Distributed Algorithms 2020

6 Randomized algorithms
News

• In this area, there are two main scientific conferences organized each year:
 • **PODC**: Symposium on Principles of Distributed Computing (since 1982)
 • **DISC**: International Symposium on Distributed Computing (since 1985)

• **DISC 2020 is happening right now (online!)**
 • you can e.g. watch some video presentations
Recap

• Deterministic algorithms in PN model
 • init\(_d\)(...), send\(_d\)(...), receive\(_d\)(...)

• Deterministic algorithms in LOCAL model
 • add unique identifiers

• Deterministic algorithms in CONGEST model
 • add bandwidth constraints
Randomized algorithms

• Randomized algorithms in PN model
 • $\text{init}_d(\ldots)$, $\text{receive}_d(\ldots)$: probability distribution

• Randomized algorithms in LOCAL model
 • add unique identifiers

• Randomized algorithms in CONGEST model
 • add bandwidth constraints
Guarantees

• Monte Carlo:
 • guaranteed running time
 • probabilistic output quality

• Las Vegas
 • probabilistic running time
 • guaranteed output quality
Guarantees

- Monte Carlo:
 - *guaranteed* running time
 - probabilistic output quality

- Las Vegas
 - probabilistic running time
 - *guaranteed* output quality

- "With high probability" (w.h.p.)
Role of randomness

• Sometimes randomness is the only way to design fast distributed algorithms

• Example: sinkless orientation
 • deterministic LOCAL: $O(\log n)$ is best possible
 • randomized LOCAL: $O(\log \log n)$ w.h.p.
 is best possible
Role of randomness

• Sometimes randomness is just one of many ways to break symmetry

• Example:
 • *PN model* + randomness + knowledge of n: you can construct *unique identifiers* w.h.p.
This week’s quiz

• Random permutation of \(\{1, \ldots, 10\}\) in a 10-cycle
• Expected number of local maxima?
Video
Pretty simple idea:

• nodes are *active* with probability 1/2

• only active nodes try to pick a *random free color*

• stop if successful
Simplest possible idea:

• everyone tries to pick a random free color
• stop if successful
Exam

• Take-home exam
 • googling fine, asking someone for help not
 • published ≥ 24h before exam ends
 • submit answers in MyCourses

• Grading: pass/fail
 • or pass/borderline/fail if needed
 • borderline can be upgraded to pass with some extra homework
Exam

• **Expected:**
 • you know *exactly what is a distributed algorithm* (formally, not just waving hands)
 • you can *design* new distributed algorithms
 • you can *analyze* distributed algorithms, with the help of usual graph-theoretic concepts

• **Not needed:**
 • memorizing technical details