input is all-1, your output has to be all-1. For mixed inputs either output
is fine.

Your network is a complete graph on 5 nodes; we work in the usual
LOCAL model. You are using the following 1-round algorithm:

• Each node sends its input to all other nodes. This way each node
knows all inputs.

• Each node applies the majority rule: if at least 3 of the 5 inputs
are 1s, output 1, otherwise output 0.

This algorithm clearly solves consensus if all nodes correctly follow
this algorithm. Now assume that node 5 is controlled by a Byzantine
adversary, while nodes 1–4 correctly follow this algorithm. Show that
now this algorithm fails to solve consensus among the correct nodes 1–4,
i.e., there is some input so that the adversary can force nodes 1–4 to

7

https://www.podc.org/
http://www.disc-conference.org/


produce inconsistent outputs (at least one of them will output 0 and at
least one of them will output 1).

Your answer should give the inputs of nodes 1–4 (4 bits), the mes-
sages sent by node 5 to nodes 1–4 (4 bits), and the outputs of nodes 1–4
(4 bits). An answer with these three bit strings is sufficient.

12.4 Exercises

In Exercises 12.1–12.4 we use the tools that we have learned in this
course to study locally verifiable problems in cycles in the LOCAL model
(both deterministic and randomized). For the purposes of these exercises,
we use the following definitions:

A locally verifiable problem Π = (Σ,C) consists of a finite alphabet Σ
and a set C of allowed configurations (x , y, z): x , y, z ∈ Σ. An assignment
ϕ : V → Σ is a solution to Π if and only if for each node u and its two
neighbors v, w it holds that
�

ϕ(v),ϕ(u),ϕ(w)
�

∈ C or
�

ϕ(w),ϕ(u),ϕ(v)
�

∈ C.

Put otherwise, if we look at any three consecutive labels x , y, z in the
cycle, either (x , y, z) or (z, y, x) has to be an allowed configuration.

You can assume in Exercises 12.1–12.4 that the value of n is known
(but please then make the same assumption consistently throughout the
exercises, both for positive and negative results).

Exercise 12.1 (trivial and non-trivial problems). We say that a locally
verifiable problem Π0 = (Σ0,C0) is trivial, if (x , x , x) ∈ C0 for some
x ∈ Σ0. We define that weak c-coloring is the problem Π1 = (Σ1,C1)
with

Σ1 = {1,2, . . . , c},

C1 =
�

(x1, x2, x3)
�

� x1 ̸= x2 or x3 ̸= x2

	

.

That is, each node must have at least one neighbor with a different color.

8



(a) Show that if a problem is trivial, then it can be solved in constant
time.

(b) Show that if a problem is not trivial, then it is at least as hard as
weak c-coloring for some c.

▷ hint A

Exercise 12.2 (hardness of weak coloring). Consider the weak c-coloring
problem, as defined in Exercise 12.1.

(a) Show that weak 2-coloring can be solved in cycles in O(log∗ n)
rounds.

(b) Show that weak c-coloring, for any c = O(1), requires Ω(log∗ n)
rounds in cycles.

▷ hint B

What does this imply about the possible complexities of locally verifiable
problems in cycles?

Exercise 12.3 (randomized constant time). Show that if a locally ver-
ifiable problem Π can be solved in constant time in cycles with a ran-
domized LOCAL-algorithm, then it can be solved in constant time with a
deterministic LOCAL-algorithm.

▷ hint C

Exercise 12.4 (deterministic speed up). Assume that there is a deter-
ministic algorithm A for solving problem Π in cycles with a running time
T(n) = o(n). Show that there exists a deterministic algorithm A′ for
solving Π in O(log∗ n) rounds.

What does this imply about the possible complexities of locally veri-
fiable problems in cycles?

▷ hint D

⋆⋆ Exercise 12.5. Prove or disprove: vertex coloring with∆+1 colors in
graphs of maximum degree ∆ can be solved in O(log∆+ log∗ n) rounds
in the LOCAL model.

▷ hint E

9



12.5 Bibliographic Notes

The exercises in this chapter are inspired by Chang and Pettie [2].

12.6 Bibliography

[1] Baruch Awerbuch. Complexity of network synchronization. Journal
of the ACM, 32(4):804–823, 1985. doi:10.1145/4221.4227.

[2] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the
local model. SIAM Journal on Computing, 48(1):33–69, 2019.
arXiv:1704.06297, doi:10.1137/17M1157957.

[3] Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, tri again”:
Finding triangles and small subgraphs in a distributed setting. In
Proc. 26th International Symposium on Distributed Computing (DISC
2012), 2012. arXiv:1201.6652, doi:10.1007/978-3-642-33651-5_14.

[4] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[5] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model
of computation for MapReduce. In Proc. 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2010). 2010. doi:10.1137/
1.9781611973075.76.

[6] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and
Peter Robinson. Distributed computation of large-scale graph prob-
lems. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), 2015. doi:10.1137/1.9781611973730.28.

[7] Christoph Lenzen. Optimal deterministic routing and sorting on
the congested clique. In Proc. 32nd Annual ACM symposium on
Principles of Distributed Computing (PODC 2013), 2013. arXiv:
1207.1852, doi:10.1145/2484239.2501983.

10

https://doi.org/10.1145/4221.4227
https://arxiv.org/abs/1704.06297
https://doi.org/10.1137/17M1157957
https://arxiv.org/abs/1201.6652
https://doi.org/10.1007/978-3-642-33651-5_14
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973730.28
https://arxiv.org/abs/1207.1852
https://arxiv.org/abs/1207.1852
https://doi.org/10.1145/2484239.2501983


[8] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local
algorithms: self-stabilization on speed. In Proc. 11th International
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS 2009), 2009. doi:10.1007/978-3-642-05118-0_2.

[9] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg.
Minimum-weight spanning tree construction in O(log log n) com-
munication rounds. SIAM Journal on Computing, 35(1):120–131,
2005. doi:10.1137/S0097539704441848.

[10] Leslie G. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103–111, 1990. doi:10.1145/79173.
79181.

12.7 Hints

A. Show that if a problem is not trivial, then each configuration must
use a distinct adjacent label.

B. Give an algorithm for turning a weak c-coloring into a 3-coloring
in O(c) rounds.

C. Use an argument to boost the failure probability of a constant-
time randomized algorithm. A constant-time algorithm cannot
depend on the size of the input. Consider a network N such that a
randomized algorithm succeeds with probability p < 1. Boost this
by considering the same algorithm on network N ′ that consists of
many copies of N .

D. Use a similar argument as in Exercise 11.4. In this case we want
a speedup simulation in the LOCAL model, so we also need to
simulate the identifiers. Color the network so that the colors look
locally like unique identifiers. Then simulate algorithm A using
the colors instead of real identifiers.

11

https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181


Since A runs in time o(n), we can find a constant n0 such that
T(n0)≪ n0. On any network with n > n0 nodes, find a coloring
with n0-colors such that two nodes with the same color have dis-
tance at least 2T (n0) + 3. Show that this can be done in O(log∗ n)
rounds. Then run A on N , using the coloring instead of unique
identifiers. Show that this simulation can be done in constant time.
Show that this simulation is correct in every 1-neighborhood.

E. This is an open research question.

12


	What Have We Learned?
	What Else Exists?
	Distance vs. Bandwidth vs. Local Memory
	Asynchronous and Fault-Tolerant Algorithms
	Other Directions
	Research in Distributed Algorithms

	Quiz
	Exercises
	Bibliographic Notes
	Bibliography
	Hints

