Distributed Algorithms 2022

10 Sinkless orientation
This week’s plan

• **Topic:** complexity of *sinkless orientation*
 • task: high-degree nodes must have outdegree \(\geq 1 \)
 • possible in \(O(\log n) \) rounds, not in \(o(\log n) \) rounds

• **Video:** *why* do we care about this?
 • e.g. hardness of graph coloring

• **Today:** how to *prove* it?
 • round elimination & fixed points
Sinkless orientation

• **Labels:** \{ O, I \}
 • O = “edge oriented away from the active node”
 • I = “edge oriented towards the active node”

• **Active:** [O, ?, ?]
 • “at least one outgoing edge”

• **Passive:** [I, ?, ?]
 • “at least one outgoing edge”
Sinkless orientation: O, I
 • active: [$O, ?, ?$]
 • passive: [$I, ?, ?$]

Output problem: $\{O\}, \{I\}, \{O,I\}$
 • active: [$\{I\}, ?, ?$]
 • passive: [$\{O\}, ?, ?$] or [$\{O,I\}, ?, ?$]

Maximal problem: $\{I\}, \{O,I\}$
 • active: [$\{I\}, \{O,I\}, \{O,I\}$]
 • passive: [$\{O,I\}, ?, ?$]
Sinkless orientation: O, I
- active: $[O, ?, ?]$
- passive: $[I, ?, ?]$

Output problem: $\{O\}, \{I\}, \{O,I\}$
- active: $\{I\}$, $[\{\}, ?, ?]$
- passive: $\{O\}$, $[\{\}, ?, ?]$ or $\{O,I\}$, $[\{\}, ?, ?]$

Maximal problem: A, B
- active: $[A, B, B]$
- passive: $[B, ?, ?]$
Output problem

• **Labels:** \{ A, B \}
 - A = “edge oriented away from the active node”
 - B = “edge oriented towards the active node”

• **Active:** [A, B, B]
 - “**exactly** one outgoing edge”

• **Passive:** [B, ?, ?]
 - “at least one outgoing edge”
Starting point: A, B
- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: \{B\}, \{A,B\}
- active: [\{B\}, \{A,B\}, \{A,B\}]
- passive: [\{A,B\}, ?, ?]
Starting point: A, B
 - active: [A, B, B]
 - passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
 - active: [\{B\}, ?, ?]
 - passive: ...

Maximal problem: A, B
 - active: [A, B, B]
 - passive: [B, ?, ?]
Fixed points

• $X = \text{re}(X)$, and X is not 0-round solvable

• "X can be solved 1 round faster than X"
 • contradiction

• One of our assumptions fails — which one?
Fixed points

• $X = \text{re}(X)$, and X is not 0-round solvable

• *X cannot be solved in $o(\log n)$ rounds* in the deterministic PN model

• We can also derive hardness results for deterministic and randomized LOCAL model
Often used like this

• We are interested in problem X
• Find a suitable *relaxation* Y of X
 • problem Y is at most as hard as X
 • problem Y is nontrivial
• Show that $Y = \text{re}(Y)$ or $Y = \text{re}(\text{re}(Y))$
 • Y cannot be solved fast
 • X cannot be solved fast
Sinkless and sourceless

- **Labels:** \{ O, I \}
 - O = “edge oriented away from the active node”
 - I = “edge oriented towards the active node”

- **Active:** [O, I, ?]
 - “at least one outgoing and one incoming edge”

- **Passive:** [I, O, ?]
 - “at least one outgoing and one incoming edge”