
Distributed
Algorithms

7Covering maps

2021



12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1

You are in a room
with three doors,
labeled 1, 2, and 3.
> _



12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1

You are in a room
with three doors,
labeled 1, 2, and 3.
> open door 3



12
3

1

2

1

2

1

12

3
1

2

1

21

1 2
3

1

2

1

2 1

12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1

You enter a room with
two doors, labeled 1
and 2. You just came
in through doorway 1.
> _



12
3

1

2

1

2

1

12

3
1

2

1

21

1 2
3

1

2

1

2 1

12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1

You enter a room with
two doors, labeled 1
and 2. You just came
in through doorway 1.
> open door 2



12
3

1

2

1

2

1

12

3
1

2

1

21

1 2
3

1

2

1

2 1

12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1

You enter a room with
two doors, labeled 1
and 2. You just came
in through doorway 1.
> _



12
3

1

2

1

2

1

12

3
1

2

1

21

1 2
3

1

2

1

2 1

12
3

1

2

1

2

1

12
3

1

2

1

21

1 2
3

1

2

1

2 1



High-level plan
•Goal:
• show that problem X cannot be solved
in the port-numbering model

•General approach:
• construct port-numbered networks so that some 
nodes u, v, … will always produce the same output
• show that if u, v, … have the same output, then
it is not a feasible solution for X

Covering 
maps used 

here



Covering map
•Two port-numbered networks:
•N = (V, P, p)
•N’ = (V’, P’, p’)

•Surjection f: V → V’ that preserves:
• inputs
• degrees
• connections
• port numbers



a

b

dc 12
3

1

2

1

2

1

b2

d2c2 12

3
1

2

1

21a1

b1

d1 c11 2
3

1

2

1

2 1 a2



Covering map
• “Fools” any deterministic algorithm
• If f is a covering map from N to N’, then:
• v and f(v) have the same state before round 1
• v and f(v) send the same messages in round 1
• v and f(v) receive the same messages in round 1
• v and f(v) have the same state after round 1



Covering map
• “Fools” any deterministic algorithm
• If f is a covering map from N to N’, then:
• v and f(v) have the same state before round T
• v and f(v) send the same messages in round T
• v and f(v) receive the same messages in round T
• v and f(v) have the same state after round T



Common steps
•Starting point: graph problem X
•Which graph G would be a “hard instance”?
•How to choose a port numbering N of G ?
•How to choose the other network N’ ?
•How to construct mapping from N to N’ ?



Example: 2-node path



Example: 4-node path



Example: two cycles



Common setup
•N is the network we care about
• simple port-numbered network
•well-defined and interesting underlying graph

•N’ is something strange
• not necessarily a simple port-numbered network
• running A in N’ makes no sense
• introduced only to analyze what happens 

when we run A in N



Observations
•We can use covering maps to construct 

universal counterexamples
• adaptive: “for any given algorithm A we can find

a hard input N”
• universal: “there is an input N that is hard

for any algorithm A”


