Local neighborhoods
High-level plan

Algorithm A runs in T rounds and solves problem X

→ A is a mapping from radius-T neighborhoods to local outputs

Such a mapping cannot solve X correctly

→ Problem X is not solvable in T rounds
Example: coloring

- **Problem:** find a vertex coloring with the smallest possible number of colors
- **Proof:** *three different approaches!*
Example: coloring

• **Idea 1:** consider a path, *fix solutions in two neighborhoods*, construct another path.
Example: coloring

• **Idea 2:** consider an odd cycle, *look at a node that outputs “3”,* construct a path
Example: coloring

Idea 3: if we can 2-color paths locally, then we can also 2-color odd cycles
What about...

• PN model?
• CONGEST model?
• Randomized algorithms?
Example: leaf distance

• **Graph family:** trees
• **Model:** LOCAL
• **Input:** unique IDs and value of n
• **Output:** distance to the nearest leaf node
Example: leaf distance
Example: is it a forest?

• Input is a forest: all nodes output “yes”, otherwise: at least one node outputs “no”

• Questions:
 • is this solvable in PN, and how fast?
 • is this solvable in LOCAL, and how fast?
 • does it help if we know n?
Example: is it a forest?

• PN, n is not known?
Example: is it a forest?

• PN, \(n \) is known?
Example: is it a forest?

• LOCAL, n is not known?
Example: is it a forest?

• LOCAL, n is known?