
Distributed
Algorithms 2020
Juho Hirvonen and Jukka Suomela
Aalto University, Finland

https://jukkasuomela.fi/da2020/

October 29, 2023

https://jukkasuomela.fi/da2020/

Contents

Foreword viii

About the Course . viii
Acknowledgments . ix
Website . ix
License . ix

Part I Informal Introduction

1 Warm-Up 2

1.1 Running Example: Coloring Paths 2
1.2 Challenges of Distributed Algorithm 3
1.3 Coloring with Unique Identifiers 4
1.4 Faster Coloring with Unique Identifiers 7

1.4.1 Algorithm Overview 8
1.4.2 Algorithm for One Step 8
1.4.3 An Example . 9
1.4.4 Correctness . 11
1.4.5 Iteration . 11

1.5 Coloring with Randomized Algorithms 12
1.5.1 Algorithm . 12
1.5.2 Analysis . 12
1.5.3 With High Probability 13

1.6 Summary . 13
1.7 Quiz . 14
1.8 Exercises . 14
1.9 Bibliographic Notes . 16

i

1.10 Appendix: Mathematical Preliminaries 16
1.10.1 Power Tower . 16
1.10.2 Iterated Logarithm 17

Part II Graphs

2 Graph-Theoretic Foundations 19

2.1 Terminology . 19
2.1.1 Adjacency . 19
2.1.2 Subgraphs . 20
2.1.3 Walks . 20
2.1.4 Connectivity and Distances 22
2.1.5 Isomorphism . 24

2.2 Packing and Covering 24
2.3 Labelings and Partitions 27
2.4 Factors and Factorizations 29
2.5 Approximations . 31
2.6 Directed Graphs and Orientations 31
2.7 Quiz . 32
2.8 Exercises . 33
2.9 Bibliographic Notes . 35

Part III Models of Computing

3 PN Model: Port Numbering 37

3.1 Introduction . 37
3.2 Port-Numbered Network 39

3.2.1 Terminology . 40
3.2.2 Underlying Graph 40
3.2.3 Encoding Input and Output 41
3.2.4 Distributed Graph Problems 42

ii

3.3 Distributed Algorithms in the PN model 43
3.3.1 State Machine 43
3.3.2 Execution . 44
3.3.3 Solving Graph Problems 45

3.4 Example: Coloring Paths 46
3.5 Example: Bipartite Maximal Matching 48

3.5.1 Algorithm . 48
3.5.2 Analysis . 48

3.6 Example: Vertex Covers 52
3.6.1 Virtual 2-Colored Network 52
3.6.2 Simulation of the Virtual Network 54
3.6.3 Algorithm . 54
3.6.4 Analysis . 55

3.7 Quiz . 58
3.8 Exercises . 58
3.9 Bibliographic Notes . 60

4 LOCAL Model: Unique Identifiers 61

4.1 Definitions . 61
4.2 Gathering Everything 63
4.3 Solving Everything . 65
4.4 Focus on Computational Complexity 66
4.5 Greedy Color Reduction 67

4.5.1 Algorithm . 67
4.5.2 Analysis . 69
4.5.3 Remarks . 70

4.6 Efficient (∆+ 1)-coloring 70
4.7 Additive-Group Coloring 71

4.7.1 Algorithm . 71
4.7.2 Correctness . 72
4.7.3 Running Time 73

iii

4.8 Fast O(∆2)-coloring . 75
4.8.1 Cover-Free Set Families 75
4.8.2 Constructing Cover-Free Set Families 76
4.8.3 Efficient Color Reduction 78
4.8.4 Iterated Color Reduction 79
4.8.5 Final Color Reduction Step 80

4.9 Putting Things Together 82
4.10 Quiz . 83
4.11 Exercises . 83
4.12 Bibliographic Notes . 86
4.13 Appendix: Finite Fields 87

5 CONGEST Model: Bandwidth Limitations 89

5.1 Definitions . 89
5.2 Examples . 90
5.3 All-Pairs Shortest Path Problem 91
5.4 Single-Source Shortest Paths 91
5.5 Breadth-First Search Tree 93
5.6 Leader Election . 95
5.7 All-Pairs Shortest Paths 98
5.8 Quiz . 100
5.9 Exercises . 101
5.10 Bibliographic Notes . 102

6 Randomized Algorithms 103

6.1 Definitions . 103
6.2 Probabilistic Analysis 104
6.3 With High Probability 105
6.4 Randomized Coloring in Bounded-Degree Graphs 106

6.4.1 Algorithm Idea 106
6.4.2 Algorithm . 107
6.4.3 Analysis . 109

iv

6.5 Quiz . 111
6.6 Exercises . 111
6.7 Bibliographic Notes . 113

Part IV Proving Impossibility Results

7 Covering Maps 115

7.1 Definition . 115
7.2 Covers and Executions 118
7.3 Examples . 119
7.4 Quiz . 124
7.5 Exercises . 124
7.6 Bibliographic Notes . 128

8 Local Neighborhoods 129

8.1 Definitions . 129
8.2 Local Neighborhoods and Executions 129
8.3 Example: 2-Coloring Paths 131
8.4 Quiz . 133
8.5 Exercises . 134
8.6 Bibliographic Notes . 136

9 Round Elimination 137

9.1 Bipartite Model and Biregular Trees 137
9.1.1 Bipartite Locally Verifiable Problem 138
9.1.2 Examples . 139

9.2 Introducing Round Elimination 142
9.2.1 Impossibility Using Iterated Round Elimination . 143
9.2.2 Output Problems 143
9.2.3 Example: Weak 3-labeling 144
9.2.4 Complexity of Output Problems 145
9.2.5 Example: Complexity of Weak 3-labeling 147

v

9.2.6 Example: Iterated Round Elimination 148
9.3 Quiz . 150
9.4 Exercises . 150
9.5 Bibliographic Notes . 152

10 Sinkless Orientation 153

10.1 Sinkless Orientation on Paths 153
10.1.1 Hardness of Sinkless Orientation 154
10.1.2 Solving Sinkless Orientation on Paths 155

10.2 Sinkless Orientation on Trees 156
10.2.1 Solving Sinkless Orientation on Trees 157
10.2.2 Roadmap: Next Steps 159

10.3 Maximal Output Problems 159
10.4 Hardness of Sinkless Orientation on Trees 161

10.4.1 First Step . 161
10.4.2 Equivalent Formulation 162
10.4.3 Fixed Points in Round Elimination 163
10.4.4 Sinkless Orientation Gives a Fixed Point 164

10.5 Quiz . 167
10.6 Exercises . 167
10.7 Bibliographic Notes . 169

11 Hardness of Coloring 170

11.1 Coloring and Round Elimination 170
11.1.1 Encoding Coloring 171
11.1.2 Output Problem of Coloring 172
11.1.3 Simplification 173
11.1.4 Generalizing Round Elimination for Coloring . . 175
11.1.5 Sequence of Output Problems 176

11.2 Round Elimination with Inputs 177
11.2.1 Randomized Round Elimination Step 178

vi

11.3 Iterated Randomized Round Elimination 180
11.3.1 Proof of Lemma 11.1 183
11.3.2 Proof of Lemma 11.2 185

11.4 Quiz . 187
11.5 Exercises . 187
11.6 Bibliographic Notes . 188

Part V Conclusions

12 Conclusions 190

12.1 What Have We Learned? 190
12.2 What Else Exists? . 191

12.2.1 Distance vs. Bandwidth vs. Local Memory 191
12.2.2 Asynchronous and Fault-Tolerant Algorithms . . 193
12.2.3 Other Directions 194
12.2.4 Research in Distributed Algorithms 195

12.3 Quiz . 196
12.4 Exercises . 197
12.5 Bibliographic Notes . 198

Hints 199

Bibliography 206

vii

Foreword

This book is an introduction to the theory of distributed algorithms, with
focus on distributed graph algorithms (network algorithms). The topics
covered include:

• Models of computing: precisely what is a distributed algorithm,
and what do we mean when we say that a distributed algorithm
solves a certain computational problem?

• Algorithm design and analysis: which computational problems
can be solved with distributed algorithms, which problems can be
solved efficiently, and how to do it?

• Computability and computational complexity: which computa-
tional problems cannot be solved at all with distributed algorithms,
which problems cannot be solved efficiently, why is this the case,
and how to prove it?

No prior knowledge of distributed systems is needed. A basic knowl-
edge of discrete mathematics and graph theory is assumed, as well as
familiarity with the basic concepts from undergraduate-level courses on
models on computation, computational complexity, and algorithms and
data structures.

About the Course

This textbook was written to support the lecture course CS-E4510 Dis-
tributed Algorithms at Aalto University. The course is worth 5 ECTS
credits. There are 12 weeks of lectures. Each week we will cover one
chapter of this book, and our students are expected to solve the quiz and
at least 3 of the exercises from the chapter.

viii

Acknowledgments

Many thanks to Jaakko Alasaari, Alkida Balliu, Sebastian Brandt, Arthur
Carels, Jacques Charnay, Faith Ellen, Aelitta Ezugbaya, Mika Göös, Jakob
Greistorfer, Jana Hauer, Nikos Heikkilä, Joel Kaasinen, Samu Kallio, Mir-
co Kroon, Siiri Kuoppala, Teemu Kuusisto, Dang Lam, Tuomo Lempiäinen,
Christoph Lenzen, Darya Melnyk, Abdulmelik Mohammed, Christopher
Purcell, Mikaël Rabie, Joel Rybicki, Joona Savela, Stefan Schmid, Roelant
Stegmann, Aleksandr Tereshchenko, Verónica Toro Betancur, Przemysław
Uznański, and Jussi Väisänen for feedback, discussions, comments, and
for helping us with the arrangements of this course. This work was
supported in part by the Academy of Finland, Grant 252018.

Website

For updates and additional material, see

https://jukkasuomela.fi/da2020/

License

This work is licensed under the Creative Commons Attribution 4.0 Inter-
national Public License. To view a copy of this license, visit

https://creativecommons.org/licenses/by/4.0/

ix

https://jukkasuomela.fi/da2020/
https://creativecommons.org/licenses/by/4.0/

Part I

Informal Introduction

1

Chapter 1

Warm-Up

We will start this course with an informal introduction to distributed
algorithms. We will formalize the model of computing later but for now
the intuitive idea of computers that can exchange messages with each
others is sufficient.

1.1 Running Example: Coloring Paths

Imagine that we have n computers (or nodes as they are usually called)
that are connected to each other with communication channels so that
the network topology is a path:

The computers can exchange messages with their neighbors. All comput-
ers run the same algorithm—this is the distributed algorithm that we will
design. The algorithm will decide what messages a computer sends in
each step, how it processes the messages that it receives, when it stops,
and what it outputs when it stops.

In this example, the task is to find a proper coloring of the path with
3 colors. That is, each node has to output one of the colors, 1, 2, or 3,
so that neighbors have different colors—here is an example of a proper
solution:

12 22 33 13

2

1.2 Challenges of Distributed Algorithm

With a bird’s-eye view of the entire network, coloring a path looks like a
very simple task: just start from one endpoint and assign colors 1 and 2
alternately. However, in a real-world computer network we usually do
not have all-powerful entities that know everything about the network
and can directly tell each computer what to do.

Indeed, when we start a networked computer, it is typically only
aware of itself and the communication channels that it can use. In our
simple example, the endpoints of the path know that they have one
neighbor:

All other nodes along the path just know that they have two neighbors:

For example, the second node along the path looks no different from the
third node, yet somehow they have to produce different outputs.

Obviously, the nodes have to exchange messages with each other in
order to figure out a proper solution. Yet this turns out to be surprisingly
difficult even in the case of just n= 2 nodes:

If we have two identical computers connected to each other with a single
communication link, both computers are started simultaneously, and
both of them run the same deterministic algorithm, how could they ever
end up in different states?

The answer is that it is not possible, without some additional assump-
tions. In practice, we could try to rely on some real-world imperfections
(e.g., the computers are seldom perfectly synchronized), but in the the-
ory of distributed algorithms we often assume that there is some explicit
way to break symmetry between otherwise identical computers. In this
chapter, we will have a brief look at two common assumption:

3

• each computer has a unique name,
• each computer has a source of random bits.

In subsequent chapters we will then formalize these models, and develop
a theory that will help us understand precisely what kind of tasks can be
solved in each case, and how fast.

1.3 Coloring with Unique Identifiers

There are plenty of examples of real-world networks with globally unique
identifiers: public IPv4 and IPv6 addresses are globally unique identifiers
of Internet hosts, devices connected to an Ethernet network have globally
unique MAC addresses, mobile phones have their IMEI numbers, etc.
The common theme is that the identifiers are globally unique, and the
numbers can be interpreted as natural numbers:

3312 3720 2715 1342

With the help of unique identifiers, it is now easy to design an algorithm
that colors a path. Indeed, the unique identifiers already form a coloring
with a large number of colors! All that we need to do is to reduce the
number of colors to 3.

We can use the following simple strategy. In each step, a node is
active if it is a “local maximum”, i.e., its current color is larger than the
current colors of its neighbors:

3312 3720 2715 1342

The active nodes will then pick a new color from the color palette {1, 2, 3},
so that it does not conflict with the current colors of their neighbors.
This is always possible, as each node in a path has at most 2 neighbors,
and we have 3 colors in our color palette:

112 3720 2715 131

4

Then we simply repeat the same procedure until all nodes have small
colors. First find the local maxima:

112 3720 2715 131

And then recolor the local maxima with colors from {1,2, 3}:

12 220 2715 21

Continuing this way we will eventually have a path that is properly
colored with colors {1,2, 3}:

12 220 2715 21

12 220 115 21

12 220 115 21

12 22 115 21

12 22 115 21

12 22 13 21

Note that we may indeed be forced to use all three colors.
So far we have sketched an algorithm idea, but we still have to show

that we can actually implement this idea as a distributed algorithm.
Remember that there is no central control; nobody has a bird’s-eye view
of the entire network. Each node is an independent computer, and all
computers are running the same algorithm. What would the algorithm
look like?

Let us fix some notation. Each node maintains a variable c that
contains its current color. Initially, c is equal to the unique identifier of
the node. Then computation proceeds as shown in Table 1.1.

This shows a typical structure of a distributed algorithm: an infinite
send–receive–compute loop. A computer is seen as a state machine; here
c is the variable that holds the current state of the computer. In this

5

Repeat forever:

• Send message c to all neighbors.

• Receive messages from all neighbors.
Let M be the set of messages received.

• If c /∈ {1,2, 3} and c >max M :
Let c←min ({1, 2,3} \M).

Table 1.1: A simple 3-coloring algorithm for paths.

algorithm, we have three stopping states: c = 1, c = 2, and c = 3. It is
easy to verify that the algorithm is indeed correct in the following sense:

(a) In any path graph, for any assignment of unique identifiers, all
computers will eventually reach a stopping state.

(b) Once a computer reaches a stopping state, it never changes its
state.

The second property is very important: each computer has to know when
it is safe to announce its output and stop.

Our algorithm may look a bit strange in the sense that computers
that have “stopped” are still sending messages. However, it is fairly
straightforward to rewrite the algorithm so that you could actually turn
off computers that have stopped. The basic idea is that nodes that are
going to switch to a stopping state first inform their neighbors about
this. Each node will memorize which of its neighbors have already
stopped and what were their final colors. Implementing this idea is
left as Exercise 1.2, and you will later see that this can be done for any
distributed algorithm. Hence, without loss of generality, we can play by
the following simple rules:

• The nodes are state machines that repeatedly send messages to
their neighbors, receive messages from their neighbors, and up-

6

date their state—all nodes perform these steps synchronously in
parallel.

• Some of the states are stopping states, and once a node reaches a
stopping state, it no longer changes its state.

• Eventually all nodes have to reach stopping states, and these states
must form a correct solution to the problem that we want to solve.

Note that here a “state machine” does not necessarily refer to a finite-
state machine. We can perfectly well have a state machine with infinitely
many states. Indeed, in the example of Table 1.1 the set of possible
states was the set of all positive integers.

1.4 Faster Coloring with Unique Identifiers

So far we have seen that with the help of unique identifiers, it is possible
to find a 3-coloring of a path. However, the algorithm that we designed
is not particularly efficient in the worst case. To see this, consider a path
in which the unique identifiers happen to be assigned in an increasing
order:

1312 3320 2715 4237

In such a graph, in each round there is only one node that is active. In
total, it will take Θ(n) rounds until all nodes have stopped.

However, it is possible to color paths much faster. The algorithm is
easier to explain if we have a directed path:

3312 3720 2715 1342

That is, we have a consistent orientation in the path so that each node has
at most one “predecessor” and at most one “successor”. The orientations
are just additional information that we will use in algorithm design
—nodes can always exchange information along each edge in either
direction. Once we have presented the algorithm for directed paths, we
will then generalize it to undirected paths in Exercise 1.3.

7

1.4.1 Algorithm Overview

For the sake of concreteness, let us assume that the nodes are labeled
with 128-bit unique identifiers—for example, IPv6 addresses. In most
real-world networks 2128 identifiers is certainly more than enough, but
the same idea can be easily generalized to arbitrarily large identifiers if
needed.

Again, we will interpret the unique identifiers as colors; hence our
starting point is a path that is properly colored with 2128 colors. In the
next section, we will present a fast color reduction algorithm for directed
paths that reduces the number of colors from 2x to 2x in one round, for
any positive integer x . Hence in one step we can reduce the number of
colors from 2128 to 2 · 128= 256. In just four iterations we can reduce
the number of colors from 2128 to 6, as follows:

2128→ 2 · 128= 28,

28→ 2 · 8= 24,

24→ 2 · 4= 23,

23→ 2 · 3= 6.

Once we have found a 6-coloring, we can then apply the algorithm of
Table 1.1 to reduce the number of colors from 6 to 3. It is easy to see
that this will take at most 3 rounds. Overall, we have an algorithm that
reduces the number of colors from 2128 to 3 in only 7 rounds—no matter
how many nodes we have in the path. Compare this with the simple
3-coloring algorithm, which may take millions of rounds for paths with
millions of nodes.

1.4.2 Algorithm for One Step

Let us now show how to reduce the number of colors from 2x to 2x in
one round; this will be achieved by doing some bit manipulations. First,
each node sends its current color to its predecessor. After this step, each
node u knows two values:

8

• c0(u), the current color of the node,
• c1(u), the current color of its successor.

If a node does not have any successor, it just proceeds as if it had a
successor of some color different from c0(u).

We can interpret both c0(u) and c1(u) as x-bit binary strings that
represent integers from range 0 to 2x − 1. We know that the current
color of node u is different from the current color of its successor, i.e.,
c0(u) ̸= c1(u). Hence in the two binary strings c0(u) and c1(u) there is
at least one bit that differs. Define:

• i(u) ∈ {0,1, . . . , x − 1} is the index of the first bit that differs
between c0(u) and c1(u),

• b(u) ∈ {0, 1} is the value of bit number i(u) in c0(u).

Finally, node u chooses

c(u) = 2i(u) + b(u)

as its new color.

1.4.3 An Example

Let x = 8, i.e., nodes are colored with 8-bit numbers. Assume that we
have a node u of color 123, and u has a successor v of color 47; see
Table 1.2 for an illustration. In binary, we have

c0(u) = 011110112,

c1(u) = 001011112.

Counting from the least significant bit, node u can see that:

• bit number 0 is the same in both c0(u) and c1(u),
• bit number 1 is the same in both c0(u) and c1(u),
• bit number 2 is different in c0(u) and c1(u).

Hence we will set

i(u) = 2, b(u) = 0, c(u) = 2 · 2+ 0= 4.

9

node input output
u c0(u) c1(u) i(u) b(u) c(u)

· · · · · · · · · · · · · · · · · ·
↓
⃝ 011110112 001011112 2 0 4
↓
⃝ 001011112 011010112 2 1 5
↓
⃝ 011010112 · · · · · · · · · · · ·
↓
· · · · · ·
· · · · · · · · · · · · · · · · · ·
↓
⃝ 011110112 001011112 2 0 4
↓
⃝ 001011112 011011112 6 0 12
↓
⃝ 011011112 · · · · · · · · · · · ·
↓
· · · · · ·

Table 1.2: Fast color reduction algorithm for directed paths: reducing
the number of colors from 2x to 2x , for x = 8. There are two interesting
cases: either i(u) is the same for two neighbors (first example), or they
are different (second example). In the first case, the values b(u) will differ,
and in the second case, the values i(u) will differ. In both cases, the final
colors c(u) will be different.

10

That is, node u picks 4 as its new color. If all other nodes run the same
algorithm, this will be a valid choice—as we will argue next, both the
predecessor and the successor of u will pick a color that is different
from 4.

1.4.4 Correctness

Clearly, the value c(u) is in the range {0, 1, . . . , 2x−1}. However, it is not
entirely obvious that these values actually produce a proper 2x-coloring
of the path. To see this, consider a pair of nodes u and v so that v is
the successor of u. By definition, c1(u) = c0(v). We need to show that
c(u) ̸= c(v). There are two cases—see Table 1.2 for an example:

(a) i(u) = i(v) = i: We know that b(u) is bit number i of c0(u), and
b(v) is bit number i of c1(u). By the definition of i(u), we also
know that these bits differ. Hence b(u) ̸= b(v) and c(u) ̸= c(v).

(b) i(u) ̸= i(v): No matter how we choose b(u) ∈ {0,1} and b(v) ∈
{0, 1}, we have c(u) ̸= c(v).

We have argued that c(u) ̸= c(v) for any pair of two adjacent nodes u
and v, and the value of c(u) is an integer between 0 and 2x − 1 for each
node u. Hence the algorithm finds a proper 2x-coloring in one round.

1.4.5 Iteration

The algorithm that we presented in this section can reduce the number
of colors from 2x to 2x in one round; put otherwise, we can reduce the
number of colors from x to O(log x) in one round.

If we iterate the algorithm, we can reduce the number of colors from
x to 6 in O(log∗ x) rounds (please refer to Section 1.10 for the definition
of the log∗ function if you are not familiar with it).

Once we have reduced the number of colors to 6, we can use the
simple color reduction algorithm from Section 1.3 to reduce the number
of colors from 6 to 3 in 3 rounds. The details of the analysis are left as
Exercises 1.5 and 1.6.

11

1.5 Coloring with Randomized Algorithms

So far we have used unique identifiers to break symmetry. Another
possibility is to use randomness. Here is a simple randomized distributed
algorithm that finds a proper 3-coloring of a path: nodes try to pick
colors from the palette {1, 2, 3} uniformly at random, and they stop once
they succeed in picking a color that is different from the colors of their
neighbors.

1.5.1 Algorithm

Let us formalize the simple randomized 3-coloring algorithm that we
sketched above. Each node u has a flag s(u) ∈ {0, 1} indicating whether
it has stopped, and a variable c(u) ∈ {1, 2, 3} that stores its current color.
If s(u) = 1, a node has stopped and its output is c(u).

In each step, each node u with s(u) = 0 picks a new color c(u) ∈
{1,2,3} uniformly at random. Then each node sends its current color
c(u) to its neighbors. If c(u) is different from the colors of its neighbors,
u will set s(u) = 1 and stop; otherwise it tries again in the next round.

1.5.2 Analysis

It is easy to see that in each step, a node u will stop with probability at
least 1/3: after all, no matter what its neighbors do, there is at least one
choice for c(u) ∈ {1,2, 3} that does not conflict with its neighbors.

Fix a positive constant C . Consider what happens if we run the
algorithm for

k = (C + 1) log3/2 n

steps, where n is the number of nodes in the network. Now the proba-
bility that a given node u has not stopped after k steps is at most

(1− 1/3)k =
1

nC+1
.

12

By the union bound, the probability that there is a node that has not
stopped is at most 1/nC . Hence with probability at least 1− 1/nC , all
nodes have stopped after k steps.

1.5.3 With High Probability

Let us summarize what we have achieved: for any given constant C ,
there is an algorithm that runs for k = O(log n) rounds and produces a
proper 3-coloring of a path with probability 1− 1/nC . We say that the
algorithm runs in time O(log n) with high probability—here the phrase
“high probability” means that we can choose any constant C and the
algorithm will succeed at least with a probability of 1− 1/nC . Note that
even for a moderate value of C , say, C = 10, the success probability
approaches 1 very rapidly as n increases.

1.6 Summary

In this chapter we have seen three different distributed algorithms for
3-coloring paths:

• A simple 3-coloring algorithm, Section 1.3: A deterministic al-
gorithm for paths with unique identifiers. Runs in O(n) rounds,
where n is the number of nodes.

• A fast 3-coloring algorithm, Section 1.4: A deterministic algorithm
for directed paths with unique identifiers. Runs in O(log∗ x) rounds,
where x is the largest identifier.

• A simple randomized 3-coloring algorithm, Section 1.5: A ran-
domized algorithm for paths without unique identifiers. Runs in
O(log n) rounds with high probability.

We will explore and analyze these algorithms and their variants in more
depth in the exercises.

13

1.7 Quiz

Construct a directed path of 3 nodes that is labeled with unique identifiers
(of any size) such that the following holds: After two iterations of the
fast color reduction algorithm from Section 1.4.2, the color of the first
node is 7.

It is enough to just list the three unique identifiers (in decimal); there
is no need to explain anything else.

1.8 Exercises

Exercise 1.1 (maximal independent sets). A maximal independent set is
a set of nodes I that satisfies the following properties:

• for each node v ∈ I , none of its neighbors are in I ,
• for each node v /∈ I , at least one of its neighbors is in I .

Here is an example—the nodes labeled with a “1” form a maximal
independent set:

01 11 00 10

Your task is to design a distributed algorithm that finds a maximal inde-
pendent set in any path graph, for each of the following settings:

(a) a deterministic algorithm for paths with arbitrarily large unique
identifiers,

(b) a fast deterministic algorithm for directed paths with 128-bit unique
identifiers,

(c) a randomized algorithm that does not need unique identifiers.

In part (a), use the techniques presented in Section 1.3, in part (b),
use the techniques presented in Section 1.4, and in part (c), use the
techniques presented in Section 1.5.

14

Exercise 1.2 (stopped nodes). Rewrite the greedy algorithm of Table 1.1
so that stopped nodes do not need to send messages. Be precise: explain
your algorithm in detail so that you could easily implement it.

Exercise 1.3 (undirected paths). The fast 3-coloring algorithm from
Section 1.4 finds a 3-coloring very fast in any directed path. Design an
algorithm that is almost as fast and works in any path, even if the edges
are not directed. You can assume that the range of identifiers is known.

▷ hint A

Exercise 1.4 (randomized and fast). The simple randomized 3-coloring
algorithm finds a 3-coloring in time O(log n) with high probability, and
it does not need any unique identifiers. Can you design a randomized
algorithm that finds a 3-coloring in time o(log n) with high probability?
You can assume that n is known.

▷ hint B

Exercise 1.5 (asymptotic analysis). Analyze the fast 3-coloring algorithm
from Section 1.4:

(a) Assume that we are given a coloring with x colors; the colors are
numbers from {1, 2, . . . , x}. Show that we can find a 3-coloring in
time O(log∗ x).

(b) Assume that we are given unique identifiers that are polynomial
in n, that is, there is a constant c = O(1) such that the unique
identifiers are a subset of {1,2, . . . , nc}. Show that we can find a
3-coloring in time O(log∗ n).

⋆ Exercise 1.6 (tight analysis). Analyze the fast 3-coloring algorithm
from Section 1.4: Assume that we are given a coloring with x colors, for
any integer x ≥ 6; the colors are numbers from {1, 2, . . . , x}. Show that
we can find a 6-coloring in time log∗(x), and therefore a 3-coloring in
time log∗(x) + 3.

▷ hint C

⋆ Exercise 1.7 (oblivious algorithms). The simple 3-coloring algorithm
works correctly even if we do not know how many nodes there are in

15

the network, or what is the range of unique identifiers—we say that
the algorithm is oblivious. Adapt the fast 3-coloring algorithm from
Section 1.4 so that it is also oblivious.

▷ hint D

1.9 Bibliographic Notes

The fast 3-coloring algorithm (Section 1.4) was originally presented by
Cole and Vishkin [15] and further refined by Goldberg et al. [22]; in
the literature, it is commonly known as the “Cole–Vishkin algorithm”.
Exercise 1.7 was inspired by Korman et al. [27].

1.10 Appendix: Mathematical Preliminaries

In the analysis of distributed algorithms, we will encounter power towers
and iterated logarithms.

1.10.1 Power Tower

We write power towers with the notation

i2= 22·
·2

,

where there are i twos in the tower. Power towers grow very fast; for
example,

12= 2,
22= 4,
32= 16,
42= 65536,
52= 265536 > 1019728.

16

1.10.2 Iterated Logarithm

The iterated logarithm of x , in notation log∗ x or log∗(x), is defined
recursively as follows:

log∗(x) =

¨

0 if x ≤ 1,

1+ log∗(log2 x) otherwise.

In essence, this is the inverse of the power tower function. For all positive
integers i, we have

log∗(i2) = i.

As power towers grow very fast, iterated logarithms grow very slowly;
for example,

log∗ 2= 1, log∗ 16= 3, log∗ 1010 = 5,

log∗ 3= 2, log∗ 17= 4, log∗ 10100 = 5,

log∗ 4= 2, log∗ 65536= 4, log∗ 101000 = 5,

log∗ 5= 3, log∗ 65537= 5, log∗ 1010000 = 5, . . .

17

Part II

Graphs

18

Chapter 2

Graph-Theoretic Foundations

The study of distributed algorithms is closely related to graphs: we will
interpret a computer network as a graph, and we will study compu-
tational problems related to this graph. In this section we will give a
summary of the graph-theoretic concepts that we will use.

2.1 Terminology

A simple undirected graph is a pair G = (V, E), where V is the set of nodes
(vertices) and E is the set of edges. Each edge e ∈ E is a 2-subset of nodes,
that is, e = {u, v} where u ∈ V , v ∈ V , and u ̸= v. Unless otherwise
mentioned, we assume that V is a non-empty finite set; it follows that E
is a finite set. Usually, we will draw graphs using circles and lines—each
circle represents a node, and a line that connects two nodes represents
an edge.

2.1.1 Adjacency

If e = {u, v} ∈ E, we say that node u is adjacent to v, nodes u and v are
neighbors, node u is incident to e, and edge e is also incident to u. If
e1, e2 ∈ E, e1 ≠ e2, and e1∩ e2 ̸=∅ (i.e., e1 and e2 are distinct edges that
share an endpoint), we say that e1 is adjacent to e2.

The degree of a node v ∈ V in graph G is

degG(v) =
�

�

�

u ∈ V : {u, v} ∈ E
	�

�.

That is, v has degG(v) neighbors; it is adjacent to degG(v) nodes and
incident to degG(v) edges. A node v ∈ V is isolated if degG(v) = 0.
Graph G is k-regular if degG(v) = k for each v ∈ V .

19

vu e e1
e2

Figure 2.1: Node u is adjacent to node v. Nodes u and v are incident to
edge e. Edge e1 is adjacent to edge e2.

2.1.2 Subgraphs

Let G = (V, E) and H = (V2, E2) be two graphs. If V2 ⊆ V and E2 ⊆ E,
we say that H is a subgraph of G. If V2 = V , we say that H is a spanning
subgraph of G.

If V2 ⊆ V and E2 = { {u, v} ∈ E : u ∈ V2, v ∈ V2 }, we say that
H = (V2, E2) is an induced subgraph; more specifically, H is the subgraph
of G induced by the set of nodes V2.

If E2 ⊆ E and V2 =
⋃

E2, we say that H is an edge-induced subgraph;
more specifically, H is the subgraph of G induced by the set of edges E2.

2.1.3 Walks

A walk of length ℓ from node v0 to node vℓ is an alternating sequence

w= (v0, e1, v1, e2, v2, . . . , eℓ, vℓ)

where vi ∈ V , ei ∈ E, and ei = {vi−1, vi} for all i; see Figure 2.2. The
walk is empty if ℓ= 0. We say that walk w visits the nodes v0, v1, . . . , vℓ,
and it traverses the edges e1, e2, . . . , eℓ. In general, a walk may visit the
same node more than once and it may traverse the same edge more than
once. A non-backtracking walk does not traverse the same edge twice
consecutively, that is, ei−1 ≠ ei for all i. A path is a walk that visits each
node at most once, that is, vi ≠ v j for all 0≤ i < j ≤ ℓ. A walk is closed
if v0 = vℓ. A cycle is a non-empty closed walk with vi ̸= v j and ei ̸= e j
for all 1≤ i < j ≤ ℓ; see Figure 2.3. Note that the length of a cycle is at
least 3.

20

s

t

(a)

(b)

(c)

(d)

Figure 2.2: (a) A walk of length 5 from s to t. (b) A non-backtracking
walk. (c) A path of length 4. (d) A path of length 2; this is a shortest path
and hence distG(s, t) = 2.

21

(a)

(b)

Figure 2.3: (a) A cycle of length 6. (b) A cycle of length 3; this is a shortest
cycle and hence the girth of the graph is 3.

2.1.4 Connectivity and Distances

For each graph G = (V, E), we can define a relation⇝ on V as follows:
u⇝ v if there is a walk from u to v. Clearly⇝ is an equivalence relation.
Let C ⊆ V be an equivalence class; the subgraph induced by C is called
a connected component of G.

If u and v are in the same connected component, there is at least
one shortest path from u to v, that is, a path from u to v of the smallest
possible length. Let ℓ be the length of a shortest path from u to v; we
define that the distance between u and v in G is distG(u, v) = ℓ. If u and
v are not in the same connected component, we define distG(u, v) =∞.
Note that distG(u, u) = 0 for any node u.

For each node v and for a non-negative integer r, we define the
radius-r neighborhood of v as follows (see Figure 2.4):

ballG(v, r) = {u ∈ V : distG(u, v)≤ r }.

A graph is connected if it consists of one connected component. The
diameter of graph G, in notation diam(G), is the length of a longest

22

ballG(v, 0):
v

v

v

ballG(v, 1):

ballG(v, 2):

Figure 2.4: Neighborhoods.

23

shortest path, that is, the maximum of distG(u, v) over all u, v ∈ V ; we
have diam(G) =∞ if the graph is not connected.

The girth of graph G is the length of a shortest cycle in G. If the
graph does not have any cycles, we define that the girth is∞; in that
case we say that G is acyclic.

A tree is a connected, acyclic graph. If T = (V, E) is a tree and
u, v ∈ V , then there exists precisely one path from u to v. An acyclic
graph is also known as a forest—in a forest each connected component
is a tree. A pseudotree has at most one cycle, and in a pseudoforest each
connected component is a pseudotree.

A path graph is a graph that consists of one path, and a cycle graph
is a graph that consists of one cycle. Put otherwise, a path graph is a
tree in which all nodes have degree at most 2, and a cycle graph is a
2-regular pseudotree. Note that any graph of maximum degree 2 consists
of disjoint paths and cycles, and any 2-regular graph consists of disjoint
cycles.

2.1.5 Isomorphism

An isomorphism from graph G1 = (V1, E1) to graph G2 = (V2, E2) is a
bijection f : V1→ V2 that preserves adjacency: {u, v} ∈ E1 if and only if
{ f (u), f (v)} ∈ E2. If an isomorphism from G1 to G2 exists, we say that
G1 and G2 are isomorphic.

If G1 and G2 are isomorphic, they have the same structure; informally,
G2 can be constructed by renaming the nodes of G1 and vice versa.

2.2 Packing and Covering

A subset of nodes X ⊆ V is

(a) an independent set if each edge has at most one endpoint in X , that
is, |e ∩ X | ≤ 1 for all e ∈ E,

(b) a vertex cover if each edge has at least one endpoint in X , that is,
e ∩ X ̸=∅ for all e ∈ E,

24

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.5: Packing and covering problems; see Section 2.2.

(c) a dominating set if each node v /∈ X has at least one neighbor in X ,
that is, ballG(v, 1)∩ X ̸=∅ for all v ∈ V .

A subset of edges X ⊆ E is

(d) a matching if each node has at most one incident edge in X , that
is, {t, u} ∈ X and {t, v} ∈ X implies u= v,

(e) an edge cover if each node has at least one incident edge in X , that
is,
⋃

X = V ,

(f) an edge dominating set if each edge e /∈ X has at least one neighbor
in X , that is, e ∩

�⋃

X
�

̸=∅ for all e ∈ E.

See Figure 2.5 for illustrations.
Independent sets and matchings are examples of packing problems—

intuitively, we have to “pack” elements into set X while avoiding conflicts.
Packing problems are maximization problems. Typically, it is trivial to find
a feasible solution (for example, an empty set), but it is more challenging
to find a large solution.

Vertex covers, edge covers, dominating sets, and edge dominating
sets are examples of covering problems—intuitively, we have to find a set
X that “covers” the relevant parts of the graph. Covering problems are

25

minimization problems. Typically, it is trivial to find a feasible solution if
it exists (for example, the set of all nodes or all edges), but it is more
challenging to find a small solution.

The following terms are commonly used in the context of maximiza-
tion problems; it is important not to confuse them:

(a) maximal: a maximal solution is not a proper subset of another
feasible solution,

(b) maximum: a maximum solution is a solution of the largest possible
cardinality.

Similarly, in the context of minimization problems, analogous terms are
used:

(a) minimal: a minimal solution is not a proper superset of another
feasible solution,

(b) minimum: a minimum solution is a solution of the smallest possi-
ble cardinality.

Using this convention, we can define the terms maximal independent
set, maximum independent set, maximal matching, maximum matching,
minimal vertex cover, minimum vertex cover, etc.

For example, Figure 2.5a shows a maximal independent set: it is not
possible to greedily extend the set by adding another element. However,
it is not a maximum independent set: there exists an independent set of
size 3. Figure 2.5d shows a matching, but it is not a maximal matching,
and therefore it is not a maximum matching either.

Typically, maximal and minimal solutions are easy to find—you can
apply a greedy algorithm. However, maximum and minimum solutions
can be very difficult to find—many of these problems are NP-hard opti-
mization problems.

A minimum maximal matching is precisely what the name suggests: it
is a maximal matching of the smallest possible cardinality. We can define
a minimum maximal independent set, etc., in an analogous manner.

26

2.3 Labelings and Partitions

We will often encounter functions of the form

f : V → {1, 2, . . . , k}.

There are two interpretations that are often helpful:

(i) Function f assigns a label f (v) to each node v ∈ V . Depending on
the context, the labels can be interpreted as colors, time slots, etc.

(ii) Function f is a partition of V . More specifically, f defines a parti-
tion V = V1∪V2∪· · ·∪Vk where Vi = f −1(i) = { v ∈ V : f (v) = i }.

Similarly, we can study a function of the form

f : E→ {1, 2, . . . , k}

and interpret it either as a labeling of edges or as a partition of E.
Many graph problems are related to such functions. We say that a

function f : V → {1,2, . . . , k} is

(a) a proper vertex coloring if f −1(i) is an independent set for each i,

(b) a weak coloring if each non-isolated node u has a neighbor v with
f (u) ̸= f (v),

(c) a domatic partition if f −1(i) is a dominating set for each i.

A function f : E→ {1, 2, . . . , k} is

(d) a proper edge coloring if f −1(i) is a matching for each i,

(e) an edge domatic partition if f −1(i) is an edge dominating set for
each i.

See Figure 2.6 for illustrations.
Usually, the term coloring refers to a proper vertex coloring, and the

term edge coloring refers to a proper edge coloring. The value of k is

27

12
3

1 23
3

(a)

(b)

(e)

(d)

12
3

1 12
2

(c)

12
2

1 12
2

1
2

3
1 2 1

4

2
33

1
2

3
1 2 1

3

2
33

3-colouring

weak 3-colouring

domatic partition
(size 2)

4-edge colouring

edge domatic partition
(size 3)

Figure 2.6: Partition problems; see Section 2.3.

28

the size of the coloring or the number of colors. We will use the term
k-coloring to refer to a proper vertex coloring with k colors; the term
k-edge coloring is defined in an analogous manner.

A graph that admits a 2-coloring is a bipartite graph. Equivalently, a
bipartite graph is a graph that does not have an odd cycle.

Graph coloring is typically interpreted as a minimization problem. It
is easy to find a proper vertex coloring or a proper edge coloring if we
can use arbitrarily many colors; however, it is difficult to find an optimal
coloring that uses the smallest possible number of colors.

On the other hand, domatic partitions are a maximization problem.
It is trivial to find a domatic partition of size 1; however, it is difficult to
find an optimal domatic partition with the largest possible number of
disjoint dominating sets.

2.4 Factors and Factorizations

Let G = (V, E) be a graph, let X ⊆ E be a set of edges, and let H = (U , X)
be the subgraph of G induced by X . We say that X is a d-factor of G if
U = V and degH(v) = d for each v ∈ V .

Equivalently, X is a d-factor if X induces a spanning d-regular sub-
graph of G. Put otherwise, X is a d-factor if each node v ∈ V is incident
to exactly d edges of X .

A function f : E→ {1, 2, . . . , k} is a d-factorization of G if f −1(i) is a
d-factor for each i. See Figure 2.7 for examples.

We make the following observations:

(a) A 1-factor is a maximum matching. If a 1-factor exists, a maximum
matching is a 1-factor.

(b) A 1-factorization is an edge coloring.

(c) The subgraph induced by a 2-factor consists of disjoint cycles.

A 1-factor is also known as a perfect matching.

29

1

2

3

1
2

1

2
3

3

(a)

1

2
1

2
1

2
2

2

2
2

2

1

1

1

1

1
2

1
(b)

Figure 2.7: (a) A 1-factorization of a 3-regular graph. (b) A 2-factorization
of a 4-regular graph.

30

2.5 Approximations

So far we have encountered a number of maximization problems and
minimization problems. More formally, the definition of a maximization
problem consists of two parts: a set of feasible solutionsS and an objective
function g : S → R. In a maximization problem, the goal is to find a
feasible solution X ∈ S that maximizes g(X). A minimization problem
is analogous: the goal is to find a feasible solution X ∈ S that minimizes
g(X).

For example, the problem of finding a maximum matching for a
graph G is of this form. The set of feasible solutions S consists of all
matchings in G, and we simply define g(M) = |M | for each matching
M ∈ S .

As another example, the problem of finding an optimal coloring is
a minimization problem. The set of feasible solutions S consists of all
proper vertex colorings, and g(f) is the number of colors in f ∈ S .

Often, it is infeasible or impossible to find an optimal solution; hence
we resort to approximations. Given a maximization problem (S , g),
we say that a solution X is an α-approximation if X ∈ S , and we have
αg(X) ≥ g(Y) for all Y ∈ S . That is, X is a feasible solution, and the
size of X is within factor α of the optimum.

Similarly, if (S , g) is a minimization problem, we say that a solution
X is an α-approximation if X ∈ S , and we have g(X) ≤ αg(Y) for all
Y ∈ S . That is, X is a feasible solution, and the size of X is within factor
α of the optimum.

Note that we follow the convention that the approximation ratio α
is always at least 1, both in the case of minimization problems and max-
imization problems. Other conventions are also used in the literature.

2.6 Directed Graphs and Orientations

Unless otherwise mentioned, all graphs that we encounter are undirected.
However, we will occasionally need to refer to so-called orientations,

31

and hence we need to introduce some terminology related to directed
graphs.

A directed graph is a pair G = (V, E), where V is the set of nodes and
E is the set of directed edges. Each edge e ∈ E is a pair of nodes, that is,
e = (u, v) where u, v ∈ V . Put otherwise, E ⊆ V × V .

Intuitively, an edge (u, v) is an “arrow” that points from node u to
node v; it is an outgoing edge for u and an incoming edge for v. The
outdegree of a node v ∈ V , in notation outdegreeG(v), is the number
of outgoing edges, and the indegree of the node, indegreeG(v), is the
number of incoming edges.

Now let G = (V, E) be a graph and let H = (V, E′) be a directed graph
with the same set of nodes. We say that H is an orientation of G if the
following holds:

(a) For each {u, v} ∈ E we have either (u, v) ∈ E′ or (v, u) ∈ E′, but
not both.

(b) For each (u, v) ∈ E′ we have {u, v} ∈ E.

Put otherwise, in an orientation of G we have simply chosen an arbitrary
direction for each undirected edge of G. It follows that

indegreeH(v) + outdegreeH(v) = degG(v)

for all v ∈ V .

2.7 Quiz

Construct a simple undirected graph G = (V, E) with the following
property: If you take any set X that is a maximal independent set of G,
then X is not a minimum dominating set of G.

Present the graph in the set formalism by listing the sets of nodes
and edges. For example, a cycle on three nodes can be encoded as
V = {1, 2,3} and E = {{1,2}, {2, 3}, {3, 1}}.

32

2.8 Exercises

Exercise 2.1 (independence and vertex covers). Let I ⊆ V and define
C = V \ I . Show that

(a) if I is an independent set then C is a vertex cover and vice versa,

(b) if I is a maximal independent set then C is a minimal vertex cover
and vice versa,

(c) if I is a maximum independent set then C is a minimum vertex
cover and vice versa,

(d) it is possible that C is a 2-approximation of minimum vertex cover
but I is not a 2-approximation of maximum independent set,

(e) it is possible that I is a 2-approximation of maximum independent
set but C is not a 2-approximation of minimum vertex cover.

Exercise 2.2 (matchings). Show that

(a) any maximal matching is a 2-approximation of a maximum match-
ing,

(b) any maximal matching is a 2-approximation of a minimum maxi-
mal matching,

(c) a maximal independent set is not necessarily a 2-approximation
of maximum independent set,

(d) a maximal independent set is not necessarily a 2-approximation
of minimum maximal independent set.

Exercise 2.3 (matchings and vertex covers). Let M be a maximal match-
ing, and let C =

⋃

M , i.e., C consists of all endpoints of matched edges.
Show that

(a) C is a 2-approximation of a minimum vertex cover,

(b) C is not necessarily a 1.999-approximation of a minimum vertex
cover.

33

Would you be able to improve the approximation ratio if M was a mini-
mum maximal matching?

Exercise 2.4 (independence and domination). Show that

(a) a maximal independent set is a minimal dominating set,

(b) a minimal dominating set is not necessarily a maximal independent
set,

(c) a minimum maximal independent set is not necessarily a minimum
dominating set.

Exercise 2.5 (graph colorings and partitions). Show that

(a) a weak 2-coloring always exists,

(b) a domatic partition of size 2 does not necessarily exist,

(c) if a domatic partition of size 2 exists, then a weak 2-coloring is a
domatic partition of size 2,

(d) a weak 2-coloring is not necessarily a domatic partition of size 2.

Show that there are 2-regular graphs with the following properties:

(e) any 3-coloring is a domatic partition of size 3,

(f) no 3-coloring is a domatic partition of size 3.

Assume that G is a graph of maximum degree ∆; show that

(g) there exists a (∆+ 1)-coloring,

(h) a ∆-coloring does not necessarily exist.

Exercise 2.6 (isomorphism). Construct non-empty 3-regular connected
graphs G and H such that G and H have the same number of nodes and
G and H are not isomorphic. Just giving a construction is not sufficient
—you have to prove that G and H are not isomorphic.

⋆ Exercise 2.7 (matchings and edge domination). Show that

34

(a) a maximal matching is a minimal edge dominating set,

(b) a minimal edge dominating set is not necessarily a maximal match-
ing,

(c) a minimum maximal matching is a minimum edge dominating set,

(d) any maximal matching is a 2-approximation of a minimum edge
dominating set.

▷ hint E

⋆ Exercise 2.8 (Petersen 1891). Show that any 2d-regular graph G =
(V, E) has an orientation H = (V, E′) such that

indegreeH(v) = outdegreeH(v) = d

for all v ∈ V . Show that any 2d-regular graph has a 2-factorization.

2.9 Bibliographic Notes

The connection between maximal matchings and approximations of
vertex covers (Exercise 2.3) is commonly attributed to Gavril and Yan-
nakakis—see, e.g., Papadimitriou and Steiglitz [35]. The connection
between minimum maximal matchings and minimum edge dominating
sets (Exercise 2.7) is due to Allan and Laskar [2] and Yannakakis and
Gavril [43]. Exercise 2.8 is a 120-year-old result due to Petersen [37].
The definition of a weak coloring is from Naor and Stockmeyer [33].

Diestel’s book [16] is a good source for graph-theoretic background,
and Vazirani’s book [41] provides further information on approximation
algorithms.

35

Part III

Models of Computing

36

Chapter 3

PN Model: Port Numbering

Now that we have introduced the essential graph-theoretic concepts, we
are ready to define what a “distributed algorithm” is. In this chapter, we
will study one variant of the theme: deterministic distributed algorithms
in the “port-numbering model”. We will use the abbreviation PN for the
port-numbering model, and we will also use the term “PN-algorithm”
to refer to deterministic distributed algorithms in the port-numbering
model. For now, everything will be deterministic—randomized algo-
rithms will be discussed in later chapters.

3.1 Introduction

The basic idea of the PN model is best explained through an example.
Suppose that I claim the following:

• A is a deterministic distributed algorithm that finds a 2-approxi-
mation of a minimum vertex cover in the port-numbering model.

Or, in brief:

• A is a PN-algorithm for finding a 2-approximation of a minimum
vertex cover.

Informally, this entails the following:

(a) We can take any simple undirected graph G = (V, E).

(b) We can then put together a computer network N with the same
structure as G. A node v ∈ V corresponds to a computer in N , and
an edge {u, v} ∈ E corresponds to a communication link between
the computers u and v.

37

(c) Communication takes place through communication ports. A node
of degree d corresponds to a computer with d ports that are labeled
with numbers 1,2, . . . , d in an arbitrary order.

(d) Each computer runs a copy of the same deterministic algorithm A.
All nodes are identical; initially they know only their own degree
(i.e., the number of communication ports).

(e) All computers are started simultaneously, and they follow algo-
rithm A synchronously in parallel. In each synchronous communi-
cation round, all computers in parallel

(1) send a message to each of their ports,

(2) wait while the messages are propagated along the communi-
cation channels,

(3) receive a message from each of their ports, and

(4) update their own state.

(f) After each round, a computer can stop and announce its local
output: in this case the local output is either 0 or 1.

(g) We require that all nodes eventually stop—the running time of the
algorithm is the number of communication rounds it takes until
all nodes have stopped.

(h) We require that

C = { v ∈ V : computer v produced output 1 }

is a feasible vertex cover for graph G, and its size is at most 2 times
the size of a minimum vertex cover.

Sections 3.2 and 3.3 will formalize this idea.

38

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 3.1: A port-numbered network N = (V, P, p). There are four nodes,
V = {a, b, c, d}; the degree of node a is 3, the degrees of nodes b and c are
2, and the degree of node d is 1. The connection function p is illustrated
with arrows—for example, p(a, 3) = (d, 1) and conversely p(d, 1) = (a, 3).
This network is simple.

c, 3
c, 2
c, 1

a, 1
a, 2

b, 1
b, 2

d, 4
d, 3

d, 1
d, 2

Figure 3.2: A port-numbered network N = (V, P, p). There is a loop at
node a, as p(a, 1) = (a, 1), and another loop at node d, as p(d, 3) = (d, 4).
There are also multiple connections between c and d. Hence the network
is not simple.

3.2 Port-Numbered Network

A port-numbered network is a triple N = (V, P, p), where V is the set of
nodes, P is the set of ports, and p : P → P is a function that specifies the
connections between the ports. We make the following assumptions:

(a) Each port is a pair (v, i) where v ∈ V and i ∈ {1,2, . . . }.

(b) The connection function p is an involution, that is, for any port
x ∈ P we have p(p(x)) = x .

See Figures 3.1 and 3.2 for illustrations.

39

1
2

2
1

2

1 13

(a) (b)

Figure 3.3: (a) An alternative drawing of the simple port-numbered
network N from Figure 3.1. (b) The underlying graph G of N .

3.2.1 Terminology

If (v, i) ∈ P, we say that (v, i) is the port number i in node v. The
degree degN (v) of a node v ∈ V is the number of ports in v, that is,
degN (v) = |{ i ∈ N : (v, i) ∈ P }|.

Unless otherwise mentioned, we assume that the port numbers are
consecutive: for each v ∈ V there are ports (v, 1), (v, 2), . . . , (v, degN (v))
in P.

We use the shorthand notation p(v, i) for p((v, i)). If p(u, i) = (v, j),
we say that port (u, i) is connected to port (v, j); we also say that port
(u, i) is connected to node v, and that node u is connected to node v.

If p(v, i) = (v, j) for some j, we say that there is a loop at v—note
that we may have i = j or i ̸= j. If p(u, i1) = (v, j1) and p(u, i2) = (v, j2)
for some u ̸= v, i1 ̸= i2, and j1 ̸= j2, we say that there are multiple
connections between u and v. A port-numbered network N = (V, P, p) is
simple if there are no loops or multiple connections.

3.2.2 Underlying Graph

For a simple port-numbered network N = (V, P, p) we define the underly-
ing graph G = (V, E) as follows: {u, v} ∈ E if and only if u is connected
to v in network N . Observe that degG(v) = degN (v) for all v ∈ V . See
Figure 3.3 for an illustration.

40

1
2

2 1
2

1 13

(a) (b)

00

10

010 0

Figure 3.4: (a) A graph G = (V, E) and a matching M ⊆ E. (b) A port-
numbered network N ; graph G is the underlying graph of N . The node
labeling f : V → {0,1}∗ is an encoding of matching M .

3.2.3 Encoding Input and Output

In a distributed system, nodes are the active elements: they can read
input and produce output. Hence we will heavily rely on node labelings:
we can directly associate information with each node v ∈ V .

Assume that N = (V, P, p) is a simple port-numbered network, and
G = (V, E) is the underlying graph of N . We show that a node label-
ing f : V → Y can be used to represent the following graph-theoretic
structures; see Figure 3.4 for an illustration.

Node labeling g : V → X . Trivial: we can choose Y = X and f = g.

Subset of nodes X ⊆ V . We can interpret a subset of nodes as a node
labeling g : V → {0, 1}, where g is the indicator function of set X .
That is, g(v) = 1 iff v ∈ X .

Edge labeling g : E→ X . For each node v, its label f (v) encodes the
values g(e) for all edges e incident to v, in the order of increasing
port numbers. More precisely, if v is a node of degree d, its label is
a vector f (v) ∈ X d . If (v, j) ∈ P and p(v, j) = (u, i), then element
j of vector f (v) is g({u, v}).

Subset of edges X ⊆ E. We can interpret a subset of edges as an edge
labeling g : E→ {0, 1}.

41

Orientation H = (V, E′). For each node v, its label f (v) indicates which
of the edges incident to v are outgoing edges, in the order of
increasing port numbers.

It is trivial to compose the labelings. For example, we can easily
construct a node labeling that encodes both a subset of nodes and a
subset of edges.

3.2.4 Distributed Graph Problems

A distributed graph problem Π associates a set of solutions Π(N) with
each simple port-numbered network N = (V, P, p). A solution f ∈ Π(N)
is a node labeling f : V → Y for some set Y of local outputs.

Using the encodings of Section 3.2.3, we can interpret all of the
following as distributed graph problems: independent sets, vertex covers,
dominating sets, matchings, edge covers, edge dominating sets, colorings,
edge colorings, domatic partitions, edge domatic partitions, factors,
factorizations, orientations, and any combinations of these.

To make the idea more clear, we will give some more detailed exam-
ples.

(a) Vertex cover: f ∈ Π(N) if f encodes a vertex cover of the underlying
graph of N .

(b) Minimal vertex cover: f ∈ Π(N) if f encodes a minimal vertex
cover of the underlying graph of N .

(c) Minimum vertex cover: f ∈ Π(N) if f encodes a minimum vertex
cover of the underlying graph of N .

(d) 2-approximation of minimum vertex cover: f ∈ Π(N) if f encodes
a vertex cover C of the underlying graph of N ; moreover, the size
of C is at most two times the size of a minimum vertex cover.

(e) Orientation: f ∈ Π(N) if f encodes an orientation of the underly-
ing graph of N .

42

(f) 2-coloring: f ∈ Π(N) if f encodes a 2-coloring of the underlying
graph of N . Note that we will have Π(N) = ∅ if the underlying
graph of N is not bipartite.

3.3 Distributed Algorithms in the Port-Numbering
Model

We will now give a formal definition of a distributed algorithm in the
port-numbering model. In essence, a distributed algorithm is a state
machine (not necessarily a finite-state machine). To run the algorithm
on a certain port-numbered network, we put a copy of the same state
machine at each node of the network.

The formal definition of a distributed algorithm plays a similar role
as the definition of a Turing machine in the study of non-distributed
algorithms. A formally rigorous foundation is necessary to study ques-
tions such as computability and computational complexity. However,
we do not usually present algorithms as Turing machines, and the same
is the case here. Once we become more familiar with distributed algo-
rithms, we will use higher-level pseudocode to define algorithms and
omit the tedious details of translating the high-level description into a
state machine.

3.3.1 State Machine

A distributed algorithm A is a state machine that consists of the following
components:

(i) InputA is the set of local inputs,

(ii) StatesA is the set of states,

(iii) OutputA ⊆ StatesA is the set of stopping states (local outputs),

(iv) MsgA is the set of possible messages.

43

Moreover, for each possible degree d ∈ N we have the following func-
tions:

(v) initA,d : InputA→ StatesA initializes the state machine,

(vi) sendA,d : StatesA→Msgd
A constructs outgoing messages,

(vii) receiveA,d : StatesA×Msgd
A→ StatesA processes incoming messages.

We require that receiveA,d(x , y) = x whenever x ∈ OutputA. The idea
is that a node that has already stopped and printed its local output no
longer changes its state.

3.3.2 Execution

Let A be a distributed algorithm, let N = (V, P, p) be a port-numbered
network, and let f : V → InputA be a labeling of the nodes. A state vector
is a function x : V → StatesA. The execution of A on (N , f) is a sequence
of state vectors x0, x1, . . . defined recursively as follows.

The initial state vector x0 is defined by

x0(u) = initA,d(f (u)),

where u ∈ V and d = degN (u).
Now assume that we have defined state vector x t−1. Define mt : P →

MsgA as follows. Assume that (u, i) ∈ P, (v, j) = p(u, i), and degN (v) = ℓ.
Let mt(u, i) be component j of the vector sendA,ℓ(x t−1(v)).

Intuitively, mt(u, i) is the message received by node u from port
number i on round t. Equivalently, it is the message sent by node
v to port number j on round t—recall that ports (u, i) and (v, j) are
connected.

For each node u ∈ V with d = degN (u), we define the message vector

mt(u) =
�

mt(u, 1), mt(u, 2), . . . , mt(u, d)
�

.

Finally, we define the new state vector x t by

x t(u) = receiveA,d

�

x t−1(u), mt(u)
�

.

44

We say that algorithm A stops in time T if xT (u) ∈ OutputA for each
u ∈ V . We say that A stops if A stops in time T for some finite T . If A
stops in time T , we say that g = xT is the output of A, and xT (u) is the
local output of node u.

3.3.3 Solving Graph Problems

Now we will define precisely what it means if we say that a distributed
algorithm A solves a certain graph problem.

Let F be a family of simple undirected graphs. Let Π and Π′ be
distributed graph problems (see Section 3.2.4). We say that distributed
algorithm A solves problem Π on graph family F given Π′ if the following
holds: assuming that

(a) N = (V, P, p) is a simple port-numbered network,
(b) the underlying graph of N is in F , and
(c) the input f is in Π′(N),

the execution of algorithm A on (N , f) stops and produces an output
g ∈ Π(N). If A stops in time T (|V |) for some function T : N→ N, we say
that A solves the problem in time T .

Obviously, A has to be compatible with the encodings of Π and Π′.
That is, each f ∈ Π′(N) has to be a function of the form f : V → InputA,
and each g ∈ Π(N) has to be a function of the form g : V → OutputA.

Problem Π′ is often omitted. If A does not need the input f , we
simply say that A solves problem Π on graph family F . More precisely, in
this case we provide a trivial input f (v) = 0 for each v ∈ V .

In practice, we will often specify F , Π, Π′, and T implicitly. Here
are some examples of common parlance:

(a) Algorithm A finds a maximum matching in any path graph: here F
consists of all path graphs; Π′ is omitted; and Π is the problem of
finding a maximum matching.

(b) Algorithm A finds a maximal independent set in k-colored graphs
in time k: here F consists of all graphs that admit a k-coloring;

45

Π′ is the problem of finding a k-coloring; Π is the problem of
finding a maximal independent set; and T is the constant function
T : n 7→ k.

3.4 Example: Coloring Paths

Recall the fast 3-coloring algorithm for paths from Section 1.3. We
will now present the algorithm in a formally precise manner as a state
machine. Let us start with the problem definition:

• F is the family of path graphs.
• Π is the problem of coloring graphs with 3 colors.
• Π′ is the problem of coloring graphs with any number of colors.

We will present algorithm A that solves problem Π on graph family F
given Π′. Note that in Section 1.3 we assumed that we have unique
identifiers, but it is sufficient to assume that we have some graph coloring,
i.e., a solution to problem Π′.

The set of local inputs is determined by what we assume as input:

InputA = Z
+.

The set of stopping states is determined by the problem that we are
trying to solve:

OutputA = {1, 2,3}.

In our algorithm, each node only needs to store one positive integer (the
current color):

StatesA = Z+.

Messages are also integers:

MsgA = Z
+.

Initialization is trivial: the initial state of a node is its color. Hence for
all d we have

initA,d(x) = x .

46

In each step, each node sends its current color to each of its neighbors.
As we assume that all nodes have degree at most 2, we only need to
define sendA,d for d ≤ 2:

sendA,0(x) = ().

sendA,1(x) = (x).

sendA,2(x) = (x , x).

The nontrivial part of the algorithm is hidden in the receive function. To
define it, we will use the following auxiliary function that returns the
smallest positive number not in X :

g(X) =min(Z+ \ X).

Again, we only need to define receiveA,d for degrees d ≤ 2:

receiveA,0(x , ()) =

¨

g(∅) if x /∈ {1,2, 3},
x otherwise.

receiveA,1(x , (y)) =

g({y}) if x /∈ {1,2, 3}
and x > y,

x otherwise.

receiveA,2(x , (y, z)) =

g({y, z}) if x /∈ {1, 2,3}
and x > y , x > z,

x otherwise.

This algorithm does precisely the same thing as the algorithm that
was described in pseudocode in Table 1.1. It can be verified that this
algorithm indeed solves problem Π on graph family F given Π′, in the
sense that we defined in Section 3.3.3.

We will not usually present distributed algorithms in the low-level
state-machine formalism. Typically we are happy with a higher-level
presentation (e.g., in pseudocode), but it is important to understand
that any distributed algorithm can be always translated into the state
machine formalism.

47

In the next two sections we will give some non-trivial examples of
PN-algorithms. We will give informal descriptions of the algorithms; in
the exercises we will see how to translate these algorithms into the state
machine formalism.

3.5 Example: Maximal Matching in Two-Colored
Graphs

In this section we present a distributed bipartite maximal matching algo-
rithm: it finds a maximal matching in 2-colored graphs. That is,F is the
family of bipartite graphs, we are given a 2-coloring f : V → {1, 2}, and
the algorithm will output an encoding of a maximal matching M ⊆ E.

3.5.1 Algorithm

In what follows, we say that a node v ∈ V is white if f (v) = 1, and it is
black if f (v) = 2. During the execution of the algorithm, each node is in
one of the states

{UR, MR(i), US, MS(i) },

which stand for “unmatched and running”, “matched and running”,
“unmatched and stopped”, and “matched and stopped”, respectively. As
the names suggest, US and MS(i) are stopping states. If the state of a
node v is MS(i) then v is matched with the neighbor that is connected
to port i.

Initially, all nodes are in state UR. Each black node v maintains
variables M(v) and X (v), which are initialized

M(v)←∅, X (v)← {1,2, . . . , deg(v)}.

The algorithm is presented in Table 3.1; see Figure 3.5 for an illustration.

3.5.2 Analysis

The following invariant is useful in order to analyze the algorithm.

48

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

rounds 1–2 rounds 3–4 rounds 5–6

Figure 3.5: The bipartite maximal matching algorithm; the illustration
shows the algorithm both from the perspective of the port-numbered
network N and from the perspective of the underlying graph G. Arrows
pointing right are proposals, and arrows pointing left are acceptances.
Wide gray edges have been added to matching M .

49

Round 2k− 1, white nodes:

• State UR, k ≤ degN (v): Send ‘proposal’ to port (v, k).

• State UR, k > degN (v): Switch to state US.

• State MR(i): Send ‘matched’ to all ports.
Switch to state MS(i).

Round 2k− 1, black nodes:

• State UR: Read incoming messages.
If we receive ‘matched’ from port i, remove i from X (v).
If we receive ‘proposal’ from port i, add i to M(v).

Round 2k, black nodes:

• State UR, M(v) ̸=∅: Let i =min M(v).
Send ‘accept’ to port (v, i). Switch to state MS(i).

• State UR, X (v) =∅: Switch to state US.

Round 2k, white nodes:

• State UR: Process incoming messages.
If we receive ‘accept’ from port i, switch to state MR(i).

Table 3.1: The bipartite maximal matching algorithm; here k = 1,2,

50

Lemma 3.1. Assume that u is a white node, v is a black node, and (u, i) =
p(v, j). Then at least one of the following holds:

(a) element j is removed from X (v) before round 2i,
(b) at least one element is added to M(v) before round 2i.

Proof. Assume that we still have M(v) = ∅ and j ∈ X (v) after round
2i−2. This implies that v is still in state UR, and u has not sent ‘matched’
to v. In particular, u is in state UR or MR(i) after round 2i − 2. In the
former case, u sends ‘proposal’ to v on round 2i − 1, and j is added to
M(v) on round 2i−1. In the latter case, u sends ‘matched’ to v on round
2i − 1, and j is removed from X (v) on round 2i − 1.

Now it is easy to verify that the algorithm actually makes some
progress and eventually halts.

Lemma 3.2. The bipartite maximal matching algorithm stops in time
2∆+ 1, where ∆ is the maximum degree of N.

Proof. A white node of degree d stops before or during round 2d + 1≤
2∆+ 1.

Now let us consider a black node v. Assume that we still have j ∈ X (v)
on round 2∆. Let (u, i) = p(v, j); note that i ≤∆. By Lemma 3.1, at least
one element has been added to M(v) before round 2∆. In particular, v
stops before or during round 2∆.

Moreover, the output is correct.

Lemma 3.3. The bipartite maximal matching algorithm finds a maximal
matching in any two-colored graph.

Proof. Let us first verify that the output correctly encodes a matching.
In particular, assume that u is a white node, v is a black node, and
p(u, i) = (v, j). We have to prove that u stops in state MS(i) if and only
if v stops in state MS(j). If u stops in state MS(i), it has received an
‘accept’ from v, and v stops in state MS(j). Conversely, if v stops in state
MS(j), it has received a ‘proposal’ from u and it sends an ‘accept’ to u,
after which u stops in state MS(i).

51

Let us then verify that M is indeed maximal. If this was not the
case, there would be an unmatched white node u that is connected to
an unmatched black node v. However, Lemma 3.1 implies that at least
one of them becomes matched before or during round 2∆.

3.6 Example: Vertex Covers

We will now give a distributed minimum vertex cover 3-approximation
algorithm; we will use the bipartite maximal matching algorithm from
the previous section as a building block.

So far we have seen algorithms that assume something about the
input (e.g., we are given a proper coloring of the network). The algorithm
that we will see in this section makes no such assumptions. We can
run the minimum vertex cover 3-approximation algorithm in any port-
numbered network, without any additional input. In particular, we do
not need any kind of coloring, unique identifiers, or randomness.

3.6.1 Virtual 2-Colored Network

Let N = (V, P, p) be a port-numbered network. We will construct another
port-numbered network N ′ = (V ′, P ′, p′) as follows; see Figure 3.6 for
an illustration. First, we double the number of nodes—for each node
v ∈ V we have two nodes v1 and v2 in V ′:

V ′ = { v1, v2 : v ∈ V },
P ′ = { (v1, i), (v2, i) : (v, i) ∈ P }.

Then we define the connections. If p(u, i) = (v, j), we set

p′(u1, i) = (v2, j),

p′(u2, i) = (v1, j).

With these definitions we have constructed a network N ′ such that the
underlying graph G′ = (V ′, E′) is bipartite. We can define a 2-coloring

52

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

v

v1

v2

v

Figure 3.6: Construction of the virtual network N ′ in the minimum vertex
cover 3-approximation algorithm.

53

f ′ : V ′→ {1,2} as follows:

f ′(v1) = 1 and f ′(v2) = 2 for each v ∈ V.

Nodes of color 1 are called white and nodes of color 2 are called black.

3.6.2 Simulation of the Virtual Network

Now N is our physical communication network, and N ′ is merely a
mathematical construction. However, the key observation is that we can
use the physical network N to efficiently simulate the execution of any
distributed algorithm A on (N ′, f ′). Each physical node v ∈ V simulates
nodes v1 and v2 in N ′:

(a) If v1 sends a message m1 to port (v1, i) and v2 sends a message
m2 to port (v2, i) in the simulation, then v sends the pair (m1, m2)
to port (v, i) in the physical network.

(b) If v receives a pair (m1, m2) from port (v, i) in the physical network,
then v1 receives message m2 from port (v1, i) in the simulation,
and v2 receives message m1 from port (v2, i) in the simulation.

Note that we have here reversed the messages: what came from a
white node is received by a black node and vice versa.

In particular, we can take the bipartite maximal matching algorithm
of Section 3.5 and use the network N to simulate it on (N ′, f ′). Note that
network N is not necessarily bipartite and we do not have any coloring of
N ; hence we would not be able to apply the bipartite maximal matching
algorithm on N .

3.6.3 Algorithm

Now we are ready to present the minimum vertex cover 3-approximation
algorithm:

(a) Simulate the bipartite maximal matching algorithm in the virtual
network N ′. Each node v waits until both of its copies, v1 and v2,
have stopped.

54

(b) Node v outputs 1 if at least one of its copies v1 or v2 becomes
matched.

3.6.4 Analysis

Clearly the minimum vertex cover 3-approximation algorithm stops, as
the bipartite maximal matching algorithm stops. Moreover, the running
time is 2∆+ 1 rounds, where ∆ is the maximum degree of N .

Let us now prove that the output is correct. To this end, let G = (V, E)
be the underlying graph of N , and let G′ = (V ′, E′) be the underlying
graph of N ′. The bipartite maximal matching algorithm outputs a maxi-
mal matching M ′ ⊆ E′ for G′. Define the edge set M ⊆ E as follows:

M =
�

{u, v} ∈ E : {u1, v2} ∈ M ′ or {u2, v1} ∈ M ′
	

. (3.1)

See Figure 3.7 for an illustration. Furthermore, let C ′ ⊆ V ′ be the set of
nodes that are incident to an edge of M ′ in G′, and let C ⊆ V be the set
of nodes that are incident to an edge of M in G; equivalently, C is the
set of nodes that output 1. We make the following observations.

(a) Each node of C ′ is incident to precisely one edge of M ′.
(b) Each node of C is incident to one or two edges of M .
(c) Each edge of E′ is incident to at least one node of C ′.
(d) Each edge of E is incident to at least one node of C .

We are now ready to prove the main result of this section.

Lemma 3.4. Set C is a 3-approximation of a minimum vertex cover of G.

Proof. First, observation (d) above already shows that C is a vertex cover
of G.

To analyze the approximation ratio, let C∗ ⊆ V be a vertex cover of
G. By definition each edge of E is incident to at least one node of C∗; in
particular, each edge of M is incident to a node of C∗. Therefore C∗ ∩ C
is a vertex cover of the subgraph H = (C , M).

By observation (b) above, graph H has a maximum degree of at
most 2. Set C consists of all nodes in H. We will then argue that any

55

1

2
1

3

1
2

1
2

1

2
1

3

1
2

1
2

1

1
2

3

1
2

1
2

N N’

G G’

=

Figure 3.7: Set M ⊆ E (left) and matching M ′ ⊆ E′ (right).

56

(b)(a)

Figure 3.8: (a) In a cycle with n nodes, any vertex cover contains at least
n/2 nodes. (b) In a path with n nodes, any vertex cover contains at least
n/3 nodes.

vertex cover C∗ contains at least a fraction 1/3 of the nodes in H; see
Figure 3.8 for an example. Then it follows that C is at most 3 times as
large as a minimum vertex cover.

To this end, let Hi = (Ci , Mi), i = 1, 2, . . . , k, be the connected compo-
nents of H; each component is either a path or a cycle. Now C∗i = C∗∩Ci
is a vertex cover of Hi .

A node of C∗i is incident to at most two edges of Mi . Therefore

|C∗i | ≥ |Mi|/2.

If Hi is a cycle, we have |Ci|= |Mi| and

|C∗i | ≥ |Ci|/2.

If Hi is a path, we have |Mi|= |Ci| − 1. If |Ci| ≥ 3, it follows that

|C∗i | ≥ |Ci|/3.

57

The only remaining case is a path with two nodes, in which case trivially
|C∗i | ≥ |Ci|/2.

In conclusion, we have |C∗i | ≥ |Ci|/3 for each component Hi. It
follows that

|C∗| ≥ |C∗ ∩ C |=
k
∑

i=1

|C∗i | ≥
k
∑

i=1

|Ci|/3= |C |/3.

In summary, the minimum vertex cover algorithm finds a 3-approx-
imation of a minimum vertex cover in any graph G. Moreover, if the
maximum degree of G is small, the algorithm is fast: we only need O(∆)
rounds in a network of maximum degree ∆.

3.7 Quiz

Construct a simple port-numbered network N = (V, P, p) and its underly-
ing graph G = (V, E) that has as few nodes as possible and that satisfies
the following properties:

• We have E ̸=∅.
• The set M =

�

{u, v} ∈ E : p(u, 1) = (v, 2)
	

is a perfect matching in
graph G.

Please answer by listing all elements of sets V , E, and P, and by listing
all values of p. For example, you might specify a network with two nodes
as follows: V = {1, 2}, E = {{1, 2}}, P = {(1, 1), (2, 1)}, p(1, 1) = (2, 1),
and p(2, 1) = (1,1).

3.8 Exercises

Exercise 3.1 (formalizing bipartite maximal matching). Present the
bipartite maximal matching algorithm from Section 3.5 in a formally
precise manner, using the definitions of Section 3.3. Try to make MsgA
as small as possible.

58

Exercise 3.2 (formalizing vertex cover approximation). Present the
minimum vertex cover 3-approximation algorithm from Section 3.6 in
a formally precise manner, using the definitions of Section 3.3. Try to
make both MsgA and StatesA as small as possible.

▷ hint F

Exercise 3.3 (stopped nodes). In the formalism of this chapter, a node
that stops will repeatedly send messages to its neighbors. Show that this
detail is irrelevant, and we can always re-write algorithms so that such
messages are ignored. Put otherwise, a node that stops can also stop
sending messages.

More precisely, assume that A is a distributed algorithm that solves
problem Π on family F given Π′ in time T . Show that there is another
algorithm A′ such that (i) A′ solves problem Π on family F given Π′ in
time T +O(1), and (ii) in A′ the state transitions never depend on the
messages that are sent by nodes that have stopped.

Exercise 3.4 (more than two colors). Design a distributed algorithm
that finds a maximal matching in k-colored graphs. You can assume that
k is a known constant.

Exercise 3.5 (analysis of vertex cover approximation). Is the analysis of
the minimum vertex cover 3-approximation algorithm tight? That is, is
it possible to construct a network N such that the algorithm outputs a
vertex cover that is exactly 3 times as large as the minimum vertex cover
of the underlying graph of N?

⋆ Exercise 3.6 (implementation). Using your favorite programming
language, implement a simulator that lets you play with distributed
algorithms in the port-numbering model. Implement the algorithms for
bipartite maximal matching and minimum vertex cover 3-approximation
and try them out in the simulator.

⋆ Exercise 3.7 (composition). Assume that algorithm A1 solves problem
Π1 on family F given Π0 in time T1, and algorithm A2 solves problem
Π2 on family F given Π1 in time T2.

59

Is it always possible to design an algorithm A that solves problem Π2
on family F given Π0 in time O(T1 + T2)?

▷ hint G

3.9 Bibliographic Notes

The concept of a port numbering is from Angluin’s [3]work. The bipartite
maximal matching algorithm is due to Hańćkowiak et al. [23], and the
minimum vertex cover 3-approximation algorithm is from a paper with
Polishchuk [38].

60

Chapter 4

LOCAL Model:
Unique Identifiers

In the previous chapter, we studied deterministic distributed algorithms
in port-numbered networks. In this chapter we will study a stronger
model: networks with unique identifiers—see Figure 4.1. Following the
standard terminology of the field, we will use the term “LOCAL model”
to refer to networks with unique identifiers.

4.1 Definitions

Throughout this chapter, fix a constant c > 1. An assignment of unique
identifiers for a port-numbered network N = (V, P, p) is an injection

id: V → {1,2, . . . , |V |c}.

That is, each node v ∈ V is labeled with a unique integer, and the labels
are assumed to be relatively small.

Formally, unique identifiers can be interpreted as a graph problemΠ′,
where each solution id ∈ Π′(N) is an assignment of unique identifiers
for network N . If a distributed algorithm A solves a problem Π on a
family F given Π′, we say that A solves Π on F given unique identifiers,
or equivalently, A solves Π on F in the LOCAL model.

For the sake of convenience, when we discuss networks with unique
identifiers, we will identify a node with its unique identifier, i.e., v = id(v)
for all v ∈ V .

61

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 4.1: A network with unique identifiers.

62

4.2 Gathering Everything

In the LOCAL model, if the underlying graph G = (V, E) is connected, all
nodes can learn everything about G in time O(diam(G)). In this section,
we will present a gathering algorithm that accomplishes this.

In the gathering algorithm, each node v ∈ V will construct sets
V (v, r) and E(v, r), where r = 1,2, For all v ∈ V and r ≥ 1, these
sets will satisfy

V (v, r) = ballG(v, r), (4.1)

E(v, r) =
�

{s, t} : s ∈ ballG(v, r), t ∈ ballG(v, r−1)
	

. (4.2)

Now define the graph

G(v, r) = (V (v, r), E(v, r)). (4.3)

See Figure 4.2 for an illustration.
The following properties are straightforward corollaries of (4.1)–

(4.3).

(a) Graph G(v, r) is a subgraph of G(v, r + 1), which is a subgraph
of G.

(b) If G is a connected graph, and r ≥ diam(G)+1, we have G(v, r) =
G.

(c) If Gv is the connected component of G that contains v, and r ≥
diam(Gv) + 1, we have G(v, r) = Gv .

(d) For a sufficiently large r, we have G(v, r) = G(v, r + 1).

(e) If G(v, r) = G(v, r + 1), we will also have G(v, r + 1) = G(v, r + 2).

(f) Graph G(v, r) for r > 1 can be constructed recursively as follows:

V (v, r) =
⋃

u∈V (v,1)

V (u, r − 1), (4.4)

E(v, r) =
⋃

u∈V (v,1)

E(u, r − 1). (4.5)

63

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 4.2: Subgraph G(v, r) defined in (4.3), for v = 14 and r = 2.

64

The gathering algorithm maintains the following invariant: after
round r ≥ 1, each node v ∈ V has constructed graph G(v, r). The
execution of the algorithm proceeds as follows:

(a) In round 1, each node u ∈ V sends its identity u to each of its ports.
Hence after round 1, each node v ∈ V knows its own identity and
the identities of its neighbors. Put otherwise, v knows precisely
G(v, 1).

(b) In round r > 1, each node u ∈ V sends G(u, r − 1) to each of its
ports. Hence after round r, each node v ∈ V knows G(u, r − 1)
for all u ∈ V (v, 1). Now v can reconstruct G(v, r) using (4.4) and
(4.5).

(c) A node v ∈ V can stop once it detects that the graph G(v, r) no
longer changes.

It is easy to extend the gathering algorithm so that we can discover
not only the underlying graph G = (V, E) but also the original port-
numbered network N = (V, P, p).

4.3 Solving Everything

Let F be a family of connected graphs, and let Π be a distributed
graph problem. Assume that there is a deterministic centralized (non-
distributed) algorithm A′ that solves Π on F . For example, A′ can be a
simple brute-force algorithm—we are not interested in the running time
of algorithm A′.

Now there is a simple distributed algorithm A that solves Π on F in
the LOCAL model. Let N = (V, P, p) be a port-numbered network with
the underlying graph G ∈ F . Algorithm A proceeds as follows.

(a) All nodes discover N using the gathering algorithm from Sec-
tion 4.2.

65

(b) All nodes use the centralized algorithm A′ to find a solution f ∈
Π(N). From the perspective of algorithm A, this is merely a state
transition; it is a local step that requires no communication at all,
and hence takes 0 communication rounds.

(c) Finally, each node v ∈ V switches to state f (v) and stops.

Clearly, the running time of the algorithm is O(diam(G)).
It is essential that all nodes have the same canonical representation

of network N (for example, V , P, and p are represented as lists that are
ordered lexicographically by node identifiers and port numbers), and
that all nodes use the same deterministic algorithm A′ to solve Π. This
way we are guaranteed that all nodes have locally computed the same
solution f , and hence the outputs f (v) are globally consistent.

4.4 Focus on Computational Complexity

So far we have learned the key difference between PN and LOCAL models:
while there are plenty of graph problems that cannot be solved at all
in the PN model, we know that all computable graph problems can be
easily solved in the LOCAL model.

Hence our focus shifts from computability to computational com-
plexity. While it is trivial to determine if a problem can be solved in the
LOCAL model, we would like to know which problems can be solved
quickly. In particular, we would like to learn which problems can be
solved in time that is much smaller than diam(G). It turns out that graph
coloring is an example of such a problem.

In the rest of this chapter, we will design an efficient distributed
algorithm that finds a graph coloring in the LOCAL model. The algorithm
will find a proper vertex coloring with ∆ + 1 colors in O(∆ + log∗ n)
communication rounds, for any graph with n = |V | nodes and maximum
degree∆. We will start with a simple greedy algorithm that we will later
use as a subroutine.

66

4.5 Greedy Color Reduction

Let x ∈ N. We present a greedy color reduction algorithm that reduces
the number of colors from x to

y =max{x − 1,∆+ 1},

where∆ is the maximum degree of the graph. That is, given a proper ver-
tex coloring with x colors, the algorithm outputs a proper vertex coloring
with y colors. The running time of the algorithm is one communication
round.

4.5.1 Algorithm

The algorithm proceeds as follows; here f is the x-coloring that we are
given as input and g is the y-coloring that we produce as output. See
Figure 4.3 for an illustration.

(a) In the first communication round, each node v ∈ V sends its color
f (v) to each of its neighbors.

(b) Now each node v ∈ V knows the set

C(v) = {i : there is a neighbor u of v with f (u) = i}.

We say that a node is active if f (v) > max C(v); otherwise it is
passive. That is, the colors of the active nodes are local maxima.
Let

C̄(v) = {1, 2, . . . } \ C(v)

be the set of free colors in the neighborhood of v.

(c) A node v ∈ V outputs

g(v) =

¨

f (v) if v is passive,

min C̄(v) if v is active.

Informally, a node whose color is a local maximum re-colors itself with
the first available free color.

67

74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

1

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

1
1

1

2

1

1

Figure 4.3: Greedy color reduction. The active nodes have been high-
lighted. Note that in the original coloring f , the largest color was 99,
while in the new coloring, the largest color is strictly smaller than 99—we
have successfully reduced the number of colors in the graph.

68

4.5.2 Analysis

Lemma 4.1. The greedy color reduction algorithm reduces the number of
colors from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph.

Proof. Let us first prove that g(v) ∈ {1, 2, . . . , y} for all v ∈ V . As f is a
proper coloring, we cannot have f (v) =max C(v). Hence there are only
two possibilities.

(a) f (v)<max C(v). Now v is passive, and it is adjacent to a node u
such that f (v)< f (u). We have

g(v) = f (v)≤ f (u)− 1≤ x − 1≤ y.

(b) f (v)>max C(v). Now v is active, and we have

g(v) =min C̄(v).

There is at least one value i ∈ {1, 2, . . . , |C(v)|+ 1} with i /∈ C(v);
hence

min C̄(v)≤ |C(v)|+ 1≤ degG(v) + 1≤∆+ 1≤ y.

Next we will show that g is a proper vertex coloring of G. Let
{u, v} ∈ E. If both u and v are passive, we have

g(u) = f (u) ̸= f (v) = g(v).

Otherwise, w.l.o.g., assume that u is active. Then we must have f (u)>
f (v). It follows that f (u) ∈ C(v) and f (v) ≤ max C(v); therefore
v is passive. Now g(u) /∈ C(u) while g(v) = f (v) ∈ C(u); we have
g(u) ̸= g(v).

The key observation is that the set of active nodes forms an in-
dependent set. Therefore all active nodes can pick their new colors
simultaneously in parallel, without any risk of choosing colors that might
conflict with each other.

69

4.5.3 Remarks

The greedy color reduction algorithm does not need to know the number
of colors x or the maximum degree∆; we only used them in the analysis.
We can take any graph, blindly apply greedy color reduction, and we
are guaranteed to reduce the number of colors by one—provided that
the number of colors was larger than ∆+ 1. In particular, we can apply
the greedy color reduction repeatedly until we get stuck, at which point
we have a (∆+ 1)-coloring of G—we will formalize and generalize this
idea in Exercise 4.3.

4.6 Efficient (∆+ 1)-coloring

In the remaining sections we will describe two coloring algorithms that,
together with the greedy algorithm from the previous section, can be
used to (∆+ 1)-color graphs of maximum degree ∆.

On a high level, the (∆+ 1)-coloring algorithm is composed of the
following subroutines:

(a) Algorithm from Section 4.8: Using unique identifiers as input,
compute an O(∆2)-coloring x in O(log∗ n) rounds.

(b) Algorithm from Section 4.7: Given x as input, compute an O(∆)-
coloring y in O(∆) rounds.

(c) Algorithm from Section 4.5: Given y as input, compute a (∆+ 1)-
coloring z in O(∆) rounds.

We have already seen the greedy algorithm that we will use in the final
step; we will proceed in the reverse order and present next the algorithm
that turns an O(∆2)-coloring into an O(∆)-coloring. In what follows,
we will assume that the nodes are given the values of ∆ and n as input;
these assumptions will simplify the algorithms significantly.

70

Figure 4.4: Two clocks for q = 7. The blue hand moves 2 steps per time
unit, and the orange hand 3 steps. Hands moving at different speeds meet
again after q moves, but not before.

4.7 Additive-Group Coloring

Consider two clocks with q steps, for any prime q; see Figure 4.4. The
first clock moves its hand a steps in each time unit, and the second clock
moves its hand b ̸= a steps in each time unit. Starting from the same
position, when are the two hands in the same position again?

It is a fundamental property of finite fields that they are in the same
position again after exactly q steps. We recap definitions and facts about
finite fields in Section 4.13.

Building on this observation, we construct an algorithm where each
node behaves like a clock with one hand, turning its hand with some
constant speed. We will use the input coloring to ensure that clocks with
the same starting position turn their hands at different speeds. Then we
will simply wait until a clock is in a position not shared by any of the
neighbors, and this position becomes the final color of the node. If we
do not have too many neighbors, each node will eventually find such a
position, leading to a proper coloring.

4.7.1 Algorithm

Let q be a prime number with q > 2∆. We assume that we are given a
coloring with q2 colors, and we will show how to construct a coloring

71

with q colors in O(q) rounds. Put otherwise, we can turn a coloring with
O(∆2) colors into a coloring with O(∆) colors in O(∆) rounds, as long
as we choose our prime number q in a suitable manner.

If we have an input coloring with q2 colors, we can represent the
color of node v as a pair f (v) = 〈 f1(v), f2(v)〉 where f1(v) and f2(v) are
integers between 0 and q− 1.

Using the clock analogue, v can be seen as a clock with the hand
at position f2(v), turning at speed f1(v). In the algorithm we will stop
clocks by setting f1(v) = 0 whenever this is possible in a conflict-free
manner. When all clocks have stopped, all nodes have colors of the form
〈0, f2(v)〉 where f2(v) is between 0 and q− 1, and hence we have got a
proper coloring with q colors.

We say that two colors 〈a1, a2〉 and 〈b1, b2〉 are in conflict if a2 = b2.
The algorithm repeatedly performs the following steps:

• Each node sends its current colors to each neighbor.
• For each node v, if f (v) is in conflict with any neighbor, set

f (v)←

f1(v), (f1(v) + f2(v))mod q
�

.

Otherwise, set

f (v)←

0, f2(v)
�

.

In essence, we stop non-conflicting clocks and keep moving all other
clocks at a constant rate. We say that a node v is stopped when f1(v) = 0;
otherwise it is running; note a stopped node will not change its color
any more.

We show that after O(q) iterations of this loop, all nodes will be
stopped, and they form a proper coloring—assuming we started with a
proper coloring.

4.7.2 Correctness

First, we show that in each iteration a proper coloring remains proper. In
what follows, we use f to denote the coloring before one iteration and

72

g to denote the coloring after the iteration. Consider a fixed node v and
an arbitrary neighbor u. We show by a case analysis that f (v) ̸= f (u)
implies g(v) ̸= g(u).

(1) Assume that v is stopped after this round; then g(v) = 〈0, f2(v)〉.

(a) If f1(u) = 0, then u has stopped and g(u) = f (u). By assump-
tion f (v) ̸= f (u) and therefore g(v) ̸= g(u).

(b) If f1(u) ̸= 0 and f (u) is not in conflict with its neighbors,
then g(u) = 〈0, f2(u)〉. As there are no conflicts with v, we
must have f2(v) ̸= f2(u), and therefore g(v) ̸= g(u).

(c) Otherwise f1(u) ̸= 0 and f (u) is in conflict with a neighboring
color. Then g1(u) = f1(u) ̸= 0 = g1(v), and therefore g(v) ̸=
g(u).

(2) Otherwise we have g(v) = 〈 f1(v), (f1(v) + f2(v))mod q〉, where
f1(v) ̸= 0.

(a) If u has stopped, then g1(u) = 0, and therefore g(v) ̸= g(u).

(b) Otherwise u is running. Then

g(u) = 〈 f1(u), (f1(u) + f2(u))mod q〉.

If f1(v) ̸= f1(u), we will have g1(v) ̸= g1(u) and therefore
g(v) ̸= g(u). Otherwise f1(v) = f1(u) but then by assumption
we must have f2(v) ̸= f2(u), which implies g2(v) ̸= g2(u)
and therefore g(v) ̸= g(u).

4.7.3 Running Time

Next we analyze the running time. Assume that we start with a proper
coloring f . We want to show that after a sufficient number of iterations
of the additive-group algorithm, each node must have had an iteration
in which its color did not conflict with color of its neighbors, and hence
got an opportunity to stop.

73

Let f 0 denote the initial coloring before the first iteration and let f i

denote the coloring after iteration i = 1,2, The following lemma
shows that two running nodes do not conflict too often during the
execution.

Lemma 4.2. Consider t consecutive iterations of the additive-group color-
ing algorithm, for t ≤ q. Let u and v be adjacent nodes such that both of
them are still running before iteration t. Then there is at most one iteration
i = 0,1, . . . , t − 1 with a conflict f i

2(u) = f i
2(v).

Proof. Assume that for some i we have f i(u) = 〈a, b〉 and f i(v) = 〈a′, b〉
with a ̸= a′. In the subsequent iterations j = i + 1, i + 2, . . . , we have

f j
2 (u)− f j

2 (v)≡ (a− a′)(j − i) mod q.

Assume that for some j we have another conflict f j
2 (u) = f j

2 (v), implying
that (a− a′)(j − i)≡ 0 mod q. If a prime divides a product x y of two
integers x and y , then it also divides x or y (Euclid’s Lemma). But a−a′

cannot be a multiple of q, since a ≠ a′ and 0≤ a, a′ < q, and j− i cannot
be a multiple of q, either, since 0≤ i < j < q.

We also need to show that a node is not in conflict with a stopped
node too often.

Lemma 4.3. Consider t consecutive iterations of the additive-group color-
ing algorithm, for t ≤ q. Let u and v be adjacent nodes such that u is still
running before iteration t but v was stopped before iteration 1. Then there
is at most one iteration i = 0, 1, . . . , t − 1 with a conflict f i

2(u) = f i
2(v).

Proof. The same argument as in the proof of Lemma 4.2 works, this time
with a′ = 0.

It remains to show that, based on Lemmas 4.2 and 4.3, the algorithm
finishes fast.

Consider a sequence of consecutive q > 2∆ iterations of the additive-
group coloring algorithm starting with any initial coloring f . Consider
an arbitrary node u that does not stop during any of these rounds. Let v

74

be a neighbor of u. No matter if and when v stops, the color of v will
conflict with color of u at most twice during the q rounds:

• Consider the rounds (if any) in which v is running. There are at
most q such rounds. By Lemma 4.2, u conflicts with v at most
once during these rounds.

• Consider the remaining rounds (if any) in which v is stopped.
There are at most q such rounds. By Lemma 4.3, u conflicts with
v at most once during these rounds.

So for each neighbor v of u, there are at most 2 rounds among q rounds
such that the color of v conflicts with the color of u. As there are at most
∆ neighbors, there are at most 2∆ rounds among q rounds such that
the color of some neighbor of u conflicts with the current color of u. But
q > 2∆, so there has to be at least one round after which none of the
neighbors are in conflict with u—and hence there will be an opportunity
for u to stop.

4.8 Fast O(∆2)-coloring

The additive-group coloring algorithm assumes that we start with an
O(∆2)-coloring of the network. In this section we present an algorithm
that computes an O(∆2)-coloring in O(log∗ n) communication rounds.

The algorithm proceeds in two phases. In the first phase, the coloring
given by the unique identifiers is iteratively reduced to an O(∆2 log2∆)-
coloring. In the second phase, a final color reduction step yields an
O(∆2) coloring.

Both phases are based on the same combinatorial construction, called
a cover-free set family. We begin by describing the construction for the
first phase.

4.8.1 Cover-Free Set Families

The coloring algorithm is based on the existence of non-covering families
of sets. Intuitively, these are families of sets such that any two sets do

75

1
2
3
4
5
6
7

1
2
3 3

4
5 5

6
7

1

4

7

2

4

6

1
2
3 3

4
5 5

6
7

1

4

7

2

4

6

X J

Figure 4.5: A 2-cover-free set family J of 5 subsets of a base set X on 7
elements. No two sets cover a third distinct set.

not have a large overlap: then no small collection of sets contains all
elements in another set. Therefore, if each node is assigned such a set,
it can find an element that is not in the sets of its neighbors, and pick
that element as its new color.

A family J of n subsets of {1, . . . , m} is k-cover-free if for every S ∈ J
and every collection of k sets S1, . . . , Sk ∈ J distinct from S we have that

S ⊈ k
⋃

i=1

Si .

See Figure 4.5 for an example.

4.8.2 Constructing Cover-Free Set Families

Cover-free set families can be constructed using polynomials over finite
fields. The example of finite fields we are interested in is GF(q) for
a prime q, which is simply modular arithmetic of integers modulo q.
We consider polynomials over such a field. A brief recap is given in
Section 4.13.

A basic result about polynomials states that two distinct polynomials
evaluate to the same value at a bounded number of points

76

Lemma 4.4. Let f , g be two distinct polynomials of degree d over a finite
field GF(q), for some prime q. Then f (x) = g(x) holds for at most d
elements x ∈ GF(q).

Proof. See Section 4.13.

Now fix a prime q. Our base set will be X = GF(q)×GF(q). Thus we
have that |X |= m= q2.

For a positive natural number d, consider Poly(d, q), the set of poly-
nomials of degree d over GF(q). For each polynomial g ∈ Poly(d, q), fix
the set

Sg =
�

(a, g(a))
�

� a ∈ GF(q)
	

that is associated with this polynomial. Note that each Sg contains
exactly q elements: one for each element of GF(q). Then we can define
the family

J = Jd,q =
�

Sg

�

� g ∈ Poly(d, q)
	

.

Consider any two distinct polynomials f and g in Poly(d, q): by
Lemma 4.4 there are at most d elements a such that f (a) = g(a).
Therefore |S f ∩ Sg | ≤ d, and J is a ⌊q/d⌋-cover-free set family.

Any polynomial is uniquely defined by its coefficients. Therefore the
set Jd,q has size qd+1, as it consists of a set of pairs for each polynomial
of degree d.

By choosing parameters q and d we can construct a ∆-cover free
family that can be used to color efficiently.

Lemma 4.5. For all integers x, ∆ such that x > ∆ ≥ 2, there exists a
∆-cover-free family J of x subsets from a base set of m≤ 4(∆+ 1)2 log2 x
elements.

Proof. We begin by choosing a prime q such that
�

(∆+ 1) log x
�

≤ q ≤ 2 ·
�

(∆+ 1) log x
�

.

By the Bertrand–Chebyshev theorem such a prime must always exist. Set
d = ⌊log x⌋. By the previous observation, the family Jd,q, for the above

77

parameter settings, is a ⌊q/d⌋-cover-free family, where

⌊q/d⌋ ≥
�⌊(∆+ 1) log x⌋

⌊log x⌋

�

≥
�

(∆+ 1) log x − 1
log x

�

≥∆.

There are at least
qd+1 ≥ (∆ log x)log x > x

sets in Jd,q, so we can choose x of them. The base set has

q2 ≤ 4(∆+ 1)2 log2 x

elements.

4.8.3 Efficient Color Reduction

Using ∆-cover-free sets we can construct an algorithm that reduces the
number of colors from x to y ≤ 4(∆+ 1)2 log2 x in one communication
round, as long as x >∆.

Let f denote the input x-coloring and g the output y-coloring. As-
sume that J is a∆-cover-free family of x sets on a base set of y elements,
as in Lemma 4.5, that is ordered as S1, S2, . . . , Sx . The algorithm func-
tions as follows.

(a) Each node v ∈ V sends its current color f (v) to each of its neigh-
bors.

(b) Each node receives the colors f (u) of its neighbors u ∈ N(v). Then
it constructs the set S f (v), and the sets S f (u) for all u ∈ N(v). Since
f (v) ̸= f (u) for all u ∈ N(v), and J is a ∆-cover-free family, we
have that

S f (v) ⊈ ⋃
u∈N(v)

S f (u).

In particular, there exists at least one c ∈ S f (v)\∪u∈N(v)S f (u). Node
v sets g(v) = c for the smallest such c.

78

Now assume that f is a proper coloring, that is, f (v) ̸= f (u) for all
neighbors v and u. This implies that for each node v, each of its neighbors
u selects a set that is different from S f (v); overall, the neighbors will
select at most∆ distinct sets. Since J is a∆-cover-free family, each node
v can find an element c ∈ S f (v) that is not in the sets of its neighbors.
Therefore setting g(v) = c forms a proper coloring. Finally, since the
sets S ∈ J are subsets of {1, . . . , y}, for y ≤ 4(∆+ 1)2(log x)2, we have
that g is a y-coloring.

4.8.4 Iterated Color Reduction

By a repeated application of the color reduction algorithm it is possible
to reduce the number of colors down to O(∆2 log2∆). Assuming we
start with an input x-coloring, this will take O(log∗ x) rounds.

We will now show that O(log∗ x) iterations of the color reduction
algorithm will reduce the number of colors from x to O(∆2 log2∆). We
assume that in the beginning, both x and ∆ are known. Therefore after
each iteration, all nodes know the total number of colors.

Assume that x > 4(∆+ 1)2 log2∆. Repeated iterations of the color
reduction algorithm reduce the number of colors as follows:

x0 7→ x1 ≤ 4(∆+ 1)2 log2 x ,

x1 7→ x2 ≤ 4(∆+ 1)2 log2(4(∆+ 1)2 log2 x)

= 4(∆+ 1)2
�

log 4+ 2 log(∆+ 1) + 2 log log x
�2

.

If log log x ≥ log 4+ 2 log(∆+ 1), we have that

x2 ≤ 4(∆+ 1)2(3 log log x)2

=
�

6(∆+ 1) log log x
�2

.

In the next step, we reduce colors as follows:

x2 7→ x3 ≤ 4(∆+ 1)2 log2
�

36(∆+ 1)2(log log x)2
�

= 4(∆+ 1)2
�

log 36+ 2 log(∆+ 1) + 2 log log log x
�2

.

79

If log log log x ≥ log36+ 2 log(∆+ 1)}, we have that

x3 ≤ 4(∆+ 1)2(3 log log log x)2

=
�

6(∆+ 1) log log log x
�2

.

Now we can see the pattern: as long as

log(i) x ≥ log36+ 2 log(∆+ 1)},

where log(i) x is the i times iterated logarithm of x , we reduce colors
from (6(∆+ 1) log(i−1) x)2 to (6(∆+ 1) log(i) x)2 in the ith step.

Once log(i) x ≥ log36+ 2 log(∆+ 1)} no longer holds, we have a
coloring with at most

c∆ = 4(∆+ 1)2
�

3(log36+ 2 log(∆+ 1))
�2

colors. We can numerically verify that for all ∆≥ 2, we have that

4(∆+ 1)2
�

3(log 36+ 2 log(∆+ 1))
�2 ≤ (11(∆+ 1))3.

We will use this observation in the next step.
It remains to calculate how many color reduction steps are required.

By definition, after T = log∗ x iterations we have that log(T) x ≤ 1. Thus,
after at most log∗ x iterations of the color reduction algorithm we have
a coloring with at most c∆ colors.

4.8.5 Final Color Reduction Step

In the last step, we will reduce the coloring to an O(∆2)-coloring. We will
use another construction of ∆-cover-free families based on polynomials.

Lemma 4.6. For all ∆, there exists a ∆-cover-free family J of x subsets
from a base set of m≤ (22(∆+ 1))2 elements for x ≤ (11(∆+ 1))3.

This immediately gives us the following color reduction algorithm.

80

Corollary 4.7. There is a distributed algorithm that, given a (11(∆+1))3-
coloring as an input, in one round computes a (22(∆+ 1))2-coloring.

Proof of Lemma 4.6. Our base set will be X with |X | = m = q2, for a
prime q. Again it is useful to see X = GF(q)×GF(q) as pairs of elements
from the finite field over q elements.

Now consider polynomials Poly(2, q) of degree 2 over GF(q). For
each such polynomial g ∈ Poly(2, q), let

Sg =
�

(a, g(a))
�

� a ∈ GF(q)
	

be the pairs defined by the valuations of the polynomial g at each element
of GF(q). We have that |Sg |= q for all g.

Now we can construct the family

J = J2,q =
�

Sg

�

� g ∈ Poly(2, q)
	

as the collection of point sets defined by all polynomials of degree 2.
We have that |J |= q3 since a polynomial is uniquely determined by its
coefficients.

By Lemma 4.4, we have that |S f ∩Sg | ≤ 2 for any distinct polynomials
f , g ∈ P(2, q). Therefore covering any set Sg requires at least ⌈q/2⌉ other
sets (distinct from Sg) from J .

We are now ready to prove that J is a∆-cover-free family for suitable
parameter settings. Since each set Sg contains q elements, and the
intersection between the sets of distinct polynomials is at most 2, we
want to find q such that 2∆≤ q− 1 and q3 is large enough. Using the
Bertrand–Chebyshev theorem we know that there exists a prime q such
that

11(∆+ 1)≤ q ≤ 22(∆+ 1).

Any value q from this range is large enough. The base set X has size

m= q2 ≤ (22(∆+ 1))2.

The family J has size
|J | ≥ (11(∆+ 1))3.

Finally, since we choose q ≥ 2∆+1, we have that no collection of ∆ sets
S = {S1, S2, . . . , S∆} ⊆ J can cover a set S /∈ S .

81

4.9 Putting Things Together

It remains to show how to use the three algorithms we have seen so far
together.

Theorem 4.8. Assume that we know parameters ∆ and n, and some
polynomial bound nc on the size of the unique identifiers. Graphs on n
vertices with maximum degree ∆ can be (∆+ 1)-colored in O(∆+ log∗ n)
rounds in the LOCAL model.

Proof. We begin with the unique identifiers, and treat them as an initial
coloring with nc colors.

(a) In the first phase we run the efficient color reduction algorithm
from Section 4.8.3 for T1 = log∗(nc) = O(log∗ n) rounds to produce
a coloring y1 with at most (11(∆+ 1))3 colors.

(b) In the second phase, after T1 rounds have passed, each vertex can
apply the final color reduction step from Section 4.8.5 to compute a
coloring y2. This reduces colors from (11(∆+1))3 to (22(∆+1))2.

(c) After T1 + 1 rounds, we have computed an O(∆2)-coloring y2.
Now each vertex runs the additive-group coloring algorithm from
Section 4.7, applying it with y2 as input. For a parameter q ≤
2
p

(22(∆+ 1))2 = 44∆+ 44, this algorithm runs for T2 = q steps
and computes a q-coloring y3.

(d) In the last phase, after T1+1+T2 rounds, we apply the greedy color
reduction algorithm from Section 4.5 iteratively T3 = 43∆+ 43
times. Each iteration requires one round and reduces the maximum
color by one.

After a total of

T1 + 1+ T2 + T3 ≤ log∗(nc) + 87∆+ 88

= O(∆+ log∗ n)

rounds, we have computed a (∆+ 1)-coloring.

82

4.10 Quiz

Consider the algorithm from Section 4.7.1 in the following setting:

• The network is a complete graph with n = 4 nodes; hence the
maximum degree is ∆= 3, and we can choose q = 7> 2∆.

• We are given a coloring with q2 = 49 colors; we can represent the
possible input colors as pairs (0,0), (0,1), . . . , (6, 6).

Give an example of an input coloring such that we need to do exactly 6
iterations of the algorithm until all nodes have reached their final colors,
i.e., colors of the form (0, x).

Please give the answer by listing the four original color pairs of the
nodes in any order; for example, if we asked for a coloring in which you
need exactly 3 iterations, this would be a correct answer: (2,3), (3,2),
(3,6), (4,6).

4.11 Exercises

Exercise 4.1 (applications). Let∆ be a known constant, and letF be the
family of graphs of maximum degree at most ∆. Design fast distributed
algorithms that solve the following problems on F in the LOCAL model.

(a) Maximal independent set.

(b) Maximal matching.

(c) Edge coloring with O(∆) colors.

You can assume that all nodes get the value of n (the number of nodes)
as input; also the parameter c in the identifier space is a known constant,
so all nodes know the range of unique identifiers.

Exercise 4.2 (vertex cover). Let F consist of cycle graphs. Design a
fast distributed algorithm that finds a 1.1-approximation of a minimum
vertex cover on F in the LOCAL model.

▷ hint H

83

Exercise 4.3 (iterated greedy). Design a color reduction algorithm A
with the following properties: given any graph G = (V, E) and any proper
vertex coloring f , algorithm A outputs a proper vertex coloring g such
that for each node v ∈ V we have g(v)≤ degG(v) + 1.

Let ∆ be the maximum degree of G, let n = |V | be the number of
nodes in G, and let x be the number of colors in coloring f . The running
time of A should be at most

min{n, x}+O(1).

Note that the algorithm does not know n, x , or ∆. Also note that we
may have either x ≤ n or x ≥ n.

▷ hint I

Exercise 4.4 (distance-2 coloring). Let G = (V, E) be a graph. A distance-
2 coloring with k colors is a function f : V → {1,2, . . . , k} with the fol-
lowing property:

distG(u, v)≤ 2 implies f (u) ̸= f (v) for all nodes u ̸= v.

Let ∆ be a known constant, and let F be the family of graphs of
maximum degree at most ∆. Design a fast distributed algorithm that
finds a distance-2 coloring with O(∆2) colors for any graph G ∈ F in
the LOCAL model.

You can assume that all nodes get the value of n (the number of
nodes) as input; also the parameter c in the identifier space is a known
constant, so all nodes know the range of unique identifiers.

▷ hint J

⋆ Exercise 4.5 (numeral systems). The fast color reduction algorithm
from Section 1.4 is based on the idea of identifying a digit that differs
in the binary encodings of the colors. Generalize the idea: design an
analogous algorithm that finds a digit that differs in the base-k encodings
of the colors, for an arbitrary k, and analyze the running time of the
algorithm (cf. Exercise 1.6). Is the special case of k = 2 the best possible
choice?

84

⋆ Exercise 4.6 (from bits to sets). The fast color reduction algorithm
from Section 1.4 can reduce the number of colors from 2x to 2x in
one round in any directed pseudoforest, for any positive integer x . For
example, we can reduce the number of colors as follows:

2128→ 256→ 16→ 8→ 6.

One of the problems is that an iterated application of the algorithm slows
down and eventually “gets stuck” at x = 3, i.e., at six colors.

In this exercise we will design a faster color reduction algorithm that
reduces the number of colors from

h(x) =
�

2x
x

�

to 2x in one round, for any positive integer x . For example, we can
reduce the number of colors as follows:

184756→ 20→ 6→ 4.

Here

184756= h(10),

2 · 10= 20= h(3),

2 · 3= 6= h(2).

In particular, the algorithm does not get stuck at six colors; we can use
the same algorithm to reduce the number of colors to four. Moreover, at
least in this case the algorithm seems to be much more efficient—it can
reduce the number of colors from 184756 to 6 in two rounds, while the
prior algorithm requires three rounds to achieve the same reduction.

The basic structure of the new algorithm follows the fast color re-
duction algorithm—in particular, we use one communication round to
compute the values s(v) for all nodes v ∈ V . However, the technique for
choosing the new color is different: as the name suggests, we will not
interpret colors as bit strings but as sets.

85

To this end, let H(x) consist of all subsets

X ⊆ {1, 2, . . . , 2x}

with |X |= x . There are precisely h(x) such subsets, and hence we can
find a bijection

L : {1, 2, . . . , h(x)} → H(x).

We have f (v) ̸= s(v). Hence L(f (v)) ̸= L(s(v)). As both L(f (v))
and L(s(v)) are subsets of size x , it follows that

L(f (v)) \ L(s(v)) ̸=∅.

We choose the new color g(v) of a node v ∈ V as follows:

g(v) =min
�

L(f (v)) \ L(s(v))
�

.

Prove that this algorithm works correctly. In particular, show that
g : V → {1, 2, . . . , 2x} is a proper graph coloring of the directed pseudo-
forest G.

Analyze the running time of the new algorithm and compare it with
the old algorithm. Is the new algorithm always faster? Can you prove a
general result analogous to the claim of Exercise 1.6?

⋆ Exercise 4.7 (dominating set approximation). Let ∆ be a known
constant, and let F be the family of graphs of maximum degree at
most ∆. Design an algorithm that finds an O(log∆)-approximation of a
minimum dominating set on F in the LOCAL model.

▷ hint K

4.12 Bibliographic Notes

The model of computing is from Linial’s [30] seminal paper, and the
name LOCAL is from Peleg’s [36] book. The additive-group coloring
algorithm is due to Barenboim et al. [8]. The effective color reduction
algorithm is from Linial [30], and the construction of cover-free families

86

from Barenboim and Elkin [7]. The algorithm of Exercise 4.7 is from
Friedman and Kogan [19]. The Bertrand–Chebyshev theorem was first
proven by Chebyshev [14]. The proof of Lemma 4.4 follows the proofs
of Abraham [1].

4.13 Appendix: Finite Fields

For our purposes, finite field of size q can be seen as the set {0, . . . , q−1}
equipped with modular arithmetic, for any prime q. Fields support
addition, subtraction, multiplication, and division with the usual rules.
We denote the finite field with q elements (also known as a Galois field)
by GF(q).

Our proofs will use the following two properties of finite fields.

(a) Each element a of the field has a unique multiplicative inverse
element, denoted by a−1, such that a · a−1 = 1.

(b) The product ab of two elements is zero if and only if a = 0 or
b = 0.

We can define polynomials over GF(q). A polynomial f [X] of degree
d can be represented as

f0 + f1X + f2X 2 + · · ·+ fd X d ,

where the coefficients fi are elements of GF(q). A polynomial is non-
trivial if there exists some fi ̸= 0. An element a ∈ GF(q) is a zero of a
polynomial f if f (a) = 0.

Proof of Lemma 4.4. We will prove the lemma by proving a related state-
ment: any non-trivial polynomial of degree d has at most d zeros. Since
f (x)− g(x) is a polynomial of degree at most d, Lemma 4.4 follows.

The proof is by induction on d. Let f [X] = f0 + f1X denote an
arbitrary polynomial of degree 1 over some finite field of size q. Since
each element a of a field has a unique inverse a−1, there is a unique zero
of f [X]: X = −(f0)(f1)−1.

87

Now assume that d ≥ 2 and that the claim holds for smaller degrees.
If polynomial f has no zeros, the claim holds. Therefore assume that
f has at least one zero a ∈ GF(q). We will show that there exists a
polynomial g of degree d − 1 such that f = (X − a)g. By the induction
hypothesis g has at most d − 1 zeros, X − a has one zero, and we know
that the product equals zero if and only if either X − a = 0 or g[X] = 0.

We show that g exists by induction. If d = 1, we can select a =
−(f0)(f1)−1 and g = f1 to get f [X] = (X + (f0)(f1)−1) f1.

For d ≥ 2, we again make the induction assumption. Define

f ′ = f − fd X d−1(X − a),

where fd is the dth coefficient of f . This polynomial has degree less than
d, since the terms of degree d cancel out. We also have that f ′(a) = 0
since f (a) = 0 by assumption. By induction hypothesis there exists a g ′

such that f ′ = (X −a)g ′ and degree of g ′ is at most d−2. By substituting
f ′ = (X − a)g ′ we get

f = (X − a)g ′ + (X − a) fd X d−1 = (X − a)(g ′ + fd X d−1).

Therefore f = (X−a)g for the polynomial g = g ′+ fd X d−1, a polynomial
of degree at most d − 1.

88

Chapter 5

CONGEST Model:
Bandwidth Limitations

In the previous chapter, we learned about the LOCAL model. We saw
that with the help of unique identifiers, it is possible to gather the full
information on a connected input graph in O(diam(G)) rounds. To
achieve this, we heavily abused the fact that we can send arbitrarily
large messages. In this chapter we will see what can be done if we are
only allowed to send small messages. With this restriction, we arrive at
a model that is commonly known as the “CONGEST model”.

5.1 Definitions

Let A be a distributed algorithm that solves a problem Π on a graph
family F in the LOCAL model. Assume that MsgA is a countable set;
without loss of generality, we can then assume that

MsgA = N,

that is, the messages are encoded as natural numbers. Now we say that
A solves problem Π on graph family F in the CONGEST model if the
following holds for some constant C: for any graph G = (V, E) ∈ F ,
algorithm A only sends messages from the set {0, 1, . . . , |V |C}.

Put otherwise, we have the following bandwidth restriction: in each
communication round, over each edge, we only send O(log n)-bit mes-
sages, where n is the total number of nodes.

89

5.2 Examples

Assume that we have an algorithm A that is designed for the LOCAL
model. Moreover, assume that during the execution of A on a graph
G = (V, E), in each communication round, we only need to send the
following pieces of information over each edge:

• O(1) node identifiers,
• O(1) edges, encoded as a pair of node identifiers,
• O(1) counters that take values from 0 to diam(G),
• O(1) counters that take values from 0 to |V |,
• O(1) counters that take values from 0 to |E|.

Now it is easy to see that we can encode all of this as a binary string with
O(log n) bits. Hence A is not just an algorithm for the LOCAL model, but
it is also an algorithm for the CONGEST model.

Many algorithms that we have encountered in this book so far are
of the above form, and hence they are also CONGEST algorithms (see
Exercise 5.1). However, there is a notable exception: the algorithm for
gathering the entire network from Section 4.2. In this algorithm, we
need to send messages of size up to Θ(n2) bits:

• To encode the set of nodes, we may need up to Θ(n log n) bits (a
list of n identifiers, each of which is Θ(log n) bits long).

• To encode the set of edges, we may need up to Θ(n2) bits (the
adjacency matrix).

While algorithms with a running time of O(diam(G)) or O(n) are
trivial in the LOCAL model, this is no longer the case in the CONGEST
model. Indeed, there are graph problems that cannot be solved in time
O(n) in the CONGEST model (see Exercise 5.6).

In this chapter, we will learn techniques that can be used to design
efficient algorithms in the CONGEST model. We will use the all-pairs
shortest path problem as the running example.

90

5.3 All-Pairs Shortest Path Problem

Throughout this chapter, we will assume that the input graph G = (V, E)
is connected, and as usual, we have n = |V |. In the all-pairs shortest
path problem (APSP in brief), the goal is to find the distances between
all pairs of nodes. More precisely, the local output of node v ∈ V is

f (v) =
�

(u, d) : u ∈ V, d = distG(v, u)
	

.

That is, v has to know the identities of all other nodes, as well as the
shortest-path distance between itself and all other nodes.

Note that to represent the local output of a single node we need
Θ(n log n) bits, and just to transmit this information over a single edge
we would need Θ(n) communication rounds. Indeed, we can prove that
any algorithm that solves the APSP problem in the CONGEST model
takes Ω(n) rounds—see Exercise 5.7.

In this chapter, we will present an optimal distributed algorithm for
the APSP problem: it solves the problem in O(n) rounds in the CONGEST
model.

5.4 Single-Source Shortest Paths

As a warm-up, we will start with a much simpler problem. Assume that
we have elected a leader s ∈ V , that is, there is precisely one node s with
input 1 and all other nodes have input 0. We will design an algorithm
such that each node v ∈ V outputs

f (v) = distG(s, v),

i.e., its shortest-path distance to leader s.
The algorithm proceeds as follows. In the first round, the leader

will send message ‘wave’ to all neighbors, switch to state 0, and stop. In
round i, each node v proceeds as follows: if v has not stopped, and if
it receives message ‘wave’ from some ports, it will send message ‘wave’

91

(a)

(b)

s

0

1

1

2

2

2

3

t = 1 t = 2 t = 3

Figure 5.1: (a) Graph G and leader s. (b) Execution of algorithm Wave on
graph G. The arrows denote ‘wave’ messages, and the dotted lines indicate
the communication round during which these messages were sent.

92

to all other ports, switch to state i, and stop; otherwise it does nothing.
See Figure 5.1.

The analysis of the algorithm is simple. By induction, all nodes at
distance i from s will receive message ‘wave’ from at least one port in
round i, and they will hence output the correct value i. The running
time of the algorithm is O(diam(G)) rounds in the CONGEST model.

5.5 Breadth-First Search Tree

Algorithm Wave finds the shortest-path distances from a single source s.
Now we will do something slightly more demanding: calculate not just
the distances but also the shortest paths.

More precisely, our goal is to construct a breadth-first search tree
(BFS tree) T rooted at s. This is a spanning subgraph T = (V, E′) of G
such that T is a tree, and for each node v ∈ V , the shortest path from s
to v in tree T is also a shortest path from s to v in graph G. We will also
label each node v ∈ V with a distance label d(v), so that for each node
v ∈ V we have

d(v) = distT (s, v) = distG(s, v).

See Figure 5.2 for an illustration. We will interpret T as a directed graph,
so that each edge is of form (u, v), where d(u)> d(v), that is, the edges
point towards the root s.

There is a simple centralized algorithm that constructs the BFS tree
and distance labels: breadth-first search. We start with an empty tree
and unlabeled nodes. First we label the leader s with d(s) = 0. Then in
step i = 0,1, . . . , we visit each node u with distance label d(u) = i, and
check each neighbor v of u. If we have not labeled v yet, we will label it
with d(v) = i + 1, and add the edge (v, u) to the BFS tree. This way all
nodes that are at distance i from s in G will be labeled with the distance
label i, and they will also be at distance i from s in T .

We can implement the same idea as a distributed algorithm in the
CONGEST model. We will call this algorithm BFS. In the algorithm,
each node v maintains the following variables:

93

(a)

(b)

s

0

1

1

2

2

2

3

Figure 5.2: (a) Graph G and leader s. (b) BFS tree T (arrows) and distance
labels d(v) (numbers).

• d(v): distance to the root.

• p(v): pointer to the parent of node v in tree T (port number).

• C(v): the set of children of node v in tree T (port numbers).

• a(v): acknowledgment—set to 1 when the subtree rooted at v has
been constructed.

Here a(v) = 1 denotes a stopping state. When the algorithm stops,
variables d(v) will be distance labels, tree T is encoded in variables p(v)
and C(v), and all nodes will have a(v) = 1.

Initially, we set d(v)←⊥, p(v)←⊥, C(v)←⊥, and a(v)← 0 for
each node v, except for the root which has d(s) = 0. We will grow tree
T from s by iterating the following steps:

• Each node v with d(v) ̸= ⊥ and C(v) = ⊥ will send a proposal
with value d(v) to all neighbors.

94

• If a node u with d(u) =⊥ receives some proposals with value j, it
will accept one of them and reject all other proposals. It will set
p(u) to point to the node whose proposal it accepted, and it will
set d(u)← j + 1.

• Each node v that sent some proposals will set C(v) to be the set
of neighbors that accepted proposals.

This way T will grow towards the leaf nodes. Once we reach a leaf node,
we will send acknowledgments back towards the root:

• Each node v with a(v) = 1 and p(v) ̸=⊥ will send an acknowledg-
ment to port p(v).

• Each node v with a(v) = 0 and C(v) ̸= ⊥ will set a(v) ← 1
when it has received acknowledgments from each port of C(v).
In particular, if a node has C(v) =∅, it can set a(v)← 1 without
waiting for any acknowledgments.

It is straightforward to verify that the algorithm works correctly and
constructs a BFS tree in O(diam(G)) rounds in the CONGEST model.

Note that the acknowledgments would not be strictly necessary in
order to construct the tree. However, they will be very helpful in the
next section when we use algorithm BFS as a subroutine.

5.6 Leader Election

Algorithm BFS constructs a BFS tree rooted at a single leader, assuming
that we have already elected a leader. Now we will show how to elect a
leader. Surprisingly, we can use algorithm BFS to do it!

We will design an algorithm Leader that finds the node with the
smallest identifier; this node will be the leader. The basic idea is very
simple:

(a) We modify algorithm BFS so that we can run multiple copies of it
in parallel, with different root nodes. We augment the messages

95

with the identity of the root node, and each node keeps track of
the variables d, p, C , and a separately for each possible root.

(b) Then we pretend that all nodes are leaders and start running BFS.
In essence, we will run n copies of BFS in parallel, and hence we
will construct n BFS trees, one rooted at each node. We will denote
by BFSv the BFS process rooted at node v ∈ V , and we will write
Tv for the output of this process.

However, there are two problems: First, it is not yet obvious how all this
would help with leader election. Second, we cannot implement this idea
directly in the CONGEST model—nodes would need to send up to n
distinct messages per communication round, one per each BFS process,
and there is not enough bandwidth for all those messages.

Fortunately, we can solve both of these issues very easily; see Fig-
ure 5.3:

(c) Each node will only send messages related to the tree that has
the smallest identifier as the root. More precisely, for each node v,
let U(v) ⊆ V denote the set of nodes u such that v has received
messages related to process BFSu, and let ℓ(v) = min U(v) be
the smallest of these nodes. Then v will ignore messages related
to process BFSu for all u ̸= ℓ(v), and it will only send messages
related to process BFSℓ(v).

We make the following observations:

• In each round, each node will only send messages related to at
most one BFS process. Hence we have solved the second problem
—this algorithm can be implemented in the CONGEST model.

• Let s = min V be the node with the smallest identifier. When
messages related to BFSs reach a node v, it will set ℓ(v) = s and
never change it again. Hence all nodes will follow process BFSs
from start to end, and thanks to the acknowledgments, node s will
eventually know that we have successfully constructed a BFS tree
Ts rooted at it.

96

t = 1

t = 2

t = 3

t = 4

73 25 41 6

Figure 5.3: Leader election. Each node v will launch a process BFSv that
attempts to construct a BFS tree Tv rooted at v. Other nodes will happily
follow BFSv if v is the smallest leader they have seen so far; otherwise
they will start to ignore messages related to BFSv . Eventually, precisely
one of the processes will complete successfully, while all other process will
get stuck at some point. In this example, node 1 will be the leader, as it
has the smallest identifier. Process BFS2 will never succeed, as node 1 (as
well as all other nodes that are aware of node 1) will ignore all messages
related to BFS2. Node 1 is the only root that will receive acknowledgments
from every child.

97

• Let u ̸=min V be any other node. Now there is at least one node, s,
that will ignore all messages related to process BFSu. Hence BFSu
will never finish; node u will never receive the acknowledgments
related to tree Tu from all neighbors.

That is, we now have an algorithm with the following properties: after
O(diam(G)) rounds, there is precisely one node s that knows that it is
the unique node s =min V . To finish the leader election process, node s
will inform all other nodes that leader election is over; node s will output
1 and all other nodes will output 0 and stop.

5.7 All-Pairs Shortest Paths

Now we are ready to design algorithm APSP that solves the all-pairs
shortest path problem (APSP) in time O(n).

We already know how to find the shortest-path distances from a
single source; this is efficiently solved with algorithm Wave. Just like we
did with the BFS algorithm, we can also augment Wave with the root
identifier and hence have a separate process Wavev for each possible
root v ∈ V . If we could somehow run all these processes in parallel, then
each node would receive a wave from every other node, and hence each
node would learn the distance to every other node, which is precisely
what we need to do in the APSP problem. However, it is not obvious
how to achieve a good performance in the CONGEST model:

• If we try to run all Wavev processes simultaneously in parallel, we
may need to send messages related to several waves simultaneously
over a single edge, and there is not enough bandwidth to do that.

• If we try to run all Wavev processes sequentially, it will take a lot
of time: the running time would be O(n diam(G)) instead of O(n).

The solution is to pipeline the Wavev processes so that we can have
many of them running simultaneously in parallel, without congestion.
In essence, we want to have multiple wavefronts active simultaneously
so that they never collide with each other.

98

(a)

(b)

Figure 5.4: (a) BFS tree Ts rooted at s. (b) A depth-first traversal ws of Ts.

To achieve this, we start with the leader election and the construction
of a BFS tree rooted at the leader; let s be the leader, and let Ts be the
BFS tree. Then we do a depth-first traversal of Ts. This is a walk ws in Ts
that starts at s, ends at s, and traverses each edge precisely twice; see
Figure 5.4.

More concretely, we move a token along walk ws. We move the token
slowly: we always spend 2 communication rounds before we move the
token to an adjacent node. Whenever the token reaches a new node v
that we have not encountered previously during the walk, we launch
process Wavev . This is sufficient to avoid all congestion!

The key observation here is that the token moves slower than the
waves. The waves move at speed 1 edge per round (along the edges
of G), while the token moves at speed 0.5 edges per round (along the
edges of Ts, which is a subgraph of G). This guarantees that two waves
never collide. To see this, consider two waves Waveu and Wavev , so that
Waveu was launched before Wavev . Let d = distG(u, v). Then it will take
at least 2d rounds to move the token from u to v, but only d rounds
for Waveu to reach node v. Hence Waveu was already past v before we

99

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Figure 5.5: Algorithm APSP: the token walks along the BFS tree at speed
0.5 (thick arrows), while each Wavev moves along the original graph
at speed 1 (dashed lines). The waves are strictly nested: if Wavev was
triggered after Waveu, it will never catch up with Waveu.

triggered Wavev, and Wavev will never catch up with Waveu as both of
them travel at the same speed. See Figure 5.5 for an illustration.

Hence we have an algorithm APSP that is able to trigger all Wavev
processes in O(n) time, without collisions, and each of them completes
O(diam(G)) rounds after it was launched. Overall, it takes O(n) rounds
for all nodes to learn distances to all other nodes. Finally, the leader
can inform everyone else when it is safe to stop and announce the local
outputs (e.g., with the help of another wave).

5.8 Quiz

Consider the algorithm in Section 5.7 in a tree. Assume your tree T has
6 nodes, numbered from 1 to 6, and you have already elected node 1 as
the leader. You have also already constructed the BFS tree rooted at the
leader, which in this case is the original tree T . You would like to know
how long it takes in the worst case to run the rest of the algorithms, i.e.,

100

let the token walk in tree T and let the waves propagate throughout the
tree. Your task is to construct a worst-case example of a tree T so that
the process takes as long as possible (i.e., you maximize the time until
the final node learns about its distance to some other node).

5.9 Exercises

Exercise 5.1 (prior algorithms). In Chapters 3 and 4 we have seen
examples of algorithms that were designed for the PN and LOCAL models.
Many of these algorithms use only small messages—they can be used
directly in the CONGEST model. Give at least four concrete examples of
such algorithms, and prove that they indeed use only small messages.

Exercise 5.2 (edge counting). The edge counting problem is defined as
follows: each node has to output the value |E|, i.e., it has to indicate
how many edges there are in the graph.

Assume that the input graph is connected. Design an algorithm
that solves the edge counting problem in the CONGEST model in time
O(diam(G)).

Exercise 5.3 (detecting bipartite graphs). Assume that the input graph
is connected. Design an algorithm that solves the following problem in
the CONGEST model in time O(diam(G)):

• If the input graph is bipartite, all nodes output 1.
• Otherwise all nodes output 0.

Exercise 5.4 (detecting complete graphs). We say that a graph G = (V, E)
is complete if for all nodes u, v ∈ V , u ̸= v, there is an edge {u, v} ∈ E.

Assume that the input graph is connected. Design an algorithm that
solves the following problem in the CONGEST model in time O(1):

• If the input graph is a complete graph, all nodes output 1.
• Otherwise all nodes output 0.

101

Exercise 5.5 (gathering). Assume that the input graph is connected. In
Section 4.2 we saw how to gather full information on the input graph in
time O(diam(G)) in the LOCAL model. Design an algorithm that solves
the problem in time O(|E|) in the CONGEST model.

⋆ Exercise 5.6 (gathering lower bounds). Assume that the input graph is
connected. Prove that there is no algorithm that gathers full information
on the input graph in time O(|V |) in the CONGEST model.

▷ hint L

⋆ Exercise 5.7 (APSP lower bounds). Assume that the input graph is
connected. Prove that there is no algorithm that solves the APSP problem
in time o(|V |) in the CONGEST model.

5.10 Bibliographic Notes

The name CONGEST is from Peleg’s [36] book. Algorithm APSP is due
to Holzer and Wattenhofer [24]—surprisingly, it was published only as
recently as in 2012.

102

Chapter 6

Randomized Algorithms

All models of computing that we have studied so far were based on the
formalism that we introduced in Chapter 3: a distributed algorithm A
is a state machine whose state transitions are determined by functions
initA,d , sendA,d , and receiveA,d . Everything has been fully deterministic:
for a given network and a given input, the algorithm will always produce
the same output. In this chapter, we will extend the model so that we
can study randomized distributed algorithms.

6.1 Definitions

Let us first define a randomized distributed algorithms in the PN model
or, in brief, a randomized PN algorithm. We extend the definitions of
Section 3.3 so that the state transitions are chosen randomly according
to some probability distribution that may depend on the current state
and incoming messages.

More formally, the values of the functions init and receive are discrete
probability distributions over StatesA. The initial state of a node u is a
random variable x0(u) chosen from a discrete probability distribution

initA,d(f (u))

that may depend on the local input f (u). The state at time t is a random
variable x t(u) chosen from a discrete probability distribution

receiveA,d

�

x t−1(u), mt(u)
�

that may depend on the previous state x t−1(u) and on the incoming
messages mt(u). All other parts of the model are as before. In particular,
function sendA,d is deterministic.

103

Above we have defined randomized PN algorithms. We can now
extend the definitions in a natural manner to define randomized algo-
rithms in the LOCAL model (add unique identifiers) and randomized
algorithms in the CONGEST model (add unique identifiers and limit the
size of the messages).

6.2 Probabilistic Analysis

In randomized algorithms, performance guarantees are typically proba-
bilistic. For example, we may claim that algorithm A stops in time T with
probability p.

Note that all probabilities here are over the random choices in the
state transitions. We do not assume that our network or the local inputs
are chosen randomly; we still require that the algorithm performs well
with worst-case inputs. For example, if we claim that algorithm A solves
problem Π on graph family F in time T (n) with probability p, then we
can take any graph G ∈ F and any port-numbered network N with G as
its underlying graph, and we guarantee that with probability at least p
the execution of A in N stops in time T (n) and produces a correct output
g ∈ Π(G); as usual, n is the number of nodes in the network.

We may occasionally want to emphasize the distinction between
“Monte Carlo” and “Las Vegas” type algorithms:

• Monte Carlo: Algorithm A always stops in time T (n); the output
is a correct solution to problem Π with probability p.

• Las Vegas: Algorithm A stops in time T (n)with probability p; when
it stops, the output is always a correct solution to problem Π.

However, Monte Carlo algorithms are not as useful in the field of dis-
tributed computing as they are in the context of classical centralized
algorithms. In centralized algorithms, we can usually take a Monte Carlo
algorithm and just run it repeatedly until it produces a feasible solution;
hence we can turn a Monte Carlo algorithm into a Las Vegas algorithm.
This is not necessarily the case with distributed algorithms: verifying

104

the output of an algorithm may require global information on the entire
output, and gathering such information may take a long time. In this
chapter, we will mainly focus on Las Vegas algorithms, i.e., algorithms
that are always correct but may occasionally be slow, but in the exercises
we will also encounter Monte Carlo algorithms.

6.3 With High Probability

We will use the word failure to refer to the event that the algorithm did
not meet its guarantees—in the case of a Las Vegas algorithm, it did not
stop in time T (n), and in the case of Monte Carlo algorithms, it did not
produce a correct output. The word success refers to the opposite case.

Usually we want to show that the probability of a failure is negligible.
In computer science, we are usually interested in asymptotic analysis,
and hence in the context of randomized algorithms, it is convenient if
we can show that the success probability approaches 1 when n increases.
Even better, we would like to let the user of the algorithm choose how
quickly the success probability approaches 1.

This idea is captured in the phrase “with high probability” (commonly
abbreviated w.h.p.). Please note that this phrase is not a vague subjective
statement but it carries a precise mathematical meaning: it refers to the
success probability of 1−1/nc , where we can choose any constant c > 0.
(Unfortunately, different sources use slightly different definitions; for
example, it may also refer to the success probability of 1−O(1)/nc for
any constant c > 0.)

In our context, we say that algorithm A solves problem Π on graph
family F in time O(T (n)) with high probability if the following holds:

• I can choose any constant c > 0. Algorithm A may depend on this
constant.

• Then if I run A in any network N that has its underlying graph
in F , the algorithm will stop in time O(T (n)) with probability at
least 1− 1/nc , and the output is a feasible solution to problem Π.

105

Note that the O(·) notation in the running time is used to hide the
dependence on c. This is a crucial point. For example, it would not make
much sense to say that the running time is at most log n with probability
1− 1/nc for any constant c > 0. However, it is perfectly reasonable to
say that the running time is, e.g., at most c log n or 2c log n or simply
O(log n) with probability 1− 1/nc for any constant c > 0.

6.4 Randomized Coloring in Bounded-Degree
Graphs

In Chapter 4 we presented a deterministic algorithm that finds a (∆+ 1)-
coloring in a graph of maximum degree∆. In this section, we will design
a randomized algorithm that solves the same problem. The running times
are different:

• the deterministic algorithm runs in O(∆+ log∗ n) rounds.
• the randomized algorithm runs in O(log n) rounds with high prob-

ability.

Hence for large values of ∆, the randomized algorithm can be much
faster.

6.4.1 Algorithm Idea

A running time of O(log n) is very typical for a randomized distributed
algorithm. Often randomized algorithms follow the strategy that in each
step each node picks a value randomly from some probability distribution.
If the value conflicts with the values of the neighbors, the node will try
again next time; otherwise the node outputs the current value and stops.
If we can prove that each node stops in each round with a constant
probability, we can prove that after Θ(log n) all nodes have stopped
w.h.p. This is precisely what we saw in the analysis of the randomized
path-coloring algorithm in Section 1.5.

However, adapting the same strategy to graphs of maximum degree
∆ requires some thought. If each node just repeatedly tries to pick a

106

random color from {1, 2, . . . ,∆+1}, the success probability may be fairly
low for large values of ∆.

Therefore we will adopt a strategy in which nodes are slightly less
aggressive. Nodes will first randomly choose whether they are active or
passive in this round; each node is passive with probability 1/2. Only
active nodes will try to pick a random color among those colors that are
not yet used by their neighbors.

Informally, the reason why this works well is the following. Assume
that we have a node v with d neighbors that have not yet stopped. Then
there are at least d + 1 colors among which v can choose whenever it is
active. If all of the d neighbors were also active and if they happened to
pick distinct colors, we would have only a

1
d + 1

chance of picking a color that is not used by any of the neighbors. How-
ever, in our algorithm on average only d/2 neighbors are active. If we
have at most d/2 active neighbors, we will succeed in picking a free
color with probability at least

d + 1− d/2
d + 1

>
1
2

,

regardless of what the active neighbors do.

6.4.2 Algorithm

Let us now formalize the algorithm. For each node u, let

C(u) = {1, 2, . . . , degG(u) + 1}

be the color palette of the node; node u will output one of the colors of
C(u).

In the algorithm, node u maintains the following variables:

• State s(u) ∈ {0, 1}

107

• Color c(u) ∈ {⊥} ∪ C(u).

Initially, s(u)← 1 and c(u)←⊥. When s(u) = 1 and c(u) ̸= ⊥, node u
stops and outputs color c(u).

In each round, node u always sends c(u) to each port. The incoming
messages are processed as follows, depending on the current state of the
node:

• s(u) = 1 and c(u) ̸=⊥:

– This is a stopping state; ignore incoming messages.

• s(u) = 1 and c(u) =⊥:

– Let M(u) be the set of messages received.

– Let F(u) = C(u) \M(u) be the set of free colors.
– With probability 1/2, set c(u)←⊥; otherwise choose a c(u) ∈

F(u) uniformly at random.

– Set s(u)← 0.

• s(u) = 0:

– Let M(u) be the set of messages received.

– If c(u) ∈ M(u), set c(u)←⊥.

– Set s(u)← 1.

Informally, the algorithm proceeds as follows. For each node u, its
state s(u) alternates between 1 and 0:

• When s(u) = 1, the node either decides to be passive and sets
c(u) = ⊥, or it decides to be active and picks a random color
c(u) ∈ F(u). Here F(u) is the set of colors that are not yet used by
any of the neighbors that are stopped.

• When s(u) = 0, the node verifies its choice. If the current color c(u)
conflicts with one of the neighbors, we go back to the initial state
s(u)← 1 and c(u)←⊥. However, if we were lucky and managed
to pick a color that does not conflict with any of our neighbors, we
keep the current value of c(u) and switch to the stopping state.

108

6.4.3 Analysis

It is easy to see that if the algorithm stops, then the output is a proper
(∆+ 1)-coloring of the underlying graph. Let us now analyze how long
it takes for the nodes to stop.

In the analysis, we will write st(u) and ct(u) for values of variables
s(u) and c(u) after round t = 0, 1, . . . , and Mt(u) and Ft(u) for the values
of M(u) and F(u) during round t = 1,2, We also write

Kt(u) =
�

v ∈ V : {u, v} ∈ E, st−1(v) = 1, ct−1(v) =⊥
	

for the set of competitors of node u during round t = 1,3,5, . . . ; these
are the neighbors of u that have not yet stopped.

First, let us prove that with probability at least 1/4, a running node
succeeds in picking a color that does not conflict with any of its neighbors.

Lemma 6.1. Fix a node u ∈ V and time t = 1,3,5, Assume that
st−1(u) = 1 and ct−1(u) =⊥, i.e., u has not stopped before round t. Then
with probability at least 1/4, we have st+1(u) = 1 and ct+1(u) ̸=⊥, i.e., u
will stop after round t + 1.

Proof. Let f = |Ft(u)| be the number of free colors during round t, and
let k = |Kt(u)| be the number of competitors during round t. Note that
f ≥ k + 1, as the size of the palette is one larger than the number of
neighbors.

Let us first study the case that u is active. As we have got f free
colors, for any given color x ∈ N we have

Pr
�

ct(u) = x
�

� ct(u) ̸=⊥
�

≤ 1/ f .

In particular, this holds for any color x = ct(v) chosen by any active
competitor v ∈ Kt(u):

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥, ct(v) ̸=⊥
�

≤ 1/ f .

That is, we conflict with an active competitor with probability at most
1/ f . Naturally, we cannot conflict with a passive competitor:

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥, ct(v) =⊥
�

= 0.

109

As a competitor is active with probability

Pr
�

ct(v) ̸=⊥
�

= 1/2,

and the random variables ct(u) and ct(v) are independent, the probability
that we conflict with a given competitor v ∈ Kt(u) is

Pr
�

ct(u) = ct(v)
�

� ct(u) ̸=⊥
�

≤
1

2 f
.

By the union bound, the probability that we conflict with some competitor
is

Pr
�

ct(u) = ct(v) for some v ∈ Kt(u)
�

� ct(u) ̸=⊥
�

≤
k

2 f
,

which is less than 1/2 for all k ≥ 0 and all f ≥ k + 1. Put otherwise,
node u will avoid conflicts with probability

Pr
�

ct(u) ̸= ct(v) for all v ∈ Kt(u)
�

� ct(u) ̸=⊥
�

>
1
2

.

So far we have studied the conditional probabilities assuming that u
is active. This happens with probability

Pr
�

ct(u) ̸=⊥
�

= 1/2.

Therefore node u will stop after round t + 1 with probability

Pr
�

ct+1(u) ̸=⊥] =

Pr
�

ct(u) ̸=⊥ and ct(u) ̸= ct(v) for all v ∈ Kt(u)]> 1/4.

Now we can continue with the same argument as what we used in
Section 1.5 to analyze the running time. Fix a constant c > 0. Define

T (n) = 2(c + 1) log4/3 n.

We will prove that the algorithm stops in T(n) rounds. First, let us
consider an individual node. Note the exponent c + 1 instead of c in the
statement of the lemma; this will be helpful later.

110

Lemma 6.2. Fix a node u ∈ V . The probability that u has not stopped
after T (n) rounds is at most 1/nc+1.

Proof. By Lemma 6.1, if node u has not stopped after round 2i, it will
stop after round 2i+2 with probability at least 1/4. Hence the probability
that it has not stopped after T (n) rounds is at most

(3/4)T (n)/2 =
1

(4/3)(c+1) log4/3 n
=

1
nc+1

.

Now we are ready to analyze the time until all nodes stop.

Theorem 6.3. The probability that all nodes have stopped after T(n)
rounds is at least 1− 1/nc .

Proof. Follows from Lemma 6.2 by the union bound.

Note that T(n) = O(log n) for any constant c. Hence we conclude
that the algorithm stops in O(log n) rounds with high probability, and
when it stops, it outputs a vertex coloring with ∆+ 1 colors.

6.5 Quiz

Consider a cycle with 10 nodes, and label the nodes with a random
permutation of the numbers 1, 2, . . . , 10 (uniformly at random). A node
is a local maximum if its label is larger than the labels of its two neighbors.
Let X be the number of local maxima. What is the expected value of X?

6.6 Exercises

Exercise 6.1 (larger palette). Assume that we have a graph without any
isolated nodes. We will design a graph-coloring algorithm A that is a bit
easier to understand and analyze than the algorithm of Section 6.4. In
algorithm A, each node u proceeds as follows until it stops:

• Node u picks a color c(u) from {1, 2, . . . , 2d} uniformly at random;
here d is the degree of node u.

111

• Node u compares its value c(u) with the values of all neighbors. If
c(u) is different from the values of its neighbors, u outputs c(u)
and stops.

Present this algorithm in a formally precise manner, using the state-
machine formalism. Analyze the algorithm, and prove that it finds a
2∆-coloring in time O(log n) with high probability.

Exercise 6.2 (unique identifiers). Design a randomized PN algorithm A
that solves the following problem in O(1) rounds:

• As input, all nodes get value |V |.
• Algorithm outputs a labeling f : V → {1,2, . . . ,χ} for some χ =
|V |O(1).

• With high probability, f (u) ̸= f (v) for all nodes u ̸= v.

Analyze your algorithm and prove that it indeed solves the problem
correctly.

In essence, algorithm A demonstrates that we can use randomness
to construct unique identifiers, assuming that we have some information
on the size of the network. Hence we can take any algorithm B designed
for the LOCAL model, and combine it with algorithm A to obtain a PN
algorithm B′ that solves the same problem as B (with high probability).

▷ hint M

Exercise 6.3 (large independent sets). Design a randomized PN al-
gorithm A with the following guarantee: in any graph G = (V, E) of
maximum degree ∆, algorithm A outputs an independent set I such that
the expected size of the I is |V |/O(∆). The running time of the algorithm
should be O(1). You can assume that all nodes know ∆.

▷ hint N

Exercise 6.4 (max cut problem). Let G = (V, E) be a graph. A cut
is a function f : V → {0,1}. An edge {u, v} ∈ E is a cut edge in f
if f (u) ̸= f (v). The size of cut f is the number of cut edges, and a
maximum cut is a cut of the largest possible size.

112

(a) Prove: If G = (V, E) is a bipartite graph, then a maximum cut has
|E| edges.

(b) Prove: If G = (V, E) has a cut with |E| edges, then G is bipartite.

(c) Prove: For any α > 1/2, there exists a graph G = (V, E) in which
the maximum cut has fewer than α|E| edges.

▷ hint O

Exercise 6.5 (max cut algorithm). Design a randomized PN algorithm
A with the following guarantee: in any graph G = (V, E), algorithm A
outputs a cut f such that the expected size of cut f is at least |E|/2. The
running time of the algorithm should be O(1).

Note that the analysis of algorithm A also implies that for any graph
there exists a cut with at least |E|/2.

▷ hint P

Exercise 6.6 (maximal independent sets). Design a randomized PN
algorithm that finds a maximal independent set in time O(∆+ log n)
with high probability.

▷ hint Q

⋆ Exercise 6.7 (maximal independent sets quickly). Design a random-
ized distributed algorithm that finds a maximal independent set in time
O(log n) with high probability.

▷ hint R

6.7 Bibliographic Notes

Algorithm of Section 6.4 and the algorithm of Exercise 6.1 are from
Barenboim and Elkin’s book [7, Section 10.1].

113

Part IV

Proving Impossibility Results

114

Chapter 7

Covering Maps

Chapters 3–6 have focused on positive results; now we will turn our
attention to techniques that can be used to prove negative results. We
will start with so-called covering maps—we will use covering maps to
prove that many problems cannot be solved at all with deterministic
PN-algorithms.

7.1 Definition

A covering map is a topological concept that finds applications in many
areas of mathematics, including graph theory. We will focus on one
special case: covering maps between port-numbered networks.

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be port-numbered networks,
and let φ : V → V ′. We say that φ is a covering map from N to N ′ if the
following holds:

(a) φ is a surjection: φ(V) = V ′.

(b) φ preserves degrees: degN (v) = degN ′(φ(v)) for all v ∈ V .

(c) φ preserves connections and port numbers: p(u, i) = (v, j)
implies p′(φ(u), i) = (φ(v), j).

See Figures 7.1–7.3 for examples.
We can also consider labeled networks, for example, networks with

local inputs. Let f : V → X and f ′ : V ′→ X . We say that φ is a covering
map from (N , f) to (N ′, f ′) if φ is a covering map from N to N ′ and the
following holds:

(d) φ preserves labels: f (v) = f ′(φ(v)) for all v ∈ V .

115

N:

N’:

a1, 3
a1, 2
a1, 1

b1, 1
b1, 2

c1, 1
c1, 2

d1, 1

a2, 3
a2, 2
a2, 1

b2, 1
b2, 2

c2, 1
c2, 2

d2, 1

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 7.1: There is a covering map φ from N to N ′ that maps ai 7→ a,
bi 7→ b, ci 7→ c, and di 7→ d for each i ∈ {1, 2}.

116

N:

N’:

v1, 1
v1, 2

v3, 1
v3, 2

v2, 1
v2, 2

v, 1
v, 2

Figure 7.2: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2,3}. Here N is a simple port-numbered network but N ′ is
not.

N:

N’: v, 1

v1, 1 v2, 1

Figure 7.3: There is a covering map φ from N to N ′ that maps vi 7→ v for
each i ∈ {1,2}. Again, N is a simple port-numbered network but N ′ is
not.

117

7.2 Covers and Executions

Now we will study covering maps from the perspective of deterministic
PN-algorithms. The basic idea is that a covering map φ from N to N ′

fools any PN-algorithm A: a node v in N is indistinguishable from the
node φ(v) in N ′.

Without further ado, we state the main result and prove it—many
applications and examples will follow.

Theorem 7.1. Assume that

(a) A is a deterministic PN-algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are port-numbered networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions, and

(d) φ : V → V ′ is a covering map from (N , f) to (N ′, f ′).

Let

(e) x0, x1, . . . be the execution of A on (N , f), and

(f) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . and each v ∈ V we have x t(v) = x ′t(φ(v)).

Proof. We will use the notation of Section 3.3.2; the symbols with a
prime refer to the execution of A on (N ′, f ′). In particular, m′t(u

′, i) is
the message received by u′ ∈ V ′ from port i in round t in the execution
of A on (N ′, f ′), and m′t(u

′) is the vector of messages received by u′.
The proof is by induction on t. To prove the base case t = 0, let

v ∈ V , d = degN (v), and v′ = φ(v); we have

x ′0(v
′) = initA,d(f

′(v′)) = initA,d(f (v)) = x0(v).

For the inductive step, let (u, i) ∈ P, (v, j) = p(u, i), d = degN (u),
ℓ = degN (v), u′ = φ(u), and v′ = φ(v). Let us first consider the messages
sent by v and v′; by the inductive assumption, these are equal:

sendA,ℓ(x
′
t−1(v

′)) = sendA,ℓ(x t−1(v)).

118

A covering map φ preserves connections and port numbers: (u, i) =
p(v, j) implies (u′, i) = p′(v′, j). Hence mt(u, i) is component j of
sendA,ℓ(x t−1(v)), and m′t(u

′, i) is component j of sendA,ℓ(x ′t−1(v
′)). It

follows that mt(u, i) = m′t(u
′, i) and mt(u) = m′t(u

′). Therefore

x ′t(u
′) = receiveA,d

�

x ′t−1(u
′), m′t(u

′)
�

= receiveA,d

�

x t−1(u), mt(u)
�

= x t(u).

In particular, if the execution of A on (N , f) stops in time T , the exe-
cution of A on (N ′, f ′) stops in time T as well, and vice versa. Moreover,
φ preserves the local outputs: xT (v) = x ′T (φ(v)) for all v ∈ V .

7.3 Examples

We will give representative examples of negative results that we can easily
derive from Theorem 7.1. First, we will observe that a deterministic
PN-algorithm cannot break symmetry in a cycle—unless we provide
some symmetry-breaking information in local inputs.

Lemma 7.2. Let G = (V, E) be a cycle graph, let A be a deterministic
PN-algorithm, and let f be a constant function f : V → {0}. Then there is
a simple port-numbered network N = (V, P, p) such that

(a) the underlying graph of N is G, and

(b) if A stops on (N , f), the output is a constant function g : V → {c}
for some c.

Proof. Label the nodes V = { v1, v2, . . . , vn } along the cycle so that the
edges are

E =
�

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
	

.

Choose the port numbering p as follows:

p : (v1, 1) 7→ (v2, 2), (v2, 1) 7→ (v3, 2), . . . ,

(vn−1, 1) 7→ (vn, 2), (vn, 1) 7→ (v1, 2).

119

See Figure 7.2 for an illustration in the case n= 3.
Define another port-numbered network N ′ = (V ′, P ′, p′) with V ′ =

{v}, P ′ = {(v, 1), (v, 2)}, and p(v, 1) = (v, 2). Let f ′ : V ′→ {0}. Define a
function φ : V → V ′ by setting φ(vi) = v for each i.

Now we can verify that φ is a covering map from (N , f) to (N ′, f ′).
Assume that A stops on (N , f) and produces an output g. By Theorem 7.1,
A also stops on (N ′, f ′) and produces an output g ′. Let c = g ′(v). Now

g(vi) = g ′(φ(vi)) = g ′(v) = c

for all i.

In the above proof, we never assumed that the execution of A on
N ′ makes any sense—after all, N ′ is not even a simple port-numbered
network, and there is no underlying graph. Algorithm A was never
designed to be applied to such a strange network with only one node.
Nevertheless, the execution of A on N ′ is formally well-defined, and
Theorem 7.1 holds. We do not really care what A outputs on N ′, but the
existence of a covering map can be used to prove that the output of A
on N has certain properties. It may be best to interpret the execution
of A on N ′ as a thought experiment, not as something that we would
actually try to do in practice.

Lemma 7.2 has many immediate corollaries.

Corollary 7.3. Let F be the family of cycle graphs. Then there is no
deterministic PN-algorithm that solves any of the following problems onF :

(a) maximal independent set,
(b) 1.999-approximation of a minimum vertex cover,
(c) 2.999-approximation of a minimum dominating set,
(d) maximal matching,
(e) vertex coloring,
(f) weak coloring,
(g) edge coloring.

120

Proof. In each of these cases, there is a graph G ∈ F such that a constant
function is not a feasible solution in the network N that we constructed
in Lemma 7.2.

For example, consider the case of dominating sets; other cases are
similar. Assume that G = (V, E) is a cycle with 3k nodes. Then a
minimum dominating set consists of k nodes—it is sufficient to take every
third node. Hence a 2.999-approximation of a minimum dominating
set consists of at most 2.999k < 3k nodes. A solution D = V violates
the approximation guarantee, as D has too many nodes, while D =∅ is
not a dominating set. Hence if A outputs a constant function, it cannot
produce a 2.999-approximation of a minimum dominating set.

Lemma 7.4. There is no deterministic PN-algorithm that finds a weak
coloring for every 3-regular graph.

Proof. Again, we are going to apply the standard technique: pick a
suitable 3-regular graph G, find a port-numbered network N that has G
as its underlying graph, find a smaller network N ′ such that we have a
covering map φ from N to N ′, and apply Theorem 7.1.

However, it is not immediately obvious which 3-regular graph would
be appropriate; hence we try the simplest possible case first. Let G =
(V, E) be the complete graph on four nodes: V = { s, t, u, v }, and we have
an edge between any pair of nodes; see Figure 7.4. The graph is certainly
3-regular: each node is adjacent to the other three nodes.

Now it is easy to verify that the edges of G can be partitioned into
a 2-factor X and a 1-factor Y . The 2-factor consists of a cycle and a
1-factor consists of disjoint edges. We can use the factors to guide the
selection of port numbers in N .

In the cycle induced by X , we can choose symmetric port numbers
using the same idea as what we had in the proof of Lemma 7.2; one end
of each edge is connected to port 1 while the other end is connected to
port 2. For the edges of the 1-factor Y , we can assign port number 3 at
each end. We have constructed the port-numbered network N that is
illustrated in Figure 7.4.

121

X
Y

Y
X

X
s

X

t

uv

N:

N’:

s, 3
s, 2
s, 1

v, 3
v, 2
v, 1

u, 3
u, 2
u, 1

t, 3
t, 2
t, 1

G:

x, 3
x, 2
x, 1

Figure 7.4: Graph G is the complete graph on four nodes. The edges of G
can be partitioned into a 2-factor X and a 1-factor Y . Network N has G
as its underlying graph, and there is a covering map φ from N to N ′

122

Now we can verify that there is a covering mapφ from N to N ′, where
N ′ is the network with one node illustrated in Figure 7.4. Therefore
in any algorithm A, if we do not have any local inputs, all nodes of N
will produce the same output. However, a constant output is not a weak
coloring of G.

In the above proof, we could have also partitioned the edges of G
into three 1-factors, and we could have used the 1-factorization to guide
the selection of port numbers. However, the above technique is more
general: there are 3-regular graphs that do not admit a 1-factorization
but that can be partitioned into a 1-factor and a 2-factor.

So far we have used only one covering map in our proofs; the fol-
lowing lemma gives an example of the use of more than one covering
map.

Lemma 7.5. Let F = {G3, G4 }, where G3 is the cycle graph with 3 nodes,
and G4 is the cycle graph with 4 nodes. There is no deterministic PN-
algorithm that solves the following problem Π on F : in Π(G3) all nodes
output 3 and in Π(G4) all nodes output 4.

Proof. We again apply the construction of Lemma 7.2; for each i ∈
{3,4}, let Ni be the symmetric port-numbered network that has Gi as
the underlying graph.

Now it would be convenient if we could construct a covering map
from N4 to N3; however, this is not possible (see the exercises). Therefore
we proceed as follows. Construct a one-node network N ′ as in the
proof of Lemma 7.2, construct the covering map φ3 from N3 to N ′, and
construct the covering map φ4 from N4 to N ′; see Figure 7.5. The local
inputs are assumed to be all zeros.

Let A be a PN-algorithm, and let c be the output of the only node of
N ′. If we apply Theorem 7.1 to φ3, we conclude that all nodes of N3
output c; if A solves Π on G3, we must have c = 3. However, if we apply
Theorem 7.1 to φ4, we learn that all nodes of N4 also output c = 3, and
hence A cannot solve Π on F .

123

N’:

N3: N4:

φ3 φ4

Figure 7.5: The structure of the proof of Lemma 7.5.

We have learned that a deterministic PN-algorithm cannot determine
the length of a cycle. In particular, a deterministic PN-algorithm cannot
determine if the underlying graph is bipartite.

7.4 Quiz

Let G = (V, E) be a graph. A set X ⊆ V is a k-tuple dominating set if
for every v ∈ V we have |ballG(v, 1)∩ X | ≥ k. Consider the problem of
finding a minimum 2-tuple dominating set in cycles. What is the best
(i.e. smallest) approximation ratio we can achieve in the PN model?

7.5 Exercises

We use the following definition in the exercises. A graph G is homoge-
neous if there are port-numbered networks N and N ′ and a covering
map φ from N to N ′ such that N is simple, the underlying graph of N is
G, and N ′ has only one node. For example, Lemma 7.2 shows that all
cycle graphs are homogeneous.

124

Exercise 7.1 (finding port numbers). Consider the graph G and network
N ′ illustrated in Figure 7.6. Find a simple port-numbered network N
such that N has G as the underlying graph and there is a covering map
from N to N ′.

Exercise 7.2 (homogeneity). Assume that G is homogeneous and it
contains a node of degree at least two. Give several examples of graph
problems that cannot be solved with any deterministic PN-algorithm in
any family of graphs that contains G.

Exercise 7.3 (regular and homogeneous). Show that the following
graphs are homogeneous:

(a) graph G illustrated in Figure 7.7,

(b) graph G illustrated in Figure 7.6.

▷ hint S

Exercise 7.4 (complete graphs). Recall that we say that a graph G =
(V, E) is complete if for all nodes u, v ∈ V , u ̸= v, there is an edge
{u, v} ∈ E. Show that

(a) any 2k-regular graph is homogeneous,

(b) any complete graph with 2k nodes has a 1-factorization,

(c) any complete graph is homogeneous.

Exercise 7.5 (dominating sets). Let ∆ ∈ {2,3, . . . }, let ε > 0, and let
F consist of all graphs of maximum degree at most ∆. Show that it is
possible to find a (∆+1)-approximation of a minimum dominating set in
constant time in family F with a deterministic PN-algorithm. Show that
it is not possible to find a (∆+1−ε)-approximation with a deterministic
PN-algorithm.

▷ hint T

Exercise 7.6 (covers with covers). What is the connection between
covering maps and the vertex cover 3-approximation algorithm in Sec-
tion 3.6?

125

b, 3
b, 2
b, 1

c, 3
c, 2
c, 1

d, 3
d, 2
d, 1

a, 3
a, 2
a, 1

N’:

G:

Figure 7.6: Graph G and network N ′ for Exercises 7.1 and 7.3b.

Figure 7.7: Graph G for Exercise 7.3a.

126

Figure 7.8: Graph G for Exercise 7.7.

⋆ Exercise 7.7 (3-regular and not homogeneous). Consider the graph
G illustrated in Figure 7.8.

(a) Show that G is not homogeneous.

(b) Present a deterministic PN-algorithm A with the following prop-
erty: if N is a simple port-numbered network that has G as the
underlying graph, and we execute A on N , then A stops and pro-
duces an output where at least one node outputs 0 and at least
one node outputs 1.

(c) Find a simple port-numbered network N that has G as the under-
lying graph, a port-numbered network N ′, and a covering map
φ from N to N ′ such that N ′ has the smallest possible number of
nodes.

▷ hint U

⋆ Exercise 7.8 (covers and connectivity). Assume that N = (V, P, p) and
N ′ = (V ′, P ′, p′) are simple port-numbered networks such that there is a
covering map φ from N to N ′. Let G be the underlying graph of network
N , and let G′ be the underlying graph of network N ′.

(a) Is it possible that G is connected and G′ is not connected?

(b) Is it possible that G is not connected and G′ is connected?

⋆ Exercise 7.9 (k-fold covers). Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be
simple port-numbered networks such that the underlying graphs of N
and N ′ are connected, and assume that φ : V → V ′ is a covering map

127

from N to N ′. Prove that there exists a positive integer k such that
the following holds: |V | = k|V ′| and for each node v′ ∈ V ′ we have
|φ−1(v′)| = k. Show that the claim does not necessarily hold if the
underlying graphs are not connected.

7.6 Bibliographic Notes

The use of covering maps in the context of distributed algorithm was
introduced by Angluin [3]. The general idea of Exercise 7.7 can be traced
back to Yamashita and Kameda [42], while the specific construction in
Figure 7.8 is from Bondy and Murty’s textbook [9, Figure 5.10]. Parts of
exercises 7.1, 7.3, 7.4, and 7.5 are inspired by our work [4,39].

128

Chapter 8

Local Neighborhoods

Covering maps can be used to argue that a given problem cannot be
solved at all with deterministic PN algorithms. Now we will study the
concept of locality, which can be used to argue that a given problem
cannot be solved fast, in any model of distributed computing.

8.1 Definitions

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be simple port-numbered networks,
with the underlying graphs G = (V, E) and G′ = (V ′, E′). Fix the local
inputs f : V → Y and f ′ : V ′ → Y , a pair of nodes v ∈ V and v′ ∈ V ′,
and a radius r ∈ N. Define the radius-r neighborhoods

U = ballG(v, r), U ′ = ballG′(v
′, r).

We say that (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r neighbor-
hoods if there is a bijection ψ: U → U ′ with ψ(v) = v′ such that

(a) ψ preserves degrees: degN (v) = degN ′(ψ(v)) for all v ∈ U .

(b) ψ preserves connections and port numbers: p(u, i) = (v, j) if and
only if p′(ψ(u), i) = (ψ(v), j) for all u, v ∈ U .

(c) ψ preserves local inputs: f (v) = f ′(ψ(v)) for all v ∈ U .

The function ψ is called an r-neighborhood isomorphism from (N , f , v)
to (N ′, f ′, v′). See Figure 8.1 for an example.

8.2 Local Neighborhoods and Executions

Theorem 8.1. Assume that

129

u v

Figure 8.1: Nodes u and v have isomorphic radius-2 neighborhoods,
provided that we choose the port numbers appropriately. Therefore in any
algorithm A the state of u equals the state of v at time t = 0, 1, 2. However,
at time t = 3, 4, . . . this does not necessarily hold.

(a) A is a deterministic PN algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are simple port-numbered
networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions,

(d) v ∈ V and v′ ∈ V ′,

(e) (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r neighborhoods.

Let

(f) x0, x1, . . . be the execution of A on (N , f), and

(g) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . , r we have x t(v) = x ′t(v
′).

Proof. Let G and G′ be the underlying graphs of N and N ′, respectively.
We will prove the following stronger claim by induction: for each t =
0,1, . . . , r, we have x t(u) = x ′t(ψ(u)) for all u ∈ ballG(v, r − t).

To prove the base case t = 0, let u ∈ ballG(v, r), d = degN (u), and
u′ =ψ(u); we have

x ′0(u
′) = initA,d(f

′(u′)) = initA,d(f (u)) = x0(u).

For the inductive step, assume that t ≥ 1 and

u ∈ ballG(v, r − t).

130

Let u′ =ψ(u). By inductive assumption, we have

x ′t−1(u
′) = x t−1(u).

Now consider a port (u, i) ∈ P. Let (s, j) = p(u, i). We have {s, u} ∈ E,
and therefore

distG(s, v)≤ distG(s, u) + distG(u, v)≤ 1+ r − t.

Define s′ =ψ(s). By inductive assumption we have

x ′t−1(s
′) = x t−1(s).

The neighborhood isomorphism ψ preserves the port numbers: (s′, j) =
p′(u′, i). Hence all of the following are equal:

(a) the message sent by s to port j on round t,
(b) the message sent by s′ to port j on round t,
(c) the message received by u from port i on round t,
(d) the message received by u′ from port i on round t.

As the same holds for any port of u, we conclude that

x ′t(u
′) = x t(u).

To apply Theorem 8.1 in the LOCAL model, we need to include
unique identifiers in the local inputs f and f ′.

8.3 Example: 2-Coloring Paths

We know from Chapter 1 that one can find a proper 3-coloring of a path
very fast, in O(log∗ n) rounds. Now we will show that 2-coloring is much
harder; it requires linear time.

To reach a contradiction, suppose that there is a deterministic dis-
tributed algorithm A that finds a proper 2-coloring of any path graph
in o(n) rounds in the LOCAL model. Then there has to be a number n0

131

such that for any number of nodes n≥ n0, the running time of algorithm
A is at most (n− 3)/2. Pick some integer k ≥ n0/2, and consider two
paths: path G contains 2k nodes, with unique identifiers 1,2, . . . , 2k,
and path H contains 2k+ 1 nodes, with unique identifiers

1,2, . . . , k, 2k+ 1, k+ 1, k+ 2, . . . , 2k.

Here is an example for k = 3:

21 64 53

21 57 43 6

G:

H:

We assign the port numbers so that for all degree-2 nodes port number
1 points towards node 1:

21 64 53

21 57 43 6

G:

H:

1 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 11 1

By assumption, the running time of A is at most

(n− 3)/2≤ (2k+ 1− 3)/2= k− 1

rounds in both cases. Since node 1 has got the same radius-(k− 1)
neighborhood in G and H, algorithm A will produce the same output for
node 1 in both networks:

21 64 53

21 57 43 6

G:

H:

1 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 11 1

By a similar reasoning, node 2k (i.e., the last node of the path) also has
to produce the same output in both cases:

132

21 64 53

21 57 43 6

G:

H:

1 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 11 1

However, now we reach a contradiction. In path H, in any proper 2-
coloring nodes 1 and 2k have the same color—for example, both of them
are of color 1, as shown in the following picture:

21 22 11 1H:

If algorithm A works correctly, it follows that nodes 1 and 2k must
produce the same output in path H. However, then it follows that nodes
1 and 2k produces the same output also in G, too, but this cannot happen
in any proper 2-coloring of G.

?1 1? ??

21 22 11 1

G:

H:

We conclude that algorithm A fails to find a proper 2-coloring in at least
one of these instances.

8.4 Quiz

Let N a simple port-numbered network with 1000 nodes, such that the
underlying graph of N is a cycle. Form another network N ′ by adding
one edge to N . Let A be a LOCAL-model algorithm that runs in 100
rounds. Let f be the output of A in network N , and let f ′ be the output
of A in network N ′. At most how many nodes there can be such that
their output differs in f and f ′?

133

8.5 Exercises

Exercise 8.1 (edge coloring). In this exercise, the graph family F con-
sists of path graphs.

(a) Show that it is possible to find a 2-edge coloring in time O(n) with
deterministic PN-algorithms.

(b) Show that it is not possible to find a 2-edge coloring in time o(n)
with deterministic PN-algorithms.

(c) Show that it is not possible to find a 2-edge coloring in time o(n)
with deterministic LOCAL-algorithms.

Exercise 8.2 (maximal matching). In this exercise, the graph family F
consists of path graphs.

(a) Show that it is possible to find a maximal matching in time O(n)
with deterministic PN-algorithms.

(b) Show that it is not possible to find a maximal matching in time
o(n) with deterministic PN-algorithms.

(c) Show that it is possible to find a maximal matching in time o(n)
with deterministic LOCAL-algorithms.

Exercise 8.3 (optimization). In this exercise, the graph familyF consists
of path graphs. Can we solve the following problems with deterministic
PN-algorithms? If yes, how fast? Can we solve them any faster in the
LOCAL model?

(a) Minimum vertex cover.

(b) Minimum dominating set.

(c) Minimum edge dominating set.

Exercise 8.4 (approximation). In this exercise, the graph family F
consists of path graphs. Can we solve the following problems with
deterministic PN-algorithms? If yes, how fast? Can we solve them any
faster in the LOCAL model?

134

(a) 2-approximation of a minimum vertex cover?

(b) 2-approximation of a minimum dominating set?

Exercise 8.5 (auxiliary information). In this exercise, the graph family
F consists of path graphs, and we are given a 4-coloring as input. We
consider deterministic PN-algorithms.

(a) Show that it is possible to find a 3-coloring in time 1.

(b) Show that it is not possible to find a 3-coloring in time 0.

(c) Show that it is possible to find a 2-coloring in time O(n).

(d) Show that it is not possible to find a 2-coloring in time o(n).

⋆ Exercise 8.6 (orientations). In this exercise, the graph family F
consists of cycle graphs, and we are given some orientation as input. The
task is to find a consistent orientation, i.e., an orientation such that both
the indegree and the outdegree of each node is 1.

(a) Show that this problem cannot be solved with any deterministic
PN-algorithm.

(b) Show that this problem cannot be solved with any deterministic
LOCAL-algorithm in time o(n).

(c) Show that this problem can be solved with a deterministic PN-
algorithm if we give n as input to all nodes. How fast? Prove tight
upper and lower bounds on the running time.

⋆ Exercise 8.7 (local indistinguishability). Consider the graphs G1
and G2 illustrated in Figure 8.2. Assume that A is a deterministic PN-
algorithm with running time 2. Show that A cannot distinguish between
nodes v1 and v2. That is, there are simple port-numbered networks N1
and N2 such that Ni has Gi as the underlying graph, and the output of
v1 in N1 equals the output of v2 in N2.

▷ hint V

135

v1 v2

G1 G2

Figure 8.2: Graphs for Exercise 8.7.

8.6 Bibliographic Notes

Local neighborhoods were used to prove negative results in the context
of distributed computing by, e.g., Linial [30].

136

Chapter 9

Round Elimination

In this chapter we introduce the basic idea of a proof technique, called
round elimination. Round elimination is based on the following idea.
Assume that there exists a distributed algorithm S0 with complexity
T solving a problem Π0. Then there exists a distributed algorithm S1
with complexity T − 1 for solving another problem Π1. That is, if we
can solve problem Π0 in T communication rounds, then we can solve
a related problem Π1 exactly one round faster—we can “eliminate one
round”. If this operation is repeated T times, we end up with some
algorithm ST with round complexity 0 for some problem ΠT . If ΠT is
not a trivial problem, that is, cannot be solved in 0 rounds, we have
reached a contradiction: therefore the assumption that Π0 can be solved
in T rounds has to be wrong. This is a very useful approach, as it is
much easier to reason about 0-round algorithms than about algorithms
in general.

9.1 Bipartite Model and Biregular Trees

When dealing with round elimination, we will consider a model that is a
variant of the PN model from Chapter 3. We will restrict our attention
to specific families of graphs (see Figure 9.1):

(a) Bipartite. The set of nodes V is partitioned into two sets: the
active nodes VA and the passive nodes VP . The partitioning forms a
proper 2-coloring of the graph, i.e., each edge connects an active
node with a passive node. The role of a node—active or passive—
is part of the local input.

(b) Biregular trees. We will assume that the input graphs are biregular
trees: the graph is connected, there are no cycles, each node in

137

(a)

(b)

Figure 9.1: The bipartite model; black nodes are active and white nodes
are passive. (a) A (3, 3)-biregular tree. (b) A (3, 2)-biregular tree.

VA has degree d or 1, and each node in VP has degree δ or 1.
We say that such a tree is (d,δ)-biregular. See Figure 9.1 for an
illustration.

9.1.1 Bipartite Locally Verifiable Problem

We consider a specific family of problems, called bipartite locally verifiable
problems. Such a problem is defined as a 3-tuple Π= (Σ,A,P), where:

• Σ is a finite alphabet.

• A and P are finite collections of multisets, where each multiset
A ∈ A and P ∈ P consists of a finite number of elements from Σ.
These are called the active and passive configurations.

138

Recall that multisets are sets that allow elements to be repeated. We use
the notation [x1, x2, . . . , xk] for a multiset that contains k elements; for
example, [1,1, 2,2, 2] is a multiset with two 1s and three 2s. Note that
the order of elements does not matter, for example, [1, 1, 2] = [1, 2, 1] =
[2,1, 1].

In problem Π, each active node v ∈ VA must label its incident deg(v)
edges with elements of Σ such that the labels of the incident edges,
considered as a multiset, form an element of A. The order of the labels
does not matter. The passive nodes do not have outputs. Instead, we
require that for each passive node the labels of its incident edges, again
considered as a multiset, form an element of P. A labeling ϕ : E→ Σ is
a solution to Π if and only if the incident edges of all active and passive
nodes are labeled according to some configuration.

In this chapter we will only consider labelings such that all nodes of
degree 1 accept any configuration: these will not be explicitly mentioned
in what follows. Since we only consider problems in (d,δ)-biregular
trees, each active configuration will have d elements and each passive
configuration δ elements.

9.1.2 Examples

To illustrate the definition of bipartite locally verifiable labelings, we
consider some examples (see Figure 9.2).

Edge Coloring. A c-edge coloring is an assignment of labels from
{1, 2, . . . , c} to the edges such that no node has two incident edges with
the same label.

Consider the problem of 5-edge coloring (3, 3)-biregular trees. The
alphabet Σ consists of the five edge colors {1,2,3,4,5}. The active
configurations consist of all multisets of three elements [x , y, z], such
that all elements are distinct and come fromΣ. The problem is symmetric,
and the passive configurations consist of the same multisets:

A= P=
�

[1,2, 3], [1, 2,4], [1,2, 5], [1,3, 4], [1, 3,5],

[1,4, 5], [2, 3,4], [2,3, 5], [2,4, 5], [3, 4,5]
	

.

139

3 2

4
52

1
3 1

2

1
2

3
5 2

3

1 4

4
3

P P

P
MU

U
P P

P

M
U

M
U M

U

P M

P
M

O
I

I
OO

O
I O

O

O
I

O
I O

I

O O

O
I

1
1

2

2

2
2

2 2
3

3

3 1

3
1

1

1

1

1 1

1

1

3
3

(a)

(b)

(c)

(d)

Figure 9.2: Bipartite locally verifiable labeling problems. (a) 5-edge
coloring in a (3,3)-biregular tree. (b) Maximal matching in a (3,3)-
biregular tree. (c) Sinkless orientation in a (3, 3)-biregular tree. (d) Weak
3-labeling in a (3,2)-biregular tree.

140

Maximal Matching. A maximal matching M is a subset of the edges
such that no two incident edges are in M and no edge can be added
to M .

Consider maximal matching on (3,3)-biregular trees. To encode
a matching, we could use just two labels: M for matched and U for
unmatched. Such a labeling, however, has no way of guaranteeing
maximality. We use a third label P, called a pointer:

Σ= {M,P,U}.

The active nodes either output [M,U,U], denoting that the edge marked
M is in the matching, or they output [P,P,P], denoting that they are
unmatched, and thus all passive neighbors must be matched with another
active node:

A=
�

[M,U,U], [P,P,P]
	

.

Passive nodes must verify that they are matched with at most one node,
and that if they have an incident label P, then they also have an incident
label M (to ensure maximality). Hence the passive configurations are

P=
�

[M,P,P], [M,P,U], [M,U,U], [U,U,U]
	

.

Sinkless Orientation. A sinkless orientation is an orientation of the
edges such that each node has an edge oriented away from it. That is,
no node is a sink. We will consider here sinkless orientation in (3,3)-
biregular trees; leaf nodes can be sinks, but nodes of degree 3 must have
at least one outgoing edge.

To encode sinkless orientation, each active node chooses an orienta-
tion of its incident edges: outgoing edges are labeled O and incoming
edges I. Thus the alphabet is Σ = {O, I}. Each node must have an outgo-
ing edge, so the active configurations are all multisets that contain at
least one O:

A=
�

[O, x , y]
�

� x , y ∈ Σ
	

.

The passive configurations are similar, but the roles of the labels are
reversed: an outgoing edge for an active node is an incoming edge for a

141

passive node. Therefore each passive node requires that at least one of
its incident edges is labeled I, and the passive configurations are

P=
�

[I, x , y]
�

� x , y ∈ Σ
	

.

Weak Labeling. We will use the following problem as the example in
the remainder of this chapter. Consider (3,2)-biregular trees. A weak
3-labeling is an assignment of labels from the set {1,2,3} to the edges
such that each active node has at least two incident edges labeled with
different labels. Each passive node must have its incident edges labeled
with the same label. The problem can be formalized as

Σ= {1,2, 3},

A=
�

[1,1, 2], [1, 1,3], [1, 2,2], [1,2, 3], [1, 3,3], [2,2, 3], [2,3, 3]
	

,

P=
�

[1,1], [2,2], [3, 3]
	

.

9.2 Introducing Round Elimination

Round elimination is based on the following basic idea. Assume that
we can solve some bipartite locally verifiable problem Π0 in T commu-
nication rounds on (d,δ)-biregular trees. Then there exists a bipartite
locally verifiable problem Π1, called the output problem of Π0, that can
be solved in T − 1 rounds on (δ, d)-biregular trees. The output problem
is uniquely defined, and we refer to the output problem of Π as re(Π).
The definition of output problem will be given in Section 9.2.2.

A single round elimination step is formalized in the following lemma.

Lemma 9.1 (Round elimination lemma). Let Π be bipartite locally ver-
ifiable problem that can be solved in T rounds in (d,δ)-biregular trees.
Then the output problem re(Π) of Π can be solved in T − 1 rounds in
(δ, d)-biregular trees.

142

9.2.1 Impossibility Using Iterated Round Elimination

Lemma 9.1 can be iterated, applying it to the output problem of the
previous step. This will yield a sequence of T + 1 problems

Π0→ Π1→ ·· · → ΠT ,

where Πi+1 = re(Πi) for each i = 0, 1, . . . , T − 1.
If we assume that there is a T -round algorithm for Π0, then by an

iterated application of Lemma 9.1, there is a (T − 1)-round algorithm
for Π1, a (T − 2)-round algorithm for Π2, and so on. In particular, there
is a 0-round algorithm for ΠT .

Algorithms that run in 0 rounds are much easier to reason about
than algorithms in general. Since there is no communication, each active
node must simply map its input, essentially its degree, to some output.
In particular, we can try to show that there is no 0-round algorithm
for ΠT . If this is the case, we have a contradiction with our original
assumption: there is no T -round algorithm for Π0.

We will now proceed to formally define output problems.

9.2.2 Output Problems

For each locally verifiable problem Π we will define a unique output
problem re(Π).

Let Π0 = (Σ0,A0,P0) be a bipartite locally verifiable problem on
(d,δ)-biregular trees. We define the output problem Π1 = re(Π0) =
(Σ1,A1,P1) of Π0 on (δ, d)-biregular trees as follows—note that we
swapped the degrees of active vs. passive nodes here.

The alphabetΣ1 consists of all possible non-empty subsets ofΣ0. The
roles of the active and passive nodes are inverted, and new configurations
are computed as follows.

(a) The active configurations A1 consist of all multisets

[X1, X2, . . . , Xδ], where X i ∈ Σ1 for all i = 1, . . . ,δ,

such that for every choice of x1 ∈ X1, x2 ∈ X2, . . . , xδ ∈ Xδ we
have [x1, x2, . . . , xδ] ∈ P0, i.e., it is a passive configuration of Π0.

143

(b) The passive configurations P1 consist of all multisets

[Y1, Y2, . . . , Yd], where Yi ∈ Σ1 for all i = 1, . . . , d,

for which there exists a choice y1 ∈ Y1, y2 ∈ Y2, . . . , yd ∈ Yd with
[y1, y2, . . . , yd] ∈ A0, i.e., it is an active configuration of Π0.

9.2.3 Example: Weak 3-labeling

To illustrate the definition, let us construct the output problem re(Π0) =
(Σ1,A1,P1) of weak 3-labeling problem Π0 = (Σ0,A0,P0). Recall that

Σ0 = {1,2, 3},

A0 =
�

[1,1, 2], [1, 1,3], [1,2, 2], [1,2, 3], [1, 3,3], [2,2, 3], [2, 3,3]
	

,

P0 =
�

[1,1], [2,2], [3, 3]
	

.

The alphabet Σ1 consists of all possible (non-empty) subsets of Σ0:

Σ1 =
�

{1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}, {1,2, 3}
	

.

The active configurations A1 are all multisets [X , Y] with X , Y ∈ Σ1
such that all choices of elements x ∈ X and y ∈ Y result in a multiset
[x , y] ∈ P0. For example X = {1} and Y = {1,2} is not a valid choice:
we could choose x = 1 and y = 2 to construct [1,2] /∈ P0. In general,
whenever |X |> 1 or |Y |> 1, we can find x ∈ X , y ∈ Y with x ̸= y , and
then [x , y] /∈ P0. Therefore the only possibilities are |X |= |Y |= 1, and
then we must also have X = Y . We obtain

A1 =
¦

�

{1}, {1}
�

,
�

{2}, {2}
�

,
�

{3}, {3}
�

©

.

But since the active configurations only allow singleton sets, we can
restrict ourselves to them when listing the possible passive configurations;
we obtain simply

P1 =
¦

�

{1}, {1}, {2}
�

,
�

{1}, {1}, {3}
�

,
�

{1}, {2}, {2}
�

,
�

{1}, {2}, {3}
�

,
�

{1}, {3}, {3}
�

,
�

{2}, {2}, {3}
�

,
�

{2}, {3}, {3}
�

©

.

144

9.2.4 Complexity of Output Problems

In this section we prove Lemma 9.1 that states that the output problem
re(Π) of Π can be solved one round faster than Π.

The proof is by showing that we can truncate the execution of a
T -round algorithm and output the set of possible outputs. As we will see,
this is a solution to the output problem.

Proof of Lemma 9.1. Assume that we can solve some problem Π0 =
(Σ0,A0,P0) on (d,δ)-biregular trees in T rounds using some determin-
istic PN-algorithm S. We want to design an algorithm that works in
(δ, d)-biregular trees and solves Π1 = re(Π0) in T − 1 rounds.

Note that we are considering the same family of networks, but we
are only switching the sides that are marked as active and passive. We
will call these Π0-active and Π1-active sides, respectively.

The algorithm for solving Π1 works as follows. Let N = (V, P, p) be
any port-numbered network with a (δ, d)-biregular tree as the underlying
graph. Each Π1-active node u, in T − 1 rounds, gathers its full (T − 1)-
neighborhood ballN (u, T − 1). Now it considers all possible outputs of
its Π0-active neighbors under the algorithm S, and outputs these.

Formally, this is done as follows. When N is a port-numbered net-
work, we use ballN (u, r) to refer to the information within distance r
from node u, including the local inputs of the nodes in this region, as well
as the port numbers of the edges connecting nodes within this region.
We say that a port-numbered network H is compatible with ballN (u, r) if
there is a node v ∈ H such that ballH(v, r) is isomorphic to ballN (u, r).

For each neighbor v of u, node u constructs all possible fragments
ballH(v, T) such that H is compatible with ballN (u, T − 1) and has a
(δ, d)-biregular tree as its underlying graph. Then u simulates the Π0-
algorithm S on ballH(v, T). The algorithm outputs some label x ∈ Σ0
on the edge {u, v}. Node u adds each such label x to set S(u, v); finally
node u will label edge {u, v} with S(u, v).

By construction, S(u, v) is a nonempty set of labels from Σ0, i.e.,
S(u, v) ∈ Σ1. We now prove that the sets S(u, v) form a solution to Π1.
We use the assumption that the underlying graph G is a tree. Let H be

145

121 23
1

2
3

2

1

1

2
3

1 2

1

2
32

1 2

1
2

3

1

1 2 3
2

1

1

2

2
3

1

1 2 3
2

1

12
3

1 2 2 3
1

1
2

2
31

1

2
2

3

1
2

1

12 3

2
1

3

1

2

v u w
ball(v, 4)

ball(u, 3)

ball(w, 4)

Figure 9.3: Illustration of the round elimination step. A fragment of a
(2,3)-biregular tree. The 3-neighborhood of node u consists of the gray
area. The 4-neighborhoods of nodes v and w consist of the blue and
orange areas, respectively. Since the input is a tree, these intersect exactly
in the 3-neighborhood of u.

any port-numbered network compatible with ballN (u, T − 1). Consider
any two neighbors v and w of u: since there are no cycles, we have

ballH(v, T)∩ ballH(w, T) = ballH(u, T − 1) = ballN (u, T − 1).

In particular, once ballH(u, T − 1) is fixed, the outputs of v and w, re-
spectively, depend on the structures of ballH(v, T) \ ballH(u, T − 1) and
ballH(w, T) \ ballH(u, T − 1), which are completely distinct. See Fig-
ure 9.3 for an illustration. Therefore, if there exist x ∈ S(u, v) and
y ∈ S(u, w), then there exists a port-numbered network H such that
running S, node v outputs x on {v, u} and node w outputs y on {w, u}.
This further implies that since S is assumed to work correctly on all port-
numbered networks, for any combination of x1 ∈ S(u, v1), x2 ∈ S(u, v2),
. . . , xδ ∈ S(u, vδ), we must have that

[x1, x2, . . . , xδ] ∈ P0.

146

This implies that

[S(u, v1), S(u, v2), . . . , S(u, vδ)] ∈ A1.

It remains to show that for each Π0-active node v, it holds that the
sets S(u1, v), S(u2, v), . . . , S(ud , v), where ui are neighbors of v, form a
configuration in P1. To see this, note that theΠ1-active nodes ui simulate
S on every port-numbered fragment, including the true neighborhood
ballN (v, T) of v. This implies that the output of v on {v, ui} running
S in network N is included in S(ui , v). Since S is assumed to be a
correct algorithm, these true outputs x1 ∈ S(u1, v), x2 ∈ S(u2, v), . . . ,
xd ∈ S(ud , v) form a configuration

[x1, x2, . . . , xd] ∈ A0,

which implies that

[S(u1, v), S(u2, v), . . . , S(ud , v)] ∈ P1,

as required.

9.2.5 Example: Complexity of Weak 3-labeling

Now we will apply the round elimination technique to show that the
weak 3-labeling problem is not solvable in 1 round. To do this, we show
that the output problem of weak 3-labeling is not solvable in 0 rounds.

Lemma 9.2. Weak 3-labeling is not solvable in 1 round in the PN-model
on (3,2)-biregular trees.

Proof. In Section 9.2.3 we saw the output problem of weak 3-labeling.
We will now show that this problem is not solvable in 0 rounds on (2, 3)-
biregular trees. By Lemma 9.1, weak 3-labeling is then not solvable in 1
round on (3, 2)-biregular trees. Let Π1 = (Σ1,A1,P1) denote the output
problem of weak 3-labeling.

147

In a 0-round algorithm an active node v sees only its own side (active
or passive) and its own port numbers. Since

A1 =
¦

�

{1}, {1}
�

,
�

{2}, {2}
�

,
�

{3}, {3}
�

©

,

each active node v must output the same label X ∈
�

{1}, {2}, {3}
	

on
both of its incident edges.

Since all active nodes look the same, they all label their incident
edges with exactly one label X . Since [X , X , X] is not in P1 for any
X ∈ Σ1, we have proven the claim.

9.2.6 Example: Iterated Round Elimination

We will finish this chapter by applying round elimination twice to weak
3-labeling. We will see that the problem

Π2 = re(Π1) = re(re(Π0))

obtained this way is 0-round solvable.
Let us first construct Π2. Note that this is again a problem on (3, 2)-

biregular trees. We first simplify notation slightly; the labels ofΠ1 are sets
and labels ofΠ2 would be sets of sets, which gets awkward to write down.
But the configurations in Π1 only used singleton sets. Therefore we can
leave out all non-singleton sets without changing the problem, and then
we can rename each singleton set {x} to x . After these simplifications,
we have got

Σ1 = {1,2, 3},

A1 =
�

[1,1], [2,2], [3, 3]
	

,

P1 =
�

[1,1, 2], [1, 1,3], [1,2, 2], [1,2, 3], [1, 3,3], [2,2, 3], [2, 3,3]
	

.

Alphabet Σ2 consists of all non-empty subsets of Σ1, that is

Σ2 =
�

{1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}, {1,2, 3}
	

.

148

The active configurations are all multisets [X1, X2, X3]where X1, X2, X3 ∈
Σ2 such that any way of choosing x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3 is
a configuration in P1. There are many cases to check, the following
observation will help here (the proof is left as Exercise 9.4):

• P1 consists of all 3-element multisets over Σ1 where at least one
of the elements is not 1, at least one of the elements is not 2, and
at least one of the elements is not 3.

• It follows that A2 consists of all 3-element multisets over Σ2 where
at least one of the elements does not contain 1, at least one of the
elements does not contain 2, and at least one of the elements does
not contain 3.

It follows that we can enumerate all possible configurations e.g. as
follows (here X , Y, Z ∈ Σ2):

A2 =
¦

�

X , Y, Z
� �

� X ⊆ {1, 2}, Y ⊆ {1, 3}, Z ⊆ {2,3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {1}, Y ⊆ {2,3}, Z ⊆ {1,2, 3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {2}, Y ⊆ {1,3}, Z ⊆ {1,2, 3}
©

∪
¦

�

X , Y, Z
� �

� X ⊆ {3}, Y ⊆ {1,2}, Z ⊆ {1,2, 3}
©

.

(9.1)

On the passive side, P2 consists of all multisets [X , Y] where we can
choose x ∈ X and y ∈ Y with [x , y] ∈ A1. But [x , y] ∈ A1 is equivalent
to x = y, and hence P2 consists of all multisets [X , Y] where we can
choose some x ∈ X and choose the same value x ∈ Y . Put otherwise,

P2 =
¦

�

X , Y
� �

� X ∈ Σ2, Y ∈ Σ2, X ∩ Y ̸=∅
©

.

Lemma 9.3. Let Π0 denote the weak 3-labeling problem. The problem
Π2 = re(re(Π0)) = (Σ2,A2,P2) is solvable in 0 rounds.

Proof. The active nodes always choose the configuration
�

{1,2}, {1,3}, {2,3}
�

∈ A2

149

and assign the sets in some way using the port numbers, e.g., the edge
incident to port 1 is labeled with {2,3}, the edge incident to port 2 is
labeled with {1, 3}, and the edge incident to port 3 is labeled with {1, 2}.

Since each pair of these sets has a non-empty intersection, no matter
which sets are assigned to the incident edges of passive nodes, these
form a valid passive configuration in P2.

9.3 Quiz

Consider the following bipartite locally verifiable labeling problem Π=
(Σ,A,P) on (2, 2)-biregular trees:

Σ= {1,2, 3,4, 5,6},

A=
�

[1,6], [2, 5], [3, 4]
	

, and

P=
�

[x , y]
�

� x ∈ {3,5, 6}, y ∈ {1,2, 3,4, 5,6}
	

∪
�

[x , y]
�

� x ∈ {4,5, 6}, y ∈ {2,3, 4,5, 6}
	

.

Give a 0-round algorithm for solving Π.

9.4 Exercises

Exercise 9.1 (encoding graph problems). Even if a graph problem is
defined for general (not bipartite) graphs, we can often represent it in
the bipartite formalism. If we take a d-regular tree G and subdivide
each edge, we arrive at a (d, 2)-biregular tree H, where the active nodes
represent the nodes of G and passive nodes represent the edges of G.

Use this idea to encode the following graph problems as bipartite
locally verifiable labelings in (d, 2)-biregular trees. Give a brief expla-
nation of why your encoding is equivalent to the original problem. You
can ignore the leaf nodes and their constraints; it is sufficient to spec-
ify constraints for the active nodes of degree d and passive nodes of
degree 2.

(a) Vertex coloring with d + 1 colors.

150

(b) Maximal matching.
(c) Dominating set.
(d) Minimal dominating set.

Exercise 9.2 (algorithms in the bipartite model). The bipartite model
can be used to run algorithms from the standard PN and LOCAL models.
Using the idea of Exercise 9.1, we encode the maximal independent set
problem in 3-regular trees as the following bipartite locally verifiable
problem Π= (Σ,A,P) in (3,2)-biregular trees:

Σ= {I,O,P},

A=
�

[I, I, I], [P,O,O]
	

,

P=
�

[I,P], [I,O], [O,O]
	

.

In A, the first configuration corresponds to a node in the independent
set X , and the second configuration to a node not in X . A node not in X
points to a neighboring active node with the label P: the node pointed to
has to be in X . The passive configurations ensure that two active nodes
connected by a passive node are not both in X , and that the pointer P
always points to a node in X .

Assume that the active nodes are given a 4-coloring c as input. That is,
c : VA→ {1, 2, 3, 4} satisfies c(v) ̸= c(u) whenever the active nodes v, u ∈
VA share a passive neighbor w ∈ VP . The nodes also know whether they
are active or passive, but the nodes do not have any other information.

Present a PN-algorithm in the state machine formalism for solving Π.
Prove that your algorithm is correct. What is its running time? How
does it compare to the complexity of solving maximal independent set
in the PN model, given a 4-coloring?

Exercise 9.3 (Round Eliminator). There is a computer program, called
Round Eliminator, that implements the round elimination technique and
that you can try out in a web browser:

https://github.com/olidennis/round-eliminator

151

https://github.com/olidennis/round-eliminator

Let Π0 be the weak 3-labeling problem defined in Section 9.1.2. Use the
Round Eliminator to find out what are Π1 = re(Π0) and Π2 = re(Π1).
In your answer you need to show how to encode Π0 in a format that is
suitable for the Round Eliminator, what were the answers you got from
the Round Eliminator, and how to turn the answers back into our usual
mathematical formalism.

Exercise 9.4 (iterated round elimination). Fill in the missing details
in Section 9.2.6 to show that formula (9.1) is a correct definition of
the active configurations for problem Π2 (i.e., it contains all possible
configurations and only them).

Exercise 9.5 (solving weak 3-labeling). Present a 2-round deterministic
PN-algorithm for solving weak 3-labeling in (3,2)-biregular trees.

Exercise 9.6 (sinkless orientation). Consider the sinkless orientation
problem, denoted by Π, on (3,3)-biregular trees from Section 9.1.2.
Compute the output problems re(Π) and re(re(Π)); include a justification
for your results.

9.5 Bibliographic Notes

Linial’s [30] lower bound for vertex coloring in cycles already used a
proof technique that is similar to round elimination. However, for a
long time it was thought that this is an ad-hoc technique that is only
applicable to this specific problem. This started to change in 2016, when
the same idea found another very different application [11]. Round
elimination as a general-purpose technique was defined and formalized
by Brandt [10] in 2019, and implemented as a computer program by
Olivetti [34].

152

Chapter 10

Sinkless Orientation

In this chapter we will study the complexity of sinkless orientation, a
problem that was introduced in the previous chapter. This is a problem
that is understood well: we will design algorithms and show that these
are asymptotically optimal.

Recall that sinkless orientation is the problem of orienting the edges
of the tree so that each internal node has got at least one outgoing edge.
We begin by studying sinkless orientation on paths (or (2,2)-biregular
trees), and show that we can easily argue about local neighborhoods to
prove a tight lower bound result. However, when we switch to (3,3)-
biregular trees, we will need the round elimination technique to do the
same.

10.1 Sinkless Orientation on Paths

We define sinkless orientation on paths to be the following bipartite locally
verifiable problem Π = (Σ,A,P). The alphabet is Σ = {I,O}, with the
interpretation that I indicates that the edge is oriented towards the active
node (“incoming”) and O indicates that the edge is oriented away from
the active node (“outgoing”). Each active node must label at least one
incident edge with O, and thus the active configurations are

A=
�

[O, I], [O,O]
	

.

Each passive node must have at least one incident edge labeled with I,
and thus the passive configurations are

P=
�

[I,O], [I, I]
	

.

As previously, nodes of degree 1 are unconstrained; the edges incident
to them can be labeled arbitrarily.

153

Figure 10.1: Propagation of a sinkless orientation on paths. Orienting a
single edge (orange) forces the orientation of the path all the way to the
other endpoint.

10.1.1 Hardness of Sinkless Orientation

We begin by showing that solving sinkless orientation requires Ω(n)
rounds on (2,2)-biregular trees.

Lemma 10.1. Solving sinkless orientation on (2, 2)-biregular trees in the
bipartite PN-model requires at least n/4−1 rounds, even if the nodes know
the value n.

Let us first see why the lemma is intuitively true. Consider a path,
as illustrated in Figure 10.1. Each active node u must choose some
label for its incident edges, and at least one of these labels must be O.
Then its passive neighbor v over the edge labeled with O must have its
other incident edge labeled I. This further implies that the other active
neighbor w of v must label its other edge with O. The original output of
u propagates through the path and the outputs of other nodes far away
from u depend on the output of u.

Let us now formalize this intuition.

Proof of Lemma 10.1. Consider any algorithm A running in T (n) = o(n)
rounds. Then there exists n0 such that for all n ≥ n0, we have that
T(n) ≤ (n− 5)/4. Now fix such an integer n and let T = T(n) denote
the running time of the algorithm.

Consider an active node v in the middle of a path N on n nodes. Let
ballN (v, T) denote the T -neighborhood of v. Assume that ballN (v, T) is
consistently port-numbered from left to right, as illustrated in Figure 10.2.
Node v must use the output label O on one of its incident edges; without
loss of generality, assume that this is port 1. We can now construct a
counterexample N ′ as follows. Take two copies of ballN (v, T), denoted
by ballN ′(v1, T) and ballN ′(v2, T). In particular, this includes the port-
numbering in ballN (v, T). Add one new node that is connected to the

154

1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2

v OI

v1 OI

v2 OI

Figure 10.2: Sinkless orientation lower bound. Assume T = 4. Top: any
algorithm must fix some output labeling with an outgoing edge for a fixed
neighborhood ballN (v, 4). Bottom: Copying the same 4-neighborhood
twice, and arranging the copies towards the same node creates an input
N ′ where the two nodes orient towards the middle. There is no legal way
to label the rest of the path.

right endpoint of both ballN ′(v1, T) and ballN ′(v2, T). Finally, add leaves
at the other endpoints of ballN ′(v1, T) and ballN ′(v2, T); see Figure 10.2
for an illustration. We claim that the algorithm A fails on N ′.

By definition, edges must be labeled alternatively O and I starting
from both v1 and v2. Therefore we must eventually find an active node
labeled [I, I] or a passive node labeled [O,O], an incorrect solution.

The total number of nodes in N ′ is n = 2(2T + 1) + 3 = 4T + 5,
giving T = (n− 5)/4. Thus solving sinkless orientation requires at least
T + 1= (n− 5)/4+ 1≥ n/4− 1 rounds, as required.

10.1.2 Solving Sinkless Orientation on Paths

The proof of Lemma 10.1 shows that it is impossible to solve sinkless
orientation on paths in sublinear number of rounds. Now we will show
a linear upper bound: it is possible to solve sinkless orientation once all
nodes see an endpoint of the path.

Lemma 10.2. Sinkless orientation can be solved in ⌊n/2⌋ rounds in the
bipartite PN-model on (2,2)-biregular trees.

155

Proof. The idea of the algorithm is the following: initially send messages
from the leaves towards the middle of the path. Orient edges against
the incoming messages, i.e., toward the closest leaf. Once the messages
reach the midpoint of the path, all edges have been correctly oriented
away from the midpoint.

The algorithm works as follows. Initially all non-leaf nodes wait.
The leaf nodes send a message to their neighbor and stop. If they are
active, they output I on their incident edge. Whenever a node receives a
message for the first time, in the next round it sends a message to the
other port and stops. If it is an active node, it outputs O in the port
from which it received the message, and I in the other port. That is, it
orients its incident edges towards the closer leaf. If a node receives two
messages in the same round, it is the midpoint of the path; it does not
send any further messages. If it is an active node, it outputs O on both
of its incident edges.

The algorithm runs in ⌊n/2⌋ rounds: on paths with an even number
of nodes, all nodes have received a message in round n/2− 1, and thus
stop in the next round. On paths with an odd number of nodes, the
middle node receives two messages in round ⌊n/2⌋ and stops.

It remains to show that our algorithm is correct. All leaf nodes
are trivially labeled correctly. Any active non-leaf node always has an
incident label O. Now consider a passive node u: there is an active v
that sends u a message before stopping. This node will output I on {u, v},
and thus u is also correctly labeled.

Theorem 10.3. The complexity of sinkless orientation on paths is Θ(n).

Proof. Follows from Lemmas 10.1 and 10.2.

10.2 Sinkless Orientation on Trees

In Section 10.1 we saw that if we require that degree-2 nodes have at
least one outgoing edge, we arrive at a problem that is hard already in
the case of paths. The proof of hardness was a straightforward argument
that used local neighborhoods.

156

However, what happens if we relax the problem slightly and allow
any orientation around degree-2 nodes? The proof of hardness from
Section 10.1.1 no longer works, but does the problem get easier to solve?

For concreteness, let us consider trees of maximum degree 3, that is,
both active and passive nodes have degree at most 3; the case of higher
degrees is very similar. We define the problem so that nodes of degree
1 and 2 are unconstrained, but nodes of degree 3 must have at least
one outgoing edge. We can encode it as follows as a bipartite locally
verifiable problem Π0 = (Σ0,A0,P0):

Σ0 = {O, I},

A0 =
�

[O], [I], [O,O], [O, I], [I, I], [O, I, I], [O,O, I], [O,O,O]
	

,

P0 =
�

[O], [I], [O,O], [O, I], [I, I], [I,O,O], [I, I,O], [I, I, I]
	

.

Here we have listed all possible configurations for nodes of degrees 1, 2,
and 3.

10.2.1 Solving Sinkless Orientation on Trees

The algorithm for solving sinkless orientation on trees uses ideas similar
to the algorithm on paths: each node u must determine the closest
unconstrained node v, i.e., a node of degree 1 or 2, and the path from
u to v is oriented away from u. This will make all nodes happy: each
active node of degree 3 has an outgoing edge, and all other nodes are
unconstrained.

Let us call nodes of degree 1 and 2 special nodes. We must be careful
in how the nodes choose the special node: the algorithm would fail if
two nodes want to orient the same edge in different directions.

The algorithm functions as follows. In the first round, only special
nodes are sending messages, broadcasting to each port. Then the special
nodes stop and, if they are active nodes, they output I on each edge.
Nodes of degree 3 wake up in the first round in which they receive at least
one message. In the next round they broadcast to each port from which
they did not receive a message in the previous round. After sending

157

this message, the nodes stop. If they are active nodes, they orient their
incident edges towards the smallest port from which they received a
message: output O on that edge, and I on the other edges.

Correctness. Assume that the closest special nodes are at distance
t from some node u. Assume that v is one of those nodes, and let
(v1, v2, . . . , vt+1) denote the unique path from v = v1 to u = vt+1. We
claim that in each round i, node vi broadcasts to vi+1. By assumption, v
is also one of the closest special nodes to all vi; otherwise there would
be a closer special node to u as well. In particular, there will never be
a broadcast from vi+1 to vi, as then vi+1 would have a different closer
special node. Therefore each vi will broadcast to vi+1 in round i. This
implies that in round t, node u will receive a broadcast from vt .

All nodes that receive a broadcast become happy: Active nodes
output O on one of the edges from which they received a broadcast,
making them happy. They output I on the other edges, so each passive
node is guaranteed that every edge from which it receives a broadcast
has the label I.

Time Complexity. It remains to bound the round by which all nodes
have received a broadcast. To do this, we observe that each node is at
distance O(log n) from a special node.

Consider a fragment of a 3-regular tree centered around some node v,
and assume that there are no special nodes near v. Then at distance 1
from v there are 3 nodes, at distance 2 there are 6 nodes, at distance 3
there are 12 nodes, and so on. In general, if we do not have any special
nodes within distance i, then at distance i there are 3 · 2i−1 > 2i nodes
in the tree. At distance i = log2 n, we would have more than n nodes.
Thus, within distance log2 n, there has to be a special node. Since each
node can stop once it has received a broadcast, the running time of the
algorithm is O(log n).

158

10.2.2 Roadmap: Next Steps

We have seen that sinkless orientation in trees can be solved in O(log n)
rounds. We would like to now prove a matching lower bound and
show that sinkless orientation cannot be solved in o(log n) rounds. We
will apply the round elimination technique from Chapter 9 to do this.
However, we will need one further refinement to the round elimination
technique that will make our life a lot easier: we can ignore all non-
maximal configurations. We will explain this idea in detail in Section 10.3,
and then we are ready to prove the hardness result in Section 10.4.

10.3 Maximal Output Problems

In Chapter 9 we saw how to use the round elimination technique to
construct the output problem Π′ = re(Π) for any given bipartite locally
verifiable problem Π. We will now make an observation that allows
us to simplify the description of output problems. We will change the
definition of output problems to include this simplification.

Consider an output problem Π′ = (Σ,A,P). Recall that Σ now con-
sists of sets of labels. Assume that there are two configurations

X = [X1, X2, . . . , Xd],

Y = [Y1, Y2, . . . , Yd],

in A. We say that Y contains X if we have X i ⊆ Yi for all i.
If Y contains X , then configuration X is redundant; whenever an

algorithm solving Π′ would like to use the configuration X , it can equally
well use Y instead:

• Active nodes are still happy if active nodes switch from X to Y : By
assumption, Y is also a configuration in A.

• Passive nodes are still happy if active nodes switch from X to Y :
Assume that Z = [Z1, Z2, . . . , Zδ] is a passive configuration in P.
As this is a passive configuration of re(Π), it means that there is a

159

choice zi ∈ Zi such that [z1, z2, . . . , zδ] is an active configuration in
the original problem Π. But now if we replace each Zi with a su-
perset Z ′i ⊇ Zi , then we can still make the same choice zi ∈ Z ′i , and
hence Z ′ = [Z ′1, Z ′2, . . . , Z ′

δ
] also has to be a passive configuration

in P. Therefore replacing a label with its superset is always fine
from the perspective of passive nodes, and in particular switching
from X to Y is fine.

Therefore we can omit all active configurations that are contained in an-
other active configuration and only include the maximal configurations,
i.e., configurations that are not contained in any other configuration.

We get the following mechanical process for constructing the output
problem re(Π) = (Σ,A,P).

(a) Construct the output problem re(Π) = (Σ,A,P) as described in
Section 9.2.2.

(b) Remove all non-maximal active configurations from A.
(c) Remove all unused elements from Σ.
(d) Remove all passive configurations containing labels not in Σ.

The resulting problem is exactly as hard to solve as the original
problem:

• Since the simplified sets of configurations are subsets of the original
sets of configurations, any solution to the simplified problem is a
solution to the original problem, and thus the original problem is
at most as hard as the simplified problem.

• By construction, any algorithm solving the original output problem
can solve the simplified problem equally fast, by replacing some
labels by their supersets as appropriate. Therefore the original
problem is at least as hard as the simplified problem.

We will apply this simplification when we use the round elimination
technique to analyze the sinkless orientation problem.

160

10.4 Hardness of Sinkless Orientation on Trees

We will now show that sinkless orientation requires Ω(log n) rounds on
(3, 3)-biregular trees—and therefore also in trees of maximum degree 3,
as (3, 3)-biregular trees are a special case of such trees.

Let us first write down the sinkless orientation problem as a bipartite
locally verifiable problem Π0 = (Σ0,A0,P0) in (3,3)-biregular trees;
as before, we will only keep track of the configurations for nodes of
degree 3, as leaf nodes are unconstrained:

Σ0 = {O, I},

A0 =
�

[O, x , y]
�

� x , y ∈ Σ
	

,

P0 =
�

[I, x , y]
�

� x , y ∈ Σ
	

.

10.4.1 First Step

Lemma 10.4. Let Π0 be the sinkless orientation problem. Then the output
problem is Π1 = re(Π0) = (Σ1,A1,P1), where

Σ1 =
�

{I}, {O, I}
	

,

A1 =
¦

�

{I}, {O, I}, {O, I}
�

©

,

P1 =
¦

�

{O, I}, x , y
�

�

�

� x , y ∈ Σ1

©

.

Proof. Let us follow the procedure from Section 10.3. First, we arrive at
alphabet Σ1 that contains all non-empty subsets of Σ0:

Σ1 =
�

{O}, {I}, {O, I}
	

.

The active configurations A1 consist of all multisets [X , Y, Z] such that
no matter how we choose x ∈ X , y ∈ Y , and z ∈ Z , at least one element
of the multiset [x , y, z] is I. This happens exactly when at least one of

161

the labels X , Y , and Z is the singleton set {I}. We get that

A1 =
¦

[{I}, X , Y]
�

� X , Y ⊆ {O, I}
©

=
¦

�

{I}, {I}, {I}
�

,
�

{I}, {I}, {O}
�

,
�

{I}, {I}, {O, I}
�

,
�

{I}, {O}, {O}
�

,
�

{I}, {O}, {O, I}
�

,
�

{I}, {O, I}, {O, I}
�

©

.

Next we remove all non-maximal configurations. We note that all
other active configurations are contained in the configuration

�

{I}, {O, I}, {O, I}
�

.

This becomes the only active configuration:

A1 =
¦

�

{I}, {O, I}, {O, I}
�

©

.

Since the label {O} is never used, we may remove it from the alphabet,
too: we get that

Σ1 =
�

{I}, {O, I}
	

.

The passive configurations are all multisets such that at least one
label contains O. Thus the simplified passive configurations are

P1 =
¦

�

{O, I}, {O, I}, {O, I}
�

,
�

{O, I}, {O, I}, {I}
�

,
�

{O, I}, {I}, {I}
�

©

.

10.4.2 Equivalent Formulation

Now let us simplify the notation slightly. We say that a problem Π′ is
equivalent to another problem Π if a solution of Π′ can be converted in

162

zero rounds to a solution of Π and vice versa. In particular, equivalent
problems are exactly as hard to solve.

Lemma 10.5. Let Π0 be the sinkless orientation problem. Then the output
problem re(Π0) is equivalent to Π1 = (Σ1,A1,P1), where

Σ1 = {A,B},

A1 =
�

[A,B,B]
	

,

P1 =
�

[B, x , y]
�

� x , y ∈ Σ1

	

.

Proof. Rename the labels of re(Π0) as follows to arrive at Π1:

A= {I},
B= {O, I}.

In what follows, we will use Π1 and re(Π0) interchangeably, as they are
equivalent.

10.4.3 Fixed Points in Round Elimination

As we will see soon, problem Π1 is a fixed point in round elimination:
when round elimination is applied to Π1, the output problem is again Π1
(or, more precisely, a problem equivalent to Π1).

This means that if we assume that Π1 can be solved in T rounds,
then by applying round elimination T times we get a 0-round algorithm
for Π1. It can be shown that Π1 is not 0-round solvable. This would
seem to imply that Π1, and thus sinkless orientation, are not solvable at
all, which would contradict the existence of the O(log n)-time algorithm
presented in Section 10.2.1!

To resolve this apparent contradiction, we must take a closer look at
the assumptions that we have made. The key step in round elimination
happens when a node u simulates the possible outputs of its neighbors.
The correctness of this step assumes that the possible T -neighborhoods
of the neighbors are independent given the (T − 1)-neighborhood of u.
When T is so large in comparison with n that the T -neighborhoods of

163

the neighbors put together might already imply the existence of more
than n nodes, this assumption no longer holds—see Figure 10.3 for an
example.

For the remainder of this chapter we consider algorithms that know
the value n, the number of nodes in the graph. This allows us to define
a standard form for algorithms that run in T = T(n) rounds, where
T(n) is some function of n: since n is known, each node can calculate
T (n), gather everything up to distance T (n), and simulate any T (n)-time
algorithm.

In (d,δ)-biregular trees, where d > 2, it can be shown that round
elimination can be applied if the initial algorithm is assumed to have run-
ning time T (n) = o(log n): this guarantees the independence property in
the simulation step. However, round elimination fails for some function
T (n) = Θ(log n); calculating this threshold is left as Exercise 10.7.

Any problem that can be solved in time T (n) can be solved in time
T (n) with an algorithm in the standard form. If the problem is a fixed
point and T (n) = o(log n), we can apply round elimination. We get the
following lemma.

Lemma 10.6. Assume that bipartite locally verifiable problem Π on (d, d)-
biregular trees, for d > 2, is a fixed point. Then the deterministic complexity
of Π in the bipartite PN-model is either 0 rounds or Ω(log n) rounds, even
if the number of nodes n is known.

10.4.4 Sinkless Orientation Gives a Fixed Point

We will now show that the output problem Π1 = re(Π0) of the sinkless
orientation problem Π0 is a fixed point, that is, re(Π1) is a problem
equivalent to Π1 itself. Since this problem cannot be solved in 0 rounds,
it requires Ω(log n) rounds. As sinkless orientation requires, by defini-
tion, one more round than its output problem, sinkless orientation also
requires Ω(log n) rounds.

164

(a)

(b)

(c)

Figure 10.3: If we know that, e.g., n= 35, then orange, green, and blue
extensions are no longer independent of each other: inputs (a) and (b)
are possible but we cannot combine them arbitrarily to form e.g. input (c).

165

Lemma 10.7. The output problem Π1 = (Σ1,A1,P1) of sinkless orienta-
tion, given by

Σ1 = {A,B},

A1 =
�

[A,B,B]
	

,

P1 =
�

[B, x , y]
�

� x , y ∈ Σ1

	

,

is a fixed point.

Proof. Let Π2 = re(Π1) = (Σ2,A2,P2) denote the output problem of Π1.
Again, we have that

Σ2 =
�

{A}, {B}, {A,B}
	

.

The active configurations A2 are

A2 =
¦

�

{B}, x , y
�

�

�

� x , y ⊆ {A,B}
©

.

That is, one set must be the singleton {B} to satisfy P1 for all choices,
and the remaining sets are arbitrary.

Next we determine the maximal configurations. Again, there is a
single active configuration that covers the other configurations:

A2 =
¦

�

{B}, {A,B}, {A,B}
�

©

.

The alphabet is immediately simplified to

Σ2 =
�

{B}, {A,B}
	

,

as the label {A} is never used by any active configuration.
The passive configurations P2 are all multisets that contain the active

configuration [A,B,B]. Since A is now only contained in {A,B}, we get
that

P2 =
¦

�

{A,B}, {A,B}, {A,B}
�

,
�

{A,B}, {A,B}, {B}
�

,
�

{A,B}, {B}, {B}
�

©

.

166

Now we may do a simple renaming trick to see that Π2 is equivalent to
Π1: rename {B} → A and {A,B} → B. Written this way, we have that
Π2 is equivalent to the following problem:

Σ2 = {A,B},

A2 =
�

[A,B,B]
	

,

P2 =
�

[B, x , y]
�

� x , y ∈ Σ2

	

,

which is exactly the same problem as Π1.

10.5 Quiz

Calculate the number of different 2-round algorithms in the PN model on
(3,3)-biregular trees for bipartite locally verifiable problems with the
binary alphabet Σ= {0, 1}.

Here two algorithms A1 and A2 are considered to be different if there
is some port-numbered network N and some edge e such that the label
edge e in the output of A1 is different from the label of the same edge
e in algorithm A2. Note that A1 and A2 might solve the same problem,
they just solved it differently. Please remember to take into account that
in a (3,3)-biregular tree each node has degree 1 or 3.

Please give your answer in the scientific notation with two significant
digits: your answer should be a number of the form a · 10b, where a is
rounded to two decimal digits, we have 1≤ a < 10, and b is a natural
number.

10.6 Exercises

Exercise 10.1 (0-round solvability). Prove that the following problems
are not 0-round solvable.

(a) (d + 1)-edge coloring in (d, d)-biregular trees (see Section 9.1.2).

(b) Maximal matching in (d, d)-biregular trees (see Section 9.1.2).

167

(c) Π1, the output problem of sinkless orientation, in (3, 3)-biregular
trees (see Section 10.4.2).

▷ hint W

Exercise 10.2 (higher degrees). Generalize the sinkless orientation
problem from (3,3)-biregular trees to (10,10)-biregular trees. Apply
round elimination and show that you get again a fixed point.

Exercise 10.3 (non-bipartite sinkless orientation). Define non-bipartite
sinkless orientation as the following problem Π = (Σ,A,P) on (3,2)-
biregular trees:

Σ= {O, I},

A=
�

[O, x , y]
�

� x , y ∈ Σ
	

,

P=
�

[I,O]
	

.

Prove that applying round elimination to Π leads to a period-2 point,
that is, to a problem Π′ such that Π′ = re(re(Π′)).

Exercise 10.4 (matching lower bound). Let us define sloppy perfect
matching in trees as a matching such that all non-leaf nodes are matched.
Encode this problem as a bipartite locally verifiable problem on (3,3)-
biregular trees. Show that solving it requires Ω(log n) rounds in the
PN-model with deterministic algorithms.

Exercise 10.5 (matching upper bound). Consider the sloppy perfect
matching problem from Exercise 10.4. Design an algorithm for solving
it with a deterministic PN-algorithm on (3, 3)-biregular trees in O(log n)
rounds.

▷ hint X

Exercise 10.6 (sinkless and sourceless). Sinkless and sourceless orien-
tation is the problem of orienting the edges of the graph so that each
non-leaf node has at least one outgoing edge and at least one incoming
edge. Encode the sinkless and sourceless orientation problem as a binary
locally verifiable labeling problem on (5, 5)-biregular trees. Design an al-
gorithm for solving sinkless and sourceless orientation on (5, 5)-biregular
trees.

168

Exercise 10.7 (failure of round elimination). In Section 10.4.3 we
discussed that round elimination fails if in the simulation step the T (n)-
neighborhoods of the neighbors are dependent from each other. This
happens when there exist T -neighborhoods of the neighbors such that the
resulting tree would have more than n nodes. Consider (d, d)-biregular
trees. Calculate the bound for F(n) such that round elimination fails for
algorithms with running time T (n)≥ F(n).

⋆ Exercise 10.8. Design an algorithm for solving sinkless and sourceless
orientation on (3, 3)-biregular trees.

10.7 Bibliographic Notes

Brandt et al. [11] introduced the sinkless orientation problem and proved
that it cannot be solved in o(log log n) rounds with randomized algo-
rithms, while Chang et al. [12] showed that it cannot be solved in
o(log n) rounds with deterministic algorithms. Ghaffari and Su [21]
gave matching upper bounds.

Exercises 10.4 and 10.5 are inspired by [6], and Exercises 10.6 and
10.8 are inspired by [20].

169

Chapter 11

Hardness of Coloring

This week we will apply round elimination to coloring. We will show
that 3-coloring paths requires Ω(log∗ n) rounds. This matches the fast
coloring algorithms that we saw in Chapter 1.

To prove this result, we will see how to apply round elimination to
randomized algorithms. Previously round elimination was purely deter-
ministic: a T -round deterministic algorithm would imply a (T−1)-round
deterministic algorithm for the output problem. With randomized algo-
rithms, round elimination affects the success probability of the algorithm:
a T -round randomized algorithm implies a (T − 1)-round randomized
algorithm for the output problem with a worse success probability.

We will see how round elimination can be applied in the presence of
inputs. These inputs can be, in addition to randomness, e.g. a coloring or
an orientation of the edges. The critical property for round elimination
is that there are no long range dependencies in the input.

11.1 Coloring and Round Elimination

We begin by applying round elimination to coloring on paths, or (2, 2)-
biregular trees. For technical reasons, we also encode a consistent ori-
entation in the coloring. That is, in addition to computing a coloring,
we require that the nodes also orient the path consistently from one
endpoint to the other. This is a hard problem, as we saw in the previous
chapter; therefore we will assume that the input is already oriented. We
will show that 3-coloring a path requires Ω(log∗ n) rounds even if the
path is consistently oriented.

170

13 3 2 1

33 1 1 3 3 2 2 1 1

Figure 11.1: Encoding of 3-coloring in the bipartite formalism. On top, a
3-coloring of a path fragment. Below, the corresponding 3-coloring as a
bipartite locally verifiable problem. The path is assumed to be consistently
oriented, so each node has an incoming and an outgoing edge. They
use the regular label on the incoming edge, and the barred label on
the outgoing edge. Passive nodes verify that the colors differ and have
different type.

11.1.1 Encoding Coloring

We will study the problem of 3-coloring the active nodes of a (2,2)-
biregular tree. We will say that two active nodes are adjacent if they
share a passive neighbor.

To encode the orientation, we use two versions of each color label:
e.g. 1 and 1̄. We call these regular and barred labels, respectively. For
3-coloring, we have the following problem Π0 = (Σ0,A0,P0):

Σ0 = {1, 1̄, 2, 2̄, 3, 3̄},

A0 =
�

[1, 1̄], [2, 2̄], [3, 3̄]
	

,

P0 =
�

[1, 2̄], [1, 3̄], [2, 1̄], [2, 3̄], [3, 1̄], [3, 2̄]
	

.

The encoding of 3-coloring is shown in Figure 11.1. The active config-
urations ensure that each node chooses a color and an orientation of
its edges: we can think of the edges labeled with 1̄, 2̄ or 3̄ as outgoing
edges, and the regular labels as incoming edges. The passive configura-
tions ensure that adjacent active nodes are properly colored and that the
passive node is properly oriented (has incident labels of different types).

We will also need to define coloring with more colors. We say that a
label matches with its barred version: 1 ∼ 1̄, 2 ∼ 2̄ and so on. A label
does not match with the other labels: e.g. 1∼− 2̄.

171

We define c-coloring as the following problem Π= (Σ,A,P):

Σ= {1, 1̄, 2, 2̄, . . . , c, c̄},

A=
�

[x , x̄]
�

� x ∈ {1, 2, . . . , c}
	

,

P=
�

[x , ȳ]
�

� x , y ∈ {1,2, . . . , c}, x ∼− ȳ
	

.

11.1.2 Output Problem of Coloring

We start by assuming that we have a fast algorithm that solves the 3-
coloring problem Π0. Let us now compute the output problem Π1 =
re(Π0) of 3-coloring Π0.

Let Π1 = (Σ1,A1,P1) denote the output problem. For now, we will
let Σ1 consist of all non-empty subsets of Σ0, and prune it later.

Recall that passive configurations P0 consist of all non-matching pairs
of a regular and barred label. Therefore the active configurations in Π1
consist of all pairs of sets such that

• one set consists of regular and one of barred labels, and
• there are no matching labels.

We get that

A1 =
�

[X , Y]
�

� X ⊆ {1, 2,3}, Y ⊆ {1̄, 2̄, 3̄},∀x ∈ X , y ∈ Y : x ∼− y
	

.

Next we make the sets maximal: when neither the regular or the
barred version of a label is contained in either set, we can add the corre-
sponding variant to either set. Thus the maximal active configurations
split the color set over their edges:

A1 =
¦

�

{1}, {2̄, 3̄}
�

,
�

{2}, {1̄, 3̄}
�

,
�

{3}, {1̄, 2̄}
�

,
�

{1̄}, {2, 3}
�

,
�

{2̄}, {1,3}
�

,
�

{3̄}, {1, 2}
�

©

No label can be added to any of the configurations, and the above labels
contain all active configurations.

172

We have the following alphabet:

Σ1 =
�

{1}, {2}, {3}, {1,2}, {1,3}, {2,3},

{1̄}, {2̄}, {3̄}, {1̄, 2̄}, {1̄, 3̄}, {2̄, 3̄}
	

.

Finally, the passive configurations consist of all pairs such that it is
possible to pick matching regular and barred labels, forming a configu-
ration in A0:

P1 =
�

[X , Y]
�

� (1 ∈ X , 1̄ ∈ Y)∨ (2 ∈ X , 2̄ ∈ Y)∨ (3 ∈ X , 3̄ ∈ Y)
	

.

11.1.3 Simplification

The output problem of 3-coloring looks much more complicated than
the problem we started with. If we kept applying round elimination,
it would become extremely difficult to understand the structure of the
problem. Therefore we will simplify the problem: we will map it back to
a coloring with a larger number of colors.

The intuition is the following. Assume that our original labels consist
of some set of c colors, and the output problem has sets of these colors
as labels. Then there are at most 2c different sets. If adjacent nodes
have always different sets, we can treat it as a coloring with 2c colors by
mapping the sets to the labels 1,2, . . . , 2c .

Now consider the output problem of 3-coloring, Π1. We will treat
the different sets of the regular labels as the color classes. Each of them
is paired with a unique set of barred labels. Enumerating all options, we
rename the labels as follows to match the alphabet of 6-coloring:

{1} 7→ 1, {2̄, 3̄} 7→ 1̄,

{2} 7→ 2, {1̄, 3̄} 7→ 2̄,

{3} 7→ 3, {1̄, 2̄} 7→ 3̄,

{1,2} 7→ 4, {3̄} 7→ 4̄,

{1,3} 7→ 5, {2̄} 7→ 5̄,

{2,3} 7→ 6, {1̄} 7→ 6̄.

173

Now let us verify that this is indeed a 6-coloring. After renaming,
the active configurations are

A1 =
�

[1, 1̄], [2, 2̄], [3, 3̄],

[6̄, 6], [5̄, 5], [4̄, 4]
	

.

By rearrangement we can see that these match exactly the definition of
6-coloring. The passive configurations, before renaming, were the pairs
of sets, one consisting of the regular labels and the other of the barred
labels, that contained a matching label. We get that

P1 =
�

[1, x]
�

� x ∈ {2̄, 3̄, 6̄}
	

∪
�

[2, x]
�

� x ∈ {1̄, 3̄, 5̄}
	

∪
�

[3, x]
�

� x ∈ {1̄, 2̄, 4̄}
	

∪
�

[4, x]
�

� x ∈ {1̄, 2̄, 3̄, 5̄, 6̄}
	

∪
�

[5, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 6̄}
	

∪
�

[6, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 5̄}
	

.

We notice that these are a subset of the passive configurations of
6-coloring: colors 1, 2, and 3 cannot be paired with some of the non-
matching colors. This means that Π1 is at least as hard to solve as
6-coloring.

We may relax the output problem Π1 and construct a new problem
Π′1 = (Σ

′
1,A′1,P′1) as follows:

A′1 = A1,

P′1 =
�

[1, x]
�

� x ∈ {2̄, 3̄, 4̄, 5̄, 6̄}
	

∪
�

[2, x]
�

� x ∈ {1̄, 3̄, 4̄, 5̄, 6̄}
	

∪
�

[3, x]
�

� x ∈ {1̄, 2̄, 4̄, 5̄, 6̄}
	

∪
�

[4, x]
�

� x ∈ {1̄, 2̄, 3̄, 5̄, 6̄}
	

∪
�

[5, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 6̄}
	

∪
�

[6, x]
�

� x ∈ {1̄, 2̄, 3̄, 4̄, 5̄}
	

.

174

Note that Π′1 is exactly the 6-coloring problem. As we have got that
A′1 = A1 and P′1 ⊇ P1, any solution to Π1 is also a solution to Π′1. We
conclude that if we can solve problem Π0 in T rounds, we can solve
Π1 = re(Π0) exactly one round faster, and we can solve its relaxation Π′1
at least one round faster.

11.1.4 Generalizing Round Elimination for Coloring

Let us now see how to generalize the first round elimination step. In the
first step, we saw that 6-coloring is at least as easy to solve as the output
problem of 3-coloring.

Now consider applying round elimination to the c-coloring problem.
Let re(Π0) = Π1 = (Σ1,A1,P1) denote the output problem of c-coloring
Π0.

Again, the active configurations in A1 consist of all splits of the colors.
For a set X ⊆ {1,2, . . . , c}, let X̄ denote the barred complement of X :

X̄ = { x̄
�

� x ∈ {1,2, . . . , c} \ X }.

Then the active configurations are

A1 =
�

[X , X̄]
�

�∅ ̸= X ⊊ {1,2, . . . , c}
	

.

The labels are all non-empty and non-full subsets of the regular and
barred labels, respectively. The passive configurations in P1 consists of
pairs of sets such that it is possible to pick matching regular and barred
labels from them:

P1 =
�

[X , Y]
�

� x ∈ X , x̄ ∈ Y : x ∼ x̄
	

.

We do the exact same renaming trick as in the previous section. There
are a total of 2c − 2 different sets on regular labels. We rename them in
some order with the integers from 1 to 2c − 2. For each set X renamed
to integer y, we rename the unique barred complement X̄ to ȳ. The
active configurations after renaming are

A1 =
�

[x , x̄]
�

� x ∈ {1, 2, . . . , 2c − 2}
	

.

175

We note that passive configurations never include [x , x̄] for any x . This
is because x̄ represents the complement of x as a set: it is not possible
to pick a matching element from x and x̄ . Therefore we may again relax
the passive configurations to be the configurations for c-coloring:

P1 =
�

[x , ȳ]
�

� x , y ∈ {1,2, . . . , 2c − 2}, x ∼− ȳ
	

.

The resulting problem is at least as easy as the output problem of c-
coloring: if c-coloring can be solved in T rounds, then coloring with
2c − 2 colors can be solved in at most T − 1 rounds.

Now in what follows, it will be awkward to use the expression 2c−2,
so we will simply round it up to 2c . Clearly, coloring with 2c colors is at
least as easy as coloring with 2c − 2 colors.

11.1.5 Sequence of Output Problems

We have shown that 2c-coloring is at least as easy as the output problem
of c-coloring. Now if we were to iteratively apply round elimination k
times in the PN-model we would get the following sequence of problems:

Π0 = 3-coloring→ Π1 = 23-coloring

→ Π2 = 223
-coloring

→ Π3 = 2223

-coloring

· · ·
→ Πk = C(k)-coloring,

where

C(k) = 22·
··

23

︸ ︷︷ ︸

k times 2 and one 3

.

Now if we show that coloring with C(k) colors cannot be solved in 0
rounds in the PN model with deterministic algorithms, it would imply
that 3-coloring cannot be solved in k rounds in the PN model. This
result, however, would not be very meaningful. As we have already

176

seen in Chapter 7, the vertex coloring problem cannot be solved at all
in the PN-model! Therefore we must strengthen the round elimination
technique itself to apply in the LOCAL model.

11.2 Round Elimination with Inputs

If we try to do round elimination in the LOCAL model, we run into
a technical challenge. In round elimination, the nodes simulate the
outputs of their neighbors. It is crucial that the inputs of the neighbors
are independent: for each combination of possible outputs, there must
exist a network in which the algorithm actually produces those outputs.
This step no longer holds in the LOCAL model: the identifiers are globally
unique, and therefore do not repeat. The inputs of the neighbors are
dependent: if one of the regions contains, e.g., a node with identifier 1,
then another region cannot contain identifier 1, and vice versa.

To overcome this difficulty, we will consider randomized algorithms.
In Exercise 6.2 we saw that randomness can be used to generate unique
identifiers. Therefore the PN-model, equipped with randomness, is at
least as powerful as the LOCAL model: if a problem Π can be solved in
time T (n) in the LOCAL model, then we can generate unique identifiers
with high probability and simulate the LOCAL-algorithm in T (n) rounds.
This clearly succeeds if the random identifiers were unique. Therefore
any impossibility results we prove for randomized algorithms also hold
for the LOCAL model.

For the remainder of the chapter, we assume that the nodes receive
two types of inputs.

(a) Random inputs. Each node receives some arbitrary but finite
number of uniform random bits as input. In addition, to simplify
the proof, we will assume that the port numbers are assigned
randomly. This latter assumption is made only for the purposes of
this proof, we do not change the standard assumptions about the
models.

177

(b) Consistent orientation. As we mentioned in the beginning, for
technical reasons we consider a variant of coloring that includes
an orientation. To solve this part of the problem easily, we include
the required orientation as input.

It is crucial that we can apply round elimination in the presence of these
inputs. First, consider the orientation. In the round elimination step,
each node must simulate the outputs of its neighbors over all possible
inputs. Now we add the promise that each node, in addition to its usual
inputs, receives an orientation of its edges as input. In particular, they
form a consistent orientation of the whole path from one end to the
other. Clearly nodes can include this input in their simulation, as the
orientation of the remaining edges is fixed after seeing the orientation
of just one edge. Similarly, random inputs do not have any long-range
dependencies. They do, however, affect the simulation step. We will
discuss randomized round elimination in the next section.

11.2.1 Randomized Round Elimination Step

We will now introduce a variant of the Round Elimination Lemma that
we proved in Chapter 9. Assume that we have a randomized algorithm
that solves problemΠ in T (n) rounds with local failure probability q: that
is, each active node chooses an active configuration of Π with probability
at least 1−q, and each passive node is labeled according to some passive
configuration of Π with probability at least 1 − q. Then we want to
show that there is an algorithm that solves the output problem re(Π)
in T (n)− 1 rounds with some local failure probability at most f (q) for
some function f .

The round elimination step works essentially as in the PN-model.
Each re(Π)-active node simulates the outputs of its Π-active nodes over
all possible inputs, including the random bits. We make one modification
to the model: we assume that the port numbers are assigned randomly
instead of being assigned by an adversary. This modification is made
to simplify the analysis that follows. It does not affect the power of
the model: the nodes could use their local randomness to shuffle the

178

12 1 2 1 2 2 1 12 A B C DH G F E

X YZW r1 r2 r3r4r5

Figure 11.2: The randomized round elimination step. Assume an algo-
rithm A for c-coloring with running time T = 3. The simulation functions
as follows. The active node gathers its (T − 1)-neighborhood, including
the assignment of random port numbers and random bits r1, r2, r3, r4 and
r5. Then it simulates A on its right and left neighbor. On the right, over
all possible assignments of ports A, B, C , D and random bit strings X , Y .
On the left, over all possible assignments of ports E, F, G, H and random
bit strings Z , W . For each edge, it outputs the set of labels that appear as
outputs for at least fraction t(q) of inputs.

ports and any algorithm designed for the worst-case port numbering
also works, by definition, with a random port numbering. We will also
only consider nodes that are internal nodes in the (2, 2)-biregular tree:
we assume that T -neighborhoods of the neighbors of re(Π)-active nodes
do not contain the endpoints of the path.

It no longer makes sense to construct the set of all possible outputs.
We can imagine an algorithm that tries to make round elimination hard:
it always uses each possible output label with at least one specific random
input labeling. These outputs would make no sense, but would cause the
set of possible output labels to always be the full set of labels. Since the
random inputs can be arbitrarily large (but finite!), the failure probability
this would add to the algorithm would be small.

To avoid this issue, we will define a threshold t(q): an output label
σ ∈ Σ is frequent if it appears as the output label with probability at
least t(q). More formally, for a fixed re(Π)-active node u, an assignment
of random inputs to ballN (u, T − 1), and a neighbor v, label σ ∈ Σ is
frequent for the edge {u, v} if the probability that v outputs σ on {u, v},
conditioned on fixing the random inputs in ballN (u, T − 1), is at least
t(q). We will fix the value of this threshold later.

The randomized simulation step is defined as follows. EachΠ1-active
node u gathers its (T−1)-neighborhood. Then it computes for each edge

179

{u, v} the set of frequent labels S(u, v) and outputs that set on {u, v}.
See Figure 11.2 for an illustration.

We will prove that randomized round elimination works for the
special case of c-coloring (2, 2)-biregular trees. This can be generalized
to cover all bipartite locally verifiable problems in (d,δ)-biregular trees,
for any parameters d and δ.

Lemma 11.1 (Randomized Round Elimination Lemma). Assume that
there is an algorithm that solves the c-coloring problem on (2, 2)-biregular
trees in the randomized PN-model in T (n) rounds with local failure proba-
bility at most q. Then there exists an algorithm that solves the 2c-coloring
problem in T (n)− 1 rounds with local failure probability at most 3cq1/3.

Intuitively the lemma is true, as in most neighborhoods the true
outputs must also appear frequently in the simulation. Similarly, com-
binations of non-configurations cannot be frequent too often, as this
would imply that the original algorithms also fails often.

We prove the lemma in Section 11.3.1. Next we will see how to
apply it to prove an impossibility result for 3-coloring.

11.3 Iterated Randomized Round Elimination

Given the randomized round elimination lemma, we will proceed as
follows.

(1) Assume there is a randomized (log∗ n − 4)-round algorithm for
solving 3-coloring on consistently oriented (2,2)-biregular trees.
Since randomized algorithms are assumed to succeed with high
probability, the local failure probability q0 must be at most 1/nk

for some constant k.

(2) Apply randomized round elimination T(n) = log∗ n− 4 times to
get a 0-round randomized algorithm for cT (n)-coloring with some
local failure probability qT (n). For the chosen value of T (n) show
that we have qT (n) < 1/cT (n).

180

(3) Prove that there are no 0-round algorithms for solving cT (n)-coloring
with local failure probability qT (n) < 1/cT (n).

We must show that fast coloring algorithms imply 0-round coloring al-
gorithms that do not fail with large enough probability. In Section 11.3.2
we will prove the following lemma.

Lemma 11.2. Assume that there is a (log∗ n− 4)-round 3-coloring algo-
rithm in the randomized PN-model. Then there is a 0-round c-coloring
algorithm with local failure probability q < 1/c.

We must also show that any 0-round c-coloring algorithm fails locally
with probability at least 1/c.

Lemma 11.3. Any 0-round c-coloring algorithm fails locally with proba-
bility at least 1/c.

Proof. Any 0-round c-coloring algorithm defines a probability distribu-
tion over the possible output colors. This distribution is the same for
each active node inside a path: they are indistinguishable from each
other in 0 rounds. The algorithm fails if two adjacent nodes select the
same color.

Let pi = bi + 1/c denote the probability that the algorithm outputs
color i. The terms bi denote the deviation of each probability pi from
the average: we must have that

c
∑

i=1

bi = 0.

181

The local failure probability is at least

c
∑

i=1

p2
i =

c
∑

i=1

(bi + 1/c)2

=
c
∑

i=1

�

b2
i + 2bi/c + 1/c2

�

= 1/c +
� c
∑

i=1

b2
i

�

+ 2/c ·
� c
∑

i=1

bi

�

= 1/c +
� c
∑

i=1

b2
i

�

+ 0.

This is clearly minimized by setting bi = 0 for all i. Thus the local failure
probability is minimized when pi = 1/c for all i, and we get that it is at
least 1/c.

The bound on the failure probability of 0-round coloring algorithms
combined with Lemma 11.2 shows that there is no 3-coloring algorithm
that runs in at most log∗ n−4 rounds in the randomized PN-model, even if
we know n and the path is consistently oriented. Since the randomized
PN-model can simulate the LOCAL model with high probability, this
implies that there is no (randomized) 3-coloring algorithm in the LOCAL
model that runs in at most log∗ n− 4 rounds.

Theorem 11.4. 3-coloring (in the bipartite formalism) cannot be solved
in the LOCAL model in less than log∗ n− 4 rounds.

Corollary 11.5. 3-coloring (in the usual sense) cannot be solved in the
LOCAL model in less than 1

2 log∗ n− 2 rounds.

Proof. Distances between nodes increase by a factor of 2 when we switch
to the bipartite encoding (see Figure 11.1).

This result is asymptotically optimal: already in Chapter 1 we saw
that paths can be colored with 3 colors in time O(log∗ n).

In the final two sections we give the proofs for Lemmas 11.1 and 11.2.

182

11.3.1 Proof of Lemma 11.1

In this section we prove Lemma 11.1. The proof consists of bound-
ing the local failure probability of the simulation algorithm given in
Section 11.2.1.

Proof of Lemma 11.1. Let Π0 = (Σ0,A0,P0) denote the c-coloring prob-
lem for some c, and let Π1 = re(Π0) = (Σ1,A1,P1) denote the output
problem of c-coloring. Assume that there is a T -round randomized
algorithm A for solving Π0 with local failure probability q. Consider
an arbitrary Π1-active node u with some fixed (T − 1)-neighborhood
ballN (u, T − 1) (including the random inputs).

The passive configurations P0 consist of pairs [x , ȳ] that do not
match. The algorithm A fails if it outputs any x and x̄ , or two labels
of the same type on the incident edges of a Π0-passive node. We say
that the (T − 1)-neighborhood ballN (u, T − 1) is lucky, if the algorithm
A fails in labeling the incident edges of u, given ballN (u, T − 1), with
probability less than t2. Here t is the probability threshold for frequent
labels; we will choose the value of t later.

We want to prove that most random bit assignments must be lucky,
and that in lucky neighborhoods the simulation succeeds with a good
probability. We will ignore the other cases, and simply assume that in
those cases the simulation can fail.

Consider any fixed ballN (u, T + 1) without the random bits and the
random port numbering: since we consider nodes inside the path, the re-
maining structure is the same for all nodes. The randomness determines
whether A succeeds around u. Let L denote the event that ballN (u, T −1)
is lucky. Since we know that A fails in any neighborhood with probability
at most q, we can bound the probability of a neighborhood not being
lucky as follows:

Pr[A fails at u]≥ Pr[A fails at u | not L] · Pr[not L]

=⇒ Pr[not L]≤
Pr[A fails at u]

Pr[A fails at u | not L]
<

q
t2

.

183

From now on we will assume that ballN (u, T − 1) is lucky. Let v and
w denote the passive neighbors of re(Π)-active node u. The simulation
fails if and only if the sets S(u, v) and S(u, w) contain labels x and y
such that [x , y] /∈ P0 (all choices do not yield a configuration in P0).
Since both of these labels are frequent (included in the output), each of
them must appear with probability at least t given ballN (u, T − 1). But
since these labels are frequent, we have that the original algorithm fails,
given ballN (u, T − 1) with probability at least t2, and the neighborhood
cannot be lucky. We can deduce that the simulation always succeeds in
lucky neighborhoods. Therefore we have that

Pr[simulation fails]≤ Pr[not L]<
q
t2

.

Next we must determine the failure probability of the simulation
around passive nodes. The re(Π)-passive nodes succeed when the true
output of the algorithm is contained in the sets of frequent outputs. For
a re(Π)-passive neighbor v, consider the event that its output on edge
{u, v} in the original algorithm is not contained in the set of frequent
outputs S(u, v) based on ballN (u, T − 1). By definition, for each fixed
ballN (u, T − 1) each infrequent label is the true output with probability
at most t. There are c colors, so by union bound one of these is the true
output color with probability at most c t. There are two neighbors, so by
another union bound the total failure probability for a passive node is at
most 2c t. Since the simulation can also fail when the original algorithm
fails, we get for each passive node that

Pr[simulation fails]≤ q+ 2c t.

To minimize the maximum of the two failure probabilities, we can for
example set t = q1/3 and get that

q
t2
= q1/3 ≤ q+ 2cq1/3 ≤ 3cq1/3.

184

11.3.2 Proof of Lemma 11.2

It remains to show that a fast 3-coloring algorithm implies a 0-round
c-coloring algorithm that fails locally with a probability less than 1/c.

Proof of Lemma 11.2. Assume there is a T -round 3-coloring algorithm
that succeeds with high probability. This implies that it has a local failure
probability q0 ≤ 1/nk for some constant k ≥ 1. Applying the round
elimination lemma, this implies the following coloring algorithms and
local failure probabilities qi:

C(0) = 3 colors: q0 ≤ 1/nk ≤ 1/n,

C(1) = 23 colors: q1 ≤ 3C(0) · q1/3
0 ,

C(2) = 223
colors: q2 ≤ 3C(1) · q1/3

1 = 3C(1) ·
�

3C(0) · q1/3
0

�1/3
.

Generalizing, we see that after T iterations, the local failure probability
is bounded by

qT ≤
� T
∏

i=0

31/3i

�� T
∏

i=0

C(T − i)1/3
i

�

· n−1/3T
,

and the algorithm uses

C(T) = 22·
··

23

︸ ︷︷ ︸

T times 2
and one 3

< 22·
··

222

︸ ︷︷ ︸

T + 2 times 2

= T+22

colors. To finish the proof, we must show that for any T (n)≤ log∗ n− 4
and for a sufficiently large n we have that qT < 1/C(T), or, equivalently,
qT · C(T)< 1 or

log qT + log C(T)< 0; (11.1)

185

here all logarithms are to the base 2. Evaluating the expression log qT ,
we get that

log qT ≤
T
∑

i=0

1
3i

log3+
T
∑

i=0

1
3i

log C(T − i)− 3−T log n

≤
3
2

log3+
3
2

log C(T)− 3−T log n,

since the sums are converging geometric sums. Therefore

log qT + log C(T)≤
3
2

log3+
5
2

log C(T)− 3−T log n. (11.2)

Note that
n≤ log∗ n2< 2n.

Therefore for T = log∗ n− 4 we have that

log C(T)< log T+22= log log log T+42< log log n. (11.3)

On the other hand, for a large enough n we have that

3T < 3log∗ n < 3log3 log log n < log log n,

and therefore

3−T log n>
log n

log log n
. (11.4)

Now (11.3) and (11.4) imply that for a sufficiently large n, term 3−T log n
will dominate the right hand side of (11.2), and we will eventually have

log qT + log C(T)< 0,

which is exactly what we needed for Equation (11.1).

186

11.4 Quiz

Construct the smallest possible (i.e., fewest nodes) properly 4-colored
cycle C such that the following holds: if you take any deterministic
0-round PN-algorithm A and apply it to C , then the output of A is not a
valid 3-coloring of C .

Please note that here we are working in the usual PN model, exactly
as it was originally specified in Chapter 3, and we are doing graph
coloring in the usual sense (we do not use the bipartite formalism here).
Please give the answer by listing the n colors of the n-cycle C .

11.5 Exercises

Exercise 11.1 (randomized 2-coloring). Prove that solving 2-coloring
paths in the randomized PN-model requires Ω(n) rounds.

Exercise 11.2 (coloring grids). Prove that 5-coloring 2-dimensional
grids in the deterministic LOCAL model requires Ω(log∗ n) rounds.

A 2-dimensional grid G = (V, E) consists of n2 nodes vi, j for i, j ∈
{1, . . . , n} such that if i < n, add {vi, j , vi+1, j} to E for each j, and if j < n
add {vi, j , vi, j+1} to E for each i.

▷ hint Y

Exercise 11.3 (more colors). Prove that cycles cannot be colored with
O(log∗ n) colors in o(log∗ n) rounds in the deterministic LOCAL model.

▷ hint Z

Exercise 11.4 (lying about n). Show that if a bipartite locally verifiable
labeling problem can be solved in o(log n) rounds in the deterministic
PN-model in (d,δ)-biregular trees, then it can be solved in O(1) rounds.

▷ hint AA

Exercise 11.5 (hardness of sinkless orientation). Let Π denote the sink-
less orientation problem as defined in Chapter 10. Prove the following.

(a) Sinkless orientation requiresΩ(log log n) rounds in the randomized
PN-model.

187

(b) Sinkless orientation requires Ω(log log n) rounds in the determin-
istic and randomized LOCAL model.

▷ hint AB

⋆ Exercise 11.6. Show that sinkless orientation requires Ω(log n) rounds
in the deterministic LOCAL model.

▷ hint AC

11.6 Bibliographic Notes

Linial [30] showed that 3-coloring cycles with a deterministic algorithm
is not possible in o(log∗ n) rounds, and Naor [32] proved the same lower
bound for randomized algorithms. Our presentation uses the ideas from
these classic proofs, but in the modern round elimination formalism.

188

Part V

Conclusions

189

Chapter 12

Conclusions

We have reached the end of this course. In this chapter we will review
what we have learned, and we will also have a brief look at what else is
there in the field of distributed algorithms. The exercises of this chapter
form a small research project related to the distributed complexity of
locally verifiable problems.

12.1 What Have We Learned?

By now, you have learned a new mindset—an entirely new way to
think about computation. You can reason about distributed systems,
which requires you to take into account many challenges that we do not
encounter in basic courses on algorithms and data structures:

• Dealing with unknown systems: you can design algorithms that
work correctly in any computer network, no matter how the com-
puters are connected together, no matter how we choose the port
numbers, and no matter how we choose the unique identifiers.

• Dealing with partial information: you can solve graph problems
in sublinear time, so that each node only sees a small part of the
network, and nevertheless the nodes produce outputs that are
globally consistent.

• Dealing with parallelism: you can design highly parallelized algo-
rithms, in which several nodes take steps simultaneously.

These skills are in no way specific to distributed algorithms—they play
a key role also in many other areas of modern computer science. For
example, dealing with unknown systems is necessary if we want to

190

design fault-tolerant algorithms, dealing with partial information is the
key element in e.g. online algorithms and streaming algorithms, and
parallelism is the cornerstone of any algorithm that makes the most out
of modern multicore CPUs, GPUs, and computing clusters.

12.2 What Else Exists?

Distributed computing is a vast topic and so far we have merely scratched
the surface. This course has focused on what is often known as distributed
graph algorithms or network algorithms, and we have only focused on
the most basic models of distributed graph algorithms. There are many
questions related to distributed computing that we have not addressed
at all; here are a few examples.

12.2.1 Distance vs. Bandwidth vs. Local Memory

Often we would like to understand computation in two different kinds
of distributed systems:

(a) Geographically distributed networks, e.g. the Internet. A key chal-
lenge is large distances and communication latency: some parts of
the input are physically far away from you, so in a fast algorithm
you have to act based on the information that is available in your
local neighborhood.

(b) Big data systems, e.g. data processing in large data centers. Typi-
cally all input data is nearby (e.g. in the same local-area network).
However, this does not make problems trivial to solve fast: indi-
vidual computers have a limited bandwidth and limited amount of
local memory.

The LOCAL model is well-suited for understanding computation in net-
works, but it does not make much sense in the study of big data systems:
if all information is available within one hop, then in LOCAL model it
would imply that everything can be solved in one communication round!

191

Congested Clique Model. Many other models have been developed
to study big data systems. From our perspective, perhaps the easiest to
understand is the congested clique model [17,28,31]. In brief, the model
is defined as follows:

• We work in the CONGEST model, as defined in Chapter 5.

• We assume that the underlying graph G is the complete graph on
n nodes, i.e., an n-clique. That is, every node is within one hop
from everyone else.

Here it would not make much sense to study graph problems related
to G itself, as the graph is fixed. However, here each node v gets some
local input f (v), and it has to produce some local output g(v). The
local inputs may encode e.g. some input graph H ̸= G (for example,
f (v) indicates which nodes are adjacent to v in H), but here it makes
also perfect sense to study other computational problem that are not
related to graphs. Consider, for example, the task of computing the
matrix product X = AB of two n× n matrices A and B. Here we may
assume that initially each node knows one column of A and one column
of B, and when the algorithms stops, each node has to hold one column
of X .

Other Big Data Models. There are many other models of big data
algorithms that have similar definitions—all input data is nearby, but
communication bandwidth and/or local memory is bounded; examples
include:

• BSP model (bulk-synchronous parallel) [40],
• MPC model (massively parallel computation) [25], and
• k-machine model [26].

Note that when we limit the amount of local memory, we also implicitly
limit communication bandwidth (you can only send what you have in
your memory). Conversely, if you have limited communication band-
width and a fast algorithm, you do not have time to accumulate a large

192

amount of data in your local memory, even if it was unbounded. Hence
all of these model and their variants often lead to similar algorithm
design challenges.

12.2.2 Asynchronous and Fault-Tolerant Algorithms

So far in this course we have assumed that all nodes start at the same
time, computation proceeds in a synchronous manner, and all nodes
always work correctly.

Synchronization. If we do not have any failures, it turns out we can
easily adapt all of the algorithms that we have covered in this course
also to asynchronous settings. Here is an example of a very simple
solution, known as the α-synchronizer [5]: all messages contain a piece
of information indicating “this is my message for round i”, and each
node first waits until it has received all messages for round i from its
neighbors before it processes the messages and switches to round i + 1.

Crash Faults and Byzantine Faults. Synchronizers no longer work
if nodes can fail. If we do not have any bounds on the relative speeds
of the communication channels, it becomes impossible to distinguish
between e.g. a node behind a very slow link and a node that has crashed.

Failures are challenging even if we work in a synchronous setting.
In a synchronous setting it is easy to tell if a nodes has crashed, but
if some nodes can misbehave in an arbitrary manner, many seemingly
simple tasks become very difficult to solve. The term Byzantine failure is
commonly used to refer to a node that may misbehave in an arbitrary
manner, and in the quiz (Section 12.3) we will explore some challenges
of solving the consensus problem in networks with Byzantine nodes.

Self-Stabilization. Another challenge is related to consistent initial-
ization. In our model of computing, we have assumed that all nodes
are initialized by using the initA,d function. However, it would be great
to have algorithms that converge to a correct output even if the initial

193

states of the nodes may have been corrupted in an arbitrary manner.
Such algorithms are called self-stabilizing algorithms [18].

If we have a deterministic T -time algorithms A designed in the LOCAL
model, it can be turned into a self-stabilizing algorithm in a mechanical
manner [29]: all nodes keep track of T possible states, indicating “what
would be my state if now was round i”, they send vectors of T messages,
indicating “what would be my message for round i”, and they repeatedly
update their states according to the messages that they receive from
their neighbors. However, if we tried to do something similar for a
randomized algorithm, it would no longer converge to a fixed output—
there are problems that are easy to solve with randomized Monte Carlo
LOCAL algorithms, but difficult to solve with self-stabilizing algorithms.

12.2.3 Other Directions

Shared Memory. Our models of computing can be seen as a message-
passing system: nodes send messages (data packets) to each other. A
commonly studied alternative is a system with shared memory: each
node has a shared register, and the nodes can communicate with each
other by reading and writing the shared registers.

Physical Models. Our models of computing are a good match with sys-
tems in which computers are connected to each other by physical wires.
If we connect the nodes by wireless links, the physical properties of radio
waves (e.g., reflection, refraction, multipath propagation, attenuation,
interference, and noise) give rise to new models and new algorithmic
challenges. The physical locations of the nodes as well as the properties
of the environment become relevant.

Robot Navigation. In our model, the nodes are active computational
entities, and they cannot move around in the network—they can only
send information around in the network. Another possibility is to study
computation with autonomous agents (“robots”) that can move around
in the network. Typically, the nodes are passive entities (corresponding

194

to possible physical locations), and the robots can communicate with
each other by e.g. leaving some tokens in the nodes.

Nondeterministic Algorithms. Just like we can study nondeterministic
Turing machines, we can study nondeterministic distributed algorithms.
In this setting, it is sufficient that there exists a certificate that can be
verified efficiently in a distributed setting; we do not need to construct the
certificate efficiently. Locally verifiable problems that we have studied
in this course are examples of problems that are easy to solve with
nondeterministic algorithms.

Complexity Measures. For us the main complexity measure has been
the number of synchronous communication rounds. Many other possi-
bilities exist: e.g., how many messages do we need to send in total?

Practical Aspects of Networking. This course has focused on the
theory of distributed algorithms. There is of course also the practical
side: We need physical computers to run our algorithms, and we need
networking hardware to transmit information between computers. We
need modulation techniques, communication protocols, and standard-
ization to make things work together, and good software engineering
practices, programming languages, and reusable libraries to keep the
task of implementing algorithms manageable. In the real world, we will
also need to worry about privacy and security. There is plenty of room
for research in computer science, telecommunications engineering, and
electrical engineering in all of these areas.

12.2.4 Research in Distributed Algorithms

There are two main conferences related to the theory of distributed
computing:

• PODC, the ACM Symposium on Principles of Distributed Comput-
ing: https://www.podc.org/

195

https://www.podc.org/

• DISC, the International Symposium on Distributed Computing:
http://www.disc-conference.org/

The proceedings of the recent editions of these conferences provide a
good overview of the state-of-the-art of this research area.

12.3 Quiz

In the binary consensus problem the task is this: Each node gets 0 or 1
as input, and each node has to produce 0 or 1 as output. All outputs
must be the same: you either have to produce all-0 or all-1 as output.
Moreover, if the input is all-0, your output has to be all-0, and if the
input is all-1, your output has to be all-1. For mixed inputs either output
is fine.

Your network is a complete graph on 5 nodes; we work in the usual
LOCAL model. You are using the following 1-round algorithm:

• Each node sends its input to all other nodes. This way each node
knows all inputs.

• Each node applies the majority rule: if at least 3 of the 5 inputs
are 1s, output 1, otherwise output 0.

This algorithm clearly solves consensus if all nodes correctly follow
this algorithm. Now assume that node 5 is controlled by a Byzantine
adversary, while nodes 1–4 correctly follow this algorithm. Show that
now this algorithm fails to solve consensus among the correct nodes 1–4,
i.e., there is some input so that the adversary can force nodes 1–4 to
produce inconsistent outputs (at least one of them will output 0 and at
least one of them will output 1).

Your answer should give the inputs of nodes 1–4 (4 bits), the mes-
sages sent by node 5 to nodes 1–4 (4 bits), and the outputs of nodes 1–4
(4 bits). An answer with these three bit strings is sufficient.

196

http://www.disc-conference.org/

12.4 Exercises

In Exercises 12.1–12.4 we use the tools that we have learned in this
course to study locally verifiable problems in cycles in the LOCAL model
(both deterministic and randomized). For the purposes of these exercises,
we use the following definitions:

A locally verifiable problem Π = (Σ,C) consists of a finite alphabet Σ
and a set C of allowed configurations (x , y, z): x , y, z ∈ Σ. An assignment
ϕ : V → Σ is a solution to Π if and only if for each node u and its two
neighbors v, w it holds that
�

ϕ(v),ϕ(u),ϕ(w)
�

∈ C or
�

ϕ(w),ϕ(u),ϕ(v)
�

∈ C.

Put otherwise, if we look at any three consecutive labels x , y, z in the
cycle, either (x , y, z) or (z, y, x) has to be an allowed configuration.

You can assume in Exercises 12.1–12.4 that the value of n is known
(but please then make the same assumption consistently throughout the
exercises, both for positive and negative results).

Exercise 12.1 (trivial and non-trivial problems). We say that a locally
verifiable problem Π0 = (Σ0,C0) is trivial, if (x , x , x) ∈ C0 for some
x ∈ Σ0. We define that weak c-coloring is the problem Π1 = (Σ1,C1)
with

Σ1 = {1,2, . . . , c},

C1 =
�

(x1, x2, x3)
�

� x1 ̸= x2 or x3 ̸= x2

	

.

That is, each node must have at least one neighbor with a different color.

(a) Show that if a problem is trivial, then it can be solved in constant
time.

(b) Show that if a problem is not trivial, then it is at least as hard as
weak c-coloring for some c.

▷ hint AD

Exercise 12.2 (hardness of weak coloring). Consider the weak c-coloring
problem, as defined in Exercise 12.1.

197

(a) Show that weak 2-coloring can be solved in cycles in O(log∗ n)
rounds.

(b) Show that weak c-coloring, for any c = O(1), requires Ω(log∗ n)
rounds in cycles.

▷ hint AE

What does this imply about the possible complexities of locally verifiable
problems in cycles?

Exercise 12.3 (randomized constant time). Show that if a locally ver-
ifiable problem Π can be solved in constant time in cycles with a ran-
domized LOCAL-algorithm, then it can be solved in constant time with a
deterministic LOCAL-algorithm.

▷ hint AF

Exercise 12.4 (deterministic speed up). Assume that there is a deter-
ministic algorithm A for solving problem Π in cycles with a running time
T(n) = o(n). Show that there exists a deterministic algorithm A′ for
solving Π in O(log∗ n) rounds.

What does this imply about the possible complexities of locally veri-
fiable problems in cycles?

▷ hint AG

⋆⋆ Exercise 12.5. Prove or disprove: vertex coloring with∆+1 colors in
graphs of maximum degree ∆ can be solved in O(log∆+ log∗ n) rounds
in the LOCAL model.

▷ hint AH

12.5 Bibliographic Notes

The exercises in this chapter are inspired by Chang and Pettie [13].

198

Hints

A. Use the local maxima and minima to partition the path in subpaths
so that within each subpath we have unique identifiers given in an
increasing order. Use this ordering to orient each subpath. Then
we can apply the fast color reduction algorithm in each subpath.
Finally, combine the solutions.

B. Design a randomized algorithm that finds a coloring with a large
number of colors quickly. Then apply the technique of the fast
3-coloring algorithm from Section 1.4 to reduce the number of
colors to 3 quickly.

C. Consider the following cases separately:

(i) log∗ x ≤ 2, (ii) log∗ x = 3, (iii) log∗ x ≥ 4.

In case (iii), prove that after log∗(x)− 3 iterations, the number of
colors is at most 64.

D. One possible strategy is this: Choose some threshold, e.g., d = 10.
Focus on the nodes that have identifiers smaller than d, and find
a proper 3-coloring in those parts, in time O(log∗ d). Remove the
nodes that are properly colored. Then increase threshold d, and
repeat. Be careful with the way in which you increase d. Show
that you can achieve a running time of O(log∗ x), where x is the
largest identifier, without knowing x in advance.

E. Assume that D is an edge dominating set; show that you can
construct a maximal matching M with |M | ≤ |D|.

F. For the purposes of the minimum vertex cover algorithm, it is suf-
ficient to know which nodes are matched in the bipartite maximal

199

matching algorithm—we do not need to know with whom they
are matched.

G. This exercise is not trivial. If T1 was a constant function T1(n) = c,
we could simply run A1, and then start A2 at time c, using the
output of A1 as the input of A2. However, if T1 is an arbitrary
function of |V |, this strategy is not possible—we do not know in
advance when A1 will stop.

H. Solve small problem instances by brute force and focus on the
case of long cycles. In a long cycle, use a graph coloring algorithm
to find a 3-coloring, and then use the 3-coloring to construct a
maximal independent set. Observe that a maximal independent
set partitions the cycle into short fragments (with 2–3 nodes in
each fragment).

Apply the same approach recursively: interpret each fragment as
a “supernode” and partition the cycle that is formed by the supern-
odes into short fragments, etc. Eventually, you have partitioned
the original cycle into long fragments, with dozens of nodes in
each fragment.

Find an optimal vertex cover within each fragment. Make sure
that the solution is feasible near the boundaries, and prove that
you are able to achieve the required approximation ratio.

I. Adapt the basic idea of the greedy color reduction algorithm—
find local maxima and choose appropriate colors for them—but
pay attention to the stopping conditions and low-degree nodes.
One possible strategy is this: a node becomes active if its current
color is a local maximum among those neighbors that have not
yet stopped; once a node becomes active, it selects an appropriate
color and stops.

J. Given a graph G ∈ F , construct a virtual graph G2 = (V, E′) as
follows: {u, v} ∈ E′ if u ̸= v and distG(u, v) ≤ 2. Prove that the

200

maximum degree of G2 is O(∆2). Simulate a fast graph coloring
algorithm on G2.

K. First, design (or look up) a greedy centralized algorithm achieves
an approximation ratio of O(log∆) on F . The following idea will
work: repeatedly pick a node that dominates as many new nodes
as possible—here a node v ∈ V is said to dominate all nodes in
ballG(v, 1). For more details, see a textbook on approximation
algorithms, e.g., Vazirani [41].

Second, show that you can simulate the centralized greedy algo-
rithm in a distributed setting. Use the algorithm of Exercise 4.4 to
construct a distance-2 coloring. Prove that the following strategy
is a faithful simulation of the centralized greedy algorithm:

– For each possible value i =∆+ 1,∆, . . . , 2, 1:

– For each color j = 1, 2, . . . ,O(∆2):

– Pick all nodes v ∈ V that are of color j and that
dominate i new nodes.

The key observation is that if u, v ∈ V are two distinct nodes
of the same color, then the set of nodes dominated by u and
the set of nodes dominated by v are disjoint. Hence it does not
matter whether the greedy algorithm picks u before v or v before u,
provided that both of them are equally good from the perspective
of the number of new nodes that they dominate. Indeed, we can
equally well pick both u and v simultaneously in parallel.

L. To reach a contradiction, assume that A is an algorithm that solves
the problem. For each n, let F (n) consists of all graphs with the
following properties: there are n nodes with unique identifiers
1,2, . . . , n, the graph is connected, and the degree of node 1 is 1.
Then compare the following two quantities as a function of n:

(a) f (n) = how many different graphs there are in family F (n).

201

(b) g(n) = how many different message sequences node number
1 may receive during the execution of algorithm A if we run
it on any graph G ∈ F (n).

Argue that for a sufficiently large n, we will have f (n) > g(n).
Then there are at least two different graphs G1, G2 ∈ F (n) such
that node 1 receives the same information when we run A on either
of these graphs.

M. Pick the labels randomly from a sufficiently large set; this takes 0
communication rounds.

N. Each node u picks a random number f (u). Nodes that are local
maxima with respect to the labeling f will join I .

O. For the last part, consider a complete graph with a sufficiently
large number of nodes.

P. Each node chooses an output 0 or 1 uniformly at random and stops;
this takes 0 communication rounds. To analyze the algorithm,
prove that each edge is a cut edge with probability 1/2.

Q. Use the randomized coloring algorithm.

R. Look up “Luby’s algorithm”.

S. (a) Apply the result of Exercise 2.8. (b) Find a 1-factor.

T. For the lower bound, use the result of Exercise 7.4c.

U. Show that if a 3-regular graph is homogeneous, then it has a
1-factor. Show that G does not have any 1-factor.

V. Argue using both covering maps and local neighborhoods. For
i = 1,2, construct a network N ′i and a covering map φi from N ′i
to Ni. Let v′i ∈ φ

−1
i (vi). Show that v′1 and v′2 have isomorphic

radius-2 neighborhoods; hence v′1 and v′2 produce the same output.
Then use the covering maps to argue that v1 and v2 also produce

202

the same outputs. In the construction of N ′1, you will need to
eliminate the 3-cycle; otherwise v′1 and v′2 cannot have isomorphic
neighborhoods.

W. Show that a 0-round algorithm consists of choosing one active
configuration and assigning its labels to the ports. Show that for
any way of assigning the outputs to the ports, there exists a port
numbering such that a the incident edges of a passive node are
not labeled according to any passive configuration.

X. Decompose the graph into layers (V0, V1, . . . , VL), where nodes in
layer i have distance i to the closest leaf. Then iteratively solve
the problem, starting from layer VL: match all nodes in layer VL,
VL−1, and so on.

Y. Show that a fast 5-coloring algorithm could be simulated on any
path to 5-color it. Then turn a 5-coloring into a 3-coloring yielding
an algorithm that contradicts the 3-coloring lower bound.

Z. Show that an O(log∗ n)-coloring could be used to color cycles fast,
which contradicts the lower bound for 3-coloring. Note that our
lower bound is for paths: why does it also apply to cycles?

AA. Show that we can run an algorithm for graphs of size n0, for some
constant n0, on all networks of size n ≥ n0, and get a correct
solution. In particular, show that for any T(n) = o(log n) and
a sufficiently large n0, networks on n0 nodes are locally indis-
tinguishable from networks on n nodes, for n ≥ n0, in O(T(n))
rounds.

AB. (a) Show that if re(Π) can be solved by a randomized PN-algorithm
in T rounds with local failure probability q, then it can be solved
in T − 1 rounds with local failure probability poly(q). Analyze the
failure probability over T iterations for T = o(log log n) and show
that it is ω(1).

203

AC. One approach is the following. Prove that any deterministic o(log n)-
time algorithm for sinkless orientation implies an O(log∗ n)-time
deterministic algorithm for sinkless orientation. To prove this
speedup, “lie” to the algorithm about the size of the graph. Take
an algorithm A for (3,3)-biregular trees on n0 nodes, for a suf-
ficiently large constant n0. On any network N of size n > n0,
compute a coloring of N that locally looks like an assignment of
unique identifiers in a network of size n0. Then simulate A given
this identifier assignment to find a sinkless orientation.

AD. Show that if a problem is not trivial, then each configuration must
use a distinct adjacent label.

AE. Give an algorithm for turning a weak c-coloring into a 3-coloring
in O(c) rounds.

AF. Use an argument to boost the failure probability of a constant-
time randomized algorithm. A constant-time algorithm cannot
depend on the size of the input. Consider a network N such that a
randomized algorithm succeeds with probability p < 1. Boost this
by considering the same algorithm on network N ′ that consists of
many copies of N .

AG. Use a similar argument as in Exercise 11.4. In this case we want
a speedup simulation in the LOCAL model, so we also need to
simulate the identifiers. Color the network so that the colors look
locally like unique identifiers. Then simulate algorithm A using
the colors instead of real identifiers.

Since A runs in time o(n), we can find a constant n0 such that
T(n0)≪ n0. On any network with n > n0 nodes, find a coloring
with n0-colors such that two nodes with the same color have dis-
tance at least 2T (n0) + 3. Show that this can be done in O(log∗ n)
rounds. Then run A on N , using the coloring instead of unique
identifiers. Show that this simulation can be done in constant time.
Show that this simulation is correct in every 1-neighborhood.

204

AH. This is an open research question.

205

Bibliography

[1] Ittai Abraham. Decentralized thoughts: The marvels of polynomials
over a field, 2020. URL: https://decentralizedthoughts.github.io/
2020-07-17-the-marvels-of-polynomials-over-a-field/.

[2] Robert B. Allan and Renu Laskar. On domination and independent
domination numbers of a graph. Discrete Mathematics, 23(2):73–
76, 1978. doi:10.1016/0012-365X(78)90105-X.

[3] Dana Angluin. Local and global properties in networks of proces-
sors. In Proc. 12th Annual ACM Symposium on Theory of Computing
(STOC 1980), 1980. doi:10.1145/800141.804655.

[4] Matti Åstrand, Valentin Polishchuk, Joel Rybicki, Jukka Suomela,
and Jara Uitto. Local algorithms in (weakly) coloured graphs,
2010. arXiv:1002.0125.

[5] Baruch Awerbuch. Complexity of network synchronization. Journal
of the ACM, 32(4):804–823, 1985. doi:10.1145/4221.4227.

[6] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yan-
nic Maus, Dennis Olivetti, and Jukka Suomela. Classification
of distributed binary labeling problems. In Proc. 34th Interna-
tional Symposium on Distributed Computing (DISC 2020), 2020.
arXiv:1911.13294, doi:10.4230/LIPIcs.DISC.2020.17.

[7] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring:
Fundamentals and Recent Developments. Morgan & Claypool, 2013.
doi:10.2200/S00520ED1V01Y201307DCT011.

[8] Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-
iterative distributed (∆+1)-coloring below Szegedy-Vishwanathan

206

https://decentralizedthoughts.github.io/2020-07-17-the-marvels-of-polynomials-over-a-field/
https://decentralizedthoughts.github.io/2020-07-17-the-marvels-of-polynomials-over-a-field/
https://doi.org/10.1016/0012-365X(78)90105-X
https://doi.org/10.1145/800141.804655
https://arxiv.org/abs/1002.0125
https://doi.org/10.1145/4221.4227
https://arxiv.org/abs/1911.13294
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://doi.org/10.2200/S00520ED1V01Y201307DCT011

barrier, and applications to self-stabilization and to restricted-
bandwidth models. In Proc. 37th ACM Symposium on Principles
of Distributed Computing (PODC 2018), 2018. arXiv:1712.00285,
doi:10.1145/3212734.3212769.

[9] John A. Bondy and U. S. R. Murty. Graph Theory with Applications.
North-Holland, 1976.

[10] Sebastian Brandt. An automatic speedup theorem for distributed
problems. In Proc. 38th ACM Symposium on Principles of Distributed
Computing (PODC 2019), 2019. arXiv:1902.09958, doi:10.1145/
3293611.3331611.

[11] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller,
Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto.
A lower bound for the distributed Lovász local lemma. In Proc.
48th ACM Symposium on Theory of Computing (STOC 2016), 2016.
arXiv:1511.00900, doi:10.1145/2897518.2897570.

[12] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential
separation between randomized and deterministic complexity in
the LOCAL model. In Proc. 57th IEEE Symposium on Foundations
of Computer Science (FOCS 2016), pages 615–624. IEEE, 2016.
arXiv:1602.08166, doi:10.1109/FOCS.2016.72.

[13] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the
local model. SIAM Journal on Computing, 48(1):33–69, 2019.
arXiv:1704.06297, doi:10.1137/17M1157957.

[14] Pafnuty Chebyshev. Mémoire sur les nombres premiers. Journal de
mathématiques pures et appliquées, 17(1):366–390, 1852.

[15] Richard Cole and Uzi Vishkin. Deterministic coin tossing with ap-
plications to optimal parallel list ranking. Information and Control,
70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.

[16] Reinhard Diestel. Graph Theory. Springer, 3rd edition, 2005. URL:
http://diestel-graph-theory.com/.

207

https://arxiv.org/abs/1712.00285
https://doi.org/10.1145/3212734.3212769
https://arxiv.org/abs/1902.09958
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
https://arxiv.org/abs/1511.00900
https://doi.org/10.1145/2897518.2897570
https://arxiv.org/abs/1602.08166
https://doi.org/10.1109/FOCS.2016.72
https://arxiv.org/abs/1704.06297
https://doi.org/10.1137/17M1157957
https://doi.org/10.1016/S0019-9958(86)80023-7
http://diestel-graph-theory.com/

[17] Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, tri again”:
Finding triangles and small subgraphs in a distributed setting. In
Proc. 26th International Symposium on Distributed Computing (DISC
2012), 2012. arXiv:1201.6652, doi:10.1007/978-3-642-33651-5_14.

[18] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[19] Roy Friedman and Alex Kogan. Deterministic dominating set con-
struction in networks with bounded degree. In Proc. 12th Interna-
tional Conference on Distributed Computing and Networking (ICDCN
2011), 2011. doi:10.1007/978-3-642-17679-1_6.

[20] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka
Suomela, and Jara Uitto. Improved distributed degree splitting
and edge coloring. Distributed Computing, 33:293–310, 2020.
arXiv:1706.04746, doi:10.1007/s00446-018-00346-8.

[21] Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting,
edge coloring, and orientations. In Proc. 28th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2017), 2017. arXiv:1608.03220,
doi:10.1137/1.9781611974782.166.

[22] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel symmetry-breaking in sparse graphs. SIAM Journal on
Discrete Mathematics, 1(4):434–446, 1988. doi:10.1137/0401044.

[23] Michał Hańćkowiak, Michał Karoński, and Alessandro Panconesi.
On the distributed complexity of computing maximal matchings.
In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1998), 1998.

[24] Stephan Holzer and Roger Wattenhofer. Optimal distributed all
pairs shortest paths and applications. In Proc. 31st Annual ACM
Symposium on Principles of Distributed Computing (PODC 2012),
2012. doi:10.1145/2332432.2332504.

208

https://arxiv.org/abs/1201.6652
https://doi.org/10.1007/978-3-642-33651-5_14
https://doi.org/10.1007/978-3-642-17679-1_6
https://arxiv.org/abs/1706.04746
https://doi.org/10.1007/s00446-018-00346-8
https://arxiv.org/abs/1608.03220
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/0401044
https://doi.org/10.1145/2332432.2332504

[25] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model
of computation for MapReduce. In Proc. 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2010). 2010. doi:10.1137/
1.9781611973075.76.

[26] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and
Peter Robinson. Distributed computation of large-scale graph prob-
lems. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), 2015. doi:10.1137/1.9781611973730.28.

[27] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. To-
ward more localized local algorithms: removing assumptions con-
cerning global knowledge. In Proc. 30th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC 2011), 2011.
doi:10.1145/1993806.1993814.

[28] Christoph Lenzen. Optimal deterministic routing and sorting on
the congested clique. In Proc. 32nd Annual ACM symposium on
Principles of Distributed Computing (PODC 2013), 2013. arXiv:
1207.1852, doi:10.1145/2484239.2501983.

[29] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local
algorithms: self-stabilization on speed. In Proc. 11th International
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS 2009), 2009. doi:10.1007/978-3-642-05118-0_2.

[30] Nathan Linial. Locality in distributed graph algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[31] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg.
Minimum-weight spanning tree construction in O(log log n) com-
munication rounds. SIAM Journal on Computing, 35(1):120–131,
2005. doi:10.1137/S0097539704441848.

[32] Moni Naor. A lower bound on probabilistic algorithms for dis-
tributive ring coloring. SIAM Journal on Discrete Mathematics,
4(3):409–412, 1991. doi:10.1137/0404036.

209

https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973730.28
https://doi.org/10.1145/1993806.1993814
https://arxiv.org/abs/1207.1852
https://arxiv.org/abs/1207.1852
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1137/0404036

[33] Moni Naor and Larry Stockmeyer. What can be computed locally?
SIAM Journal on Computing, 24(6):1259–1277, 1995. doi:10.1137/
S0097539793254571.

[34] Dennis Olivetti. Round Eliminator: a tool for automatic
speedup simulation, 2020. URL: https://github.com/olidennis/
round-eliminator.

[35] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Dover Publications, Inc.,
1998.

[36] David Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications. So-
ciety for Industrial and Applied Mathematics, 2000.

[37] Julius Petersen. Die Theorie der regulären graphs. Acta Mathemat-
ica, 15(1):193–220, 1891. doi:10.1007/BF02392606.

[38] Valentin Polishchuk and Jukka Suomela. A simple local 3-
approximation algorithm for vertex cover. Information Processing
Letters, 109(12):642–645, 2009. arXiv:0810.2175, doi:10.1016/j.ipl.
2009.02.017.

[39] Jukka Suomela. Distributed algorithms for edge dominating
sets. In Proc. 29th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 2010), pages 365–374, 2010. doi:
10.1145/1835698.1835783.

[40] Leslie G. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103–111, 1990. doi:10.1145/79173.
79181.

[41] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[42] Masafumi Yamashita and Tsunehiko Kameda. Computing on anony-
mous networks: part I—characterizing the solvable cases. IEEE

210

https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://github.com/olidennis/round-eliminator
https://doi.org/10.1007/BF02392606
https://arxiv.org/abs/0810.2175
https://doi.org/10.1016/j.ipl.2009.02.017
https://doi.org/10.1016/j.ipl.2009.02.017
https://doi.org/10.1145/1835698.1835783
https://doi.org/10.1145/1835698.1835783
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181

Transactions on Parallel and Distributed Systems, 7(1):69–89, 1996.
doi:10.1109/71.481599.

[43] Mihalis Yannakakis and Fanica Gavril. Edge dominating sets in
graphs. SIAM Journal on Applied Mathematics, 38(3):364–372,
1980. doi:10.1137/0138030.

211

https://doi.org/10.1109/71.481599
https://doi.org/10.1137/0138030

	Foreword
	About the Course
	Acknowledgments
	Website
	License

	I Informal Introduction
	Warm-Up
	Running Example: Coloring Paths
	Challenges of Distributed Algorithm
	Coloring with Unique Identifiers
	Faster Coloring with Unique Identifiers
	Algorithm Overview
	Algorithm for One Step
	An Example
	Correctness
	Iteration

	Coloring with Randomized Algorithms
	Algorithm
	Analysis
	With High Probability

	Summary
	Quiz
	Exercises
	Bibliographic Notes
	Appendix: Mathematical Preliminaries
	Power Tower
	Iterated Logarithm

	II Graphs
	Graph-Theoretic Foundations
	Terminology
	Adjacency
	Subgraphs
	Walks
	Connectivity and Distances
	Isomorphism

	Packing and Covering
	Labelings and Partitions
	Factors and Factorizations
	Approximations
	Directed Graphs and Orientations
	Quiz
	Exercises
	Bibliographic Notes

	III Models of Computing
	PN Model: Port Numbering
	Introduction
	Port-Numbered Network
	Terminology
	Underlying Graph
	Encoding Input and Output
	Distributed Graph Problems

	Distributed Algorithms in the PN model
	State Machine
	Execution
	Solving Graph Problems

	Example: Coloring Paths
	Example: Bipartite Maximal Matching
	Algorithm
	Analysis

	Example: Vertex Covers
	Virtual 2-Colored Network
	Simulation of the Virtual Network
	Algorithm
	Analysis

	Quiz
	Exercises
	Bibliographic Notes

	LOCAL Model: Unique Identifiers
	Definitions
	Gathering Everything
	Solving Everything
	Focus on Computational Complexity
	Greedy Color Reduction
	Algorithm
	Analysis
	Remarks

	Efficient (Δ+1)-coloring
	Additive-Group Coloring
	Algorithm
	Correctness
	Running Time

	Fast O(Δ²)-coloring
	Cover-Free Set Families
	Constructing Cover-Free Set Families
	Efficient Color Reduction
	Iterated Color Reduction
	Final Color Reduction Step

	Putting Things Together
	Quiz
	Exercises
	Bibliographic Notes
	Appendix: Finite Fields

	CONGEST Model: Bandwidth Limitations
	Definitions
	Examples
	All-Pairs Shortest Path Problem
	Single-Source Shortest Paths
	Breadth-First Search Tree
	Leader Election
	All-Pairs Shortest Paths
	Quiz
	Exercises
	Bibliographic Notes

	Randomized Algorithms
	Definitions
	Probabilistic Analysis
	With High Probability
	Randomized Coloring in Bounded-Degree Graphs
	Algorithm Idea
	Algorithm
	Analysis

	Quiz
	Exercises
	Bibliographic Notes

	IV Proving Impossibility Results
	Covering Maps
	Definition
	Covers and Executions
	Examples
	Quiz
	Exercises
	Bibliographic Notes

	Local Neighborhoods
	Definitions
	Local Neighborhoods and Executions
	Example: 2-Coloring Paths
	Quiz
	Exercises
	Bibliographic Notes

	Round Elimination
	Bipartite Model and Biregular Trees
	Bipartite Locally Verifiable Problem
	Examples

	Introducing Round Elimination
	Impossibility Using Iterated Round Elimination
	Output Problems
	Example: Weak 3-labeling
	Complexity of Output Problems
	Example: Complexity of Weak 3-labeling
	Example: Iterated Round Elimination

	Quiz
	Exercises
	Bibliographic Notes

	Sinkless Orientation
	Sinkless Orientation on Paths
	Hardness of Sinkless Orientation
	Solving Sinkless Orientation on Paths

	Sinkless Orientation on Trees
	Solving Sinkless Orientation on Trees
	Roadmap: Next Steps

	Maximal Output Problems
	Hardness of Sinkless Orientation on Trees
	First Step
	Equivalent Formulation
	Fixed Points in Round Elimination
	Sinkless Orientation Gives a Fixed Point

	Quiz
	Exercises
	Bibliographic Notes

	Hardness of Coloring
	Coloring and Round Elimination
	Encoding Coloring
	Output Problem of Coloring
	Simplification
	Generalizing Round Elimination for Coloring
	Sequence of Output Problems

	Round Elimination with Inputs
	Randomized Round Elimination Step

	Iterated Randomized Round Elimination
	Proof of Lemma 11.1
	Proof of Lemma 11.2

	Quiz
	Exercises
	Bibliographic Notes

	V Conclusions
	Conclusions
	What Have We Learned?
	What Else Exists?
	Distance vs. Bandwidth vs. Local Memory
	Asynchronous and Fault-Tolerant Algorithms
	Other Directions
	Research in Distributed Algorithms

	Quiz
	Exercises
	Bibliographic Notes

	Hints
	Bibliography

