

Distributed Algorithms 2020

Randomized algorithms

News

- In this area, there are two main scientific conferences organized each year:
 - **PODC:** Symposium on Principles of Distributed Computing (since 1982)
 - **DISC:** International Symposium on Distributed Computing (since 1985)
- DISC 2020 is happening right now (online!)
 - you can e.g. watch some video presentations

Recap

- Deterministic algorithms in PN model
 - init_d(...), send_d(...), receive_d(...)
- Deterministic algorithms in LOCAL model
 - add unique identifiers
- Deterministic algorithms in CONGEST model
 - add bandwidth constraints

Randomized algorithms

- Randomized algorithms in PN model
 - init_d(...), receive_d(...): **probability distribution**
- Randomized algorithms in LOCAL model
 - add unique identifiers
- Randomized algorithms in CONGEST model
 - add bandwidth constraints

Guarantees

Monte Carlo:

- guaranteed running time
- probabilistic output quality

Las Vegas

- probabilistic running time
- guaranteed output quality

Guarantees

Monte Carlo:

- guaranteed running time
- probabilistic output quality

Las Vegas

- probabilistic running time
- guaranteed output quality
- "With high probability" (w.h.p.)

Role of randomness

- Sometimes randomness is the only way to design fast distributed algorithms
- Example: sinkless orientation
 - deterministic LOCAL: $O(\log n)$ is best possible
 - randomized LOCAL: O(log log n) w.h.p. is best possible

Role of randomness

- Sometimes randomness is just one of many ways to break symmetry
- Example:
 - **PN model** + randomness + knowledge of *n*: you can construct **unique identifiers** w.h.p.

This week's quiz

- Random permutation of {1, ..., 10} in a 10-cycle
- Expected number of local maxima?

Video

Pretty simple idea:

- nodes are active with probability 1/2
- only active nodes try to pick a random free color
- stop if successful

Simplest possible idea:

- everyone tries to pick
 a random free color
- stop if successful

Exam

Exam

Take-home exam

- googling fine, asking someone for help not
- published ≥ 24h before exam ends
- submit answers in MyCourses
- Grading: pass/fail
 - or pass/borderline/fail if needed
 - borderline can be upgraded to pass with some extra homework

Exam

Expected:

- you know exactly what is a distributed algorithm (formally, not just waving hands)
- you can *design* new distributed algorithms
- you can *analyze* distributed algorithms, with the help of usual graph-theoretic concepts

Not needed:

memorizing technical details