

Distributed Algorithms 2020

Hardness of coloring

This week's goals

Specific technical result:

- 3-coloring of cycles in the LOCAL model
- possible in O(log* n) rounds (week 1)
- not possible in o(log* n) rounds (this week)

General idea:

 how to use round elimination to prove negative results in the LOCAL model and/or for randomized algorithms

Challenge & workaround

- Round elimination does not work directly in the LOCAL model
 - problem: independence vs. unique identifiers
- But we can use it to study randomized algorithms in the PN model
 - random bits are independent!
- Then results for the LOCAL model follow!

Randomized round elimination

- The same pair of problems: X and re(X)
 - re(X) does not depend on model of computing!
- Different implications in different models:
 - if A is a deterministic PN-algorithm that solves X in T rounds then ...
 - if A is a randomized PN-algorithm that solves X in T rounds with high probability then ...

Randomized round elimination

- We will use cycles as an example
- The same idea generalizes to biregular trees
 - probabilities that we get are just slightly different

Randomized round elimination in cycles

- A_0 : local failure probability < $1/x^3$ e.g. 0.1%
- A₁: form the set of *frequent labels*
 - labels that appear with probability $\geq 1/x$
- e.g. 10%

e.g. 1%

- Analysis: focus on lucky neighborhoods
 - neighborhoods in which A_0 fails with probability $< 1/x^2$

Intuition

Before seeing anything:

• we know that A_0 failure rate is $< 1/x^3$

Gather more local information:

- gain more information on A_0 failure rate here
- may increase or decrease does it exceed $1/x^2$?
- "unlucky": much worse than average failure rate
- "lucky": not much worse than average failure rate

New active nodes

- Assume we are in a *lucky neighborhood*
 - by definition: $P[A_0 \text{ fails}] < 1/x^2$
- Assume [a, b] is a pair of **frequent labels**
 - happens here with probability $\geq 1/x \cdot 1/x = 1/x^2$
 - A_0 cannot fail here with probability $\geq 1/x^2$
 - · label pair [a, b] must be feasible!
- A₁ can fail only in unlucky neighborhoods!

Lucky neighborhoods

- **Assumption:** $P[A_0 \text{ fails}] < 1/x^3$
- **Definition:** $P[A_0 \text{ fails } | \text{ unlucky}] \ge 1/x^2$
- $P[A_0 \text{ fails } | \text{ unlucky}] \cdot P[\text{unlucky}] < 1/x^3$
- P[unlucky] < **1/x**

New passive nodes

- $P[A_0 \text{ fails}] < 1/x^3$
- $P[A_0 \text{ output considered infrequent by } A_1]$
 - < #labels #edges 1/x

Otherwise:

- A_0 does not fail, its outputs form a valid solution
- A_0 outputs only labels that A_1 considers frequent
- A_1 has to succeed in solving re(X)

Summary

- $P[A_0 \text{ fails}] < 1/x^3$
- Possible A_1 -failures:
 - P[unlucky] < 1/x
 - $P[A_0 \text{ fails}] < 1/x^3$
 - P[A₀ outputs some infrequent label]
 < #labels #edges 1/x
- $P[A_1 \text{ fails}] < \text{constant} \cdot 1/x$

Randomized round elimination in cycles

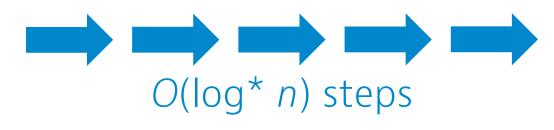
- A_0 : local failure probability < $1/x^3$
- A₁: local failure probability < constant 1/x
- Failure probability increases polynomially
- We can repeat this many times before A_k becomes useless

What works very often

- Do round elimination in deterministic PN model
 - gain intuition on how the problem behaves
- Then switch to randomized PN model
 - proper analysis of failure probabilities
- Results for deterministic & randomized LOCAL follow directly

Case study: Coloring directed cycles

A a B b C c	F G E H D I C J B K A L	A a b C d d e f	A a B C C D d E f	A a B b C c D d E e F f
A bc B ac C ab	ACE GIK BCF HIL DEF JKL	ACE fdb BCF eda DEF cba	A bdf B ade C abdef D abc E abcdf F abcde	A bcdef B acdef C abdef D abcef E abcdf F abcde



3-coloring

 $O(\log^* n)$ rounds

Fast color reduction

T-1 rounds

T rounds

 2^k -coloring

k-coloring

Round elimination

c-coloring

0 rounds

3-coloring

 $T << \log^* n$ rounds

Sinkless orientation

Deterministic PN:

- not possible in o(log n) rounds (last week)
- possible in O(log n) rounds (last week)

Randomized PN:

- not possible in o(log log n) rounds (exercise)
- possible in O(log log n) rounds (not easy)

Deterministic LOCAL?