Sinkless orientation
This week’s plan

• **Topic:** complexity of *sinkless orientation*
 • task: high-degree nodes must have outdegree ≥ 1
 • possible in $O(\log n)$ rounds, not in $o(\log n)$ rounds

• **Video:** *why* do we care about this?
 • e.g. hardness of graph coloring

• **Today:** how to *prove* it?
 • round elimination & fixed points
Sinkless orientation

• **Labels:** \{ O, I \}
 - \(O = \) “edge oriented away from the active node”
 - \(I = \) “edge oriented towards the active node”

• **Active:** [O, ?, ?]
 - “at least one outgoing edge”

• **Passive:** [I, ?, ?]
 - “at least one outgoing edge”
active: [O, ?, ?]

passive: [I, ?, ?]
Sinkless orientation: \(O, I \)
- active: \([O, ?, ?]\)
- passive: \([I, ?, ?]\)

Output problem: \{O\}, \{I\}, \{O,I\}
- active: \([\{I\}, ?, ?]\)
- passive: \([\{O\}, ?, ?]\) or \([\{O,I\}, ?, ?]\)

Maximal problem: \{I\}, \{O,I\}
- active: \([\{I\}, \{O,I\}, \{O,I\}]\)
- passive: \([\{O,I\}, ?, ?]\)
Sinkless orientation: \(O, I\)
- active: \([O, ?, ?]\)
- passive: \([I, ?, ?]\)

Output problem: \(\{O\}, \{I\}, \{O,I\}\)
- active: \([\{I\}, ?, ?]\)
- passive: \([\{O\}, ?, ?]\) or \([\{O,I\}, ?, ?]\)

Maximal problem: \(A, B\)
- active: \([A, B, B]\)
- passive: \([B, ?, ?]\)
Output problem

• **Labels:** \{ A, B \}
 - A = “edge oriented away from the active node”
 - B = “edge oriented towards the active node”

• **Active:** [A, B, B]
 - “exactly one outgoing edge”

• **Passive:** [B, ?, ?]
 - “at least one outgoing edge”
Starting point: A, B
- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: \{B\}, \{A,B\}
- active: [\{B\}, \{A,B\}, \{A,B\}]
- passive: [\{A,B\}, ?, ?]
Starting point: A, B
 • active: [A, B, B]
 • passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
 • active: [\{B\}, ?, ?]
 • passive: ...

Maximal problem: A, B
 • active: [A, B, B]
 • passive: [B, ?, ?]
Fixed points

• $X = \text{re}(X)$, and X is not 0-round solvable
• “X can be solved 1 round faster than X”
 • contradiction
• One of our assumptions fails — which one?
Fixed points

• $X = \text{re}(X)$, and X is not 0-round solvable

• *X cannot be solved in $o(\log n)$ rounds* in the deterministic PN model

• We can also derive hardness results for deterministic and randomized LOCAL model
Often used like this

• We are interested in problem X
• Find a suitable relaxation Y of X
 • problem Y is at most as hard as X
 • problem Y is nontrivial
• Show that $Y = \text{re}(Y)$ or $Y = \text{re}(\text{re}(Y))$
 • Y cannot be solved fast
 • X cannot be solved fast
Sinkless and sourceless

• **Labels:** \{ O, I \}
 - \(O = \) "edge oriented away from the active node"
 - \(I = \) "edge oriented towards the active node"

• **Active:** [O, I, ?]
 - "at least one outgoing and one incoming edge"

• **Passive:** [I, O, ?]
 - "at least one outgoing and one incoming edge"