

Distributed Algorithms 2021

Randomized algorithms

Deterministic algorithms in PN model init_d(...), send_d(...), receive_d(...)

- Deterministic algorithms in LOCAL model
 add unique identifiers
- Deterministic algorithms in CONGEST model
 - add bandwidth constraints

Randomized algorithms

- Randomized algorithms in PN model
 - init_d(...), receive_d(...): probability distribution
- Randomized algorithms in LOCAL model
 add unique identifiers
- Randomized algorithms in CONGEST model
 - add bandwidth constraints

Guarantees

Monte Carlo

- guaranteed running time
- probabilistic output quality

• Las Vegas

- probabilistic running time
- guaranteed output quality

Guarantees

Monte Carlo

- guaranteed running time
- probabilistic output quality

• Las Vegas

- probabilistic running time
- guaranteed output quality

• "With high probability" (w.h.p.)

Role of randomness

- Sometimes randomness is the only way to design fast distributed algorithms
- Example: sinkless orientation
 - deterministic LOCAL: **O(log n)** is best possible
 - randomized LOCAL: O(log log n) w.h.p. is best possible

Role of randomness

- Sometimes randomness is just one of many ways to break symmetry
- Example:
 - **PN model** + randomness + knowledge of *n*: you can construct **unique identifiers** w.h.p.

This week's quiz

- Random permutation of {1, ..., 10} in a 10-cycle
- Expected number of local maxima?

Pretty simple idea:

- nodes are *active* with probability 1/2
- only active nodes try to pick a random free color
- stop if successful

Simplest possible idea:

- everyone tries to pick
 a random free color
- stop if successful

Exam

Take-home exam

- googling fine, asking someone for help not
- published \geq 24h before exam ends
- submit answers in MyCourses
- Grading: **pass/fail**
 - or **pass/borderline/fail** if needed
 - borderline can be upgraded to pass with some extra homework

Exam

• Expected:

- you know *exactly what is a distributed algorithm* (formally, not just waving hands)
- you can *design* new distributed algorithms
- you can *analyze* distributed algorithms, with the help of usual graph-theoretic concepts

•Not needed:

memorizing technical details

What next?

What's coming next?

•1st period:

- models of distributed computing
- how to design fast distributed algorithms?

• 2nd period:

- how to prove impossibility results?
- what cannot be solved at all in the PN model?
- what cannot be solved fast in the LOCAL model?