

Distributed Algorithms 2020

LOCAL model port-numbering model + unique identifiers

Nodes have distinct labels from {1, 2, ..., poly(*n*)}

CONGEST model LOCAL model + bandwidth limitation

Messages at most $O(\log n)$ bits

LOCAL · unbounded messages

• everything trivial to solve in O(diameter) rounds: gather full input and solve locally

CONGEST · bounded messages

- gathering everything is way too expensive
- O(diameter) and O(n) is nontrivial

Designing efficient algorithms in **CONGEST** model

Pipelining

Pipelining

- Multiple operations in progress *simultaneously*
- Using *different resources*
- In APSP algorithm:
 - multiple waves
 - using different communication links

Pipelining

- Does not reduce the total number of messages
 - only removes idle periods between messages
- If all communication links are already sending useful data every round, no room for pipelining

What kind of problems cannot be solved fast in **CONGEST** model?

Typical hard problems

•A: complicated, lots of information

• B: bottleneck

 can only send small number of bits per round from A to C

•C: need to know A

Proving hardness

- Counting argument
- Many possible inputs in A
- Few possible messages across bottleneck B

Proving hardness

- Counting argument
- Many possible inputs in A
- Few possible messages across bottleneck B
- Contradiction:
 - *different* inputs in A
 - same messages across B
 - same output in C

