

Distributed Algorithms 2022

Sinkless orientation

This week's plan

- Topic: complexity of sinkless orientation
 - task: high-degree nodes must have outdegree ≥ 1
 - possible in $O(\log n)$ rounds, not in $o(\log n)$ rounds
- Video: why do we care about this?
 - e.g. hardness of graph coloring
- Today: how to prove it?
 - round elimination & fixed points

Sinkless orientation

- **Labels:** { ○, | }
 - O = "edge oriented away from the active node"
 I = "edge oriented towards the active node"
- Active: [O, ?, ?]
 - "at least one outgoing edge"
- **Passive:** [1, ?, ?]
 - "at least one outgoing edge"

Sinkless orientation: O, I

- active: [O, ?, ?]
- passive: [I, ?, ?]

Output problem: {O}, {I}, {O,I}

- active: [{I}, ?, ?]
- passive: [{O}, ?, ?] or [{O,I}, ?, ?]

Maximal problem: {I}, {O,I}

- active: [{I}, {O,I}, {O,I}]
- passive: [{O,I}, ?, ?]

Sinkless orientation: O, I

- active: [O, ?, ?]
- passive: [I, ?, ?]

Output problem: {O}, {I}, {O,I}

- active: [{I}, ?, ?]
- passive: [{O}, ?, ?] or [{O,I}, ?, ?]

Maximal problem: A, B

- active: [**A**, **B**, **B**]
- passive: [B, ?, ?]

Output problem

- **Labels:** { A, B }
 - A = "edge oriented away from the active node"
 - B = "edge oriented towards the active node"
- Active: [A, B, B]
 - "exactly one outgoing edge"
- **Passive:** [B, ?, ?]
 - "at least one outgoing edge"

Starting point: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: {A}, {B}, {A,B}

- active: [{B}, ?, ?]
- passive: ...

Maximal problem: {B}, {A,B}

- active: [{B}, {A,B}, {A,B}]
- passive: [{A,B}, ?, ?]

Starting point: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: {A}, {B}, {A,B}

- active: [{B}, ?, ?]
- passive: ...

Maximal problem: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Fixed points

- X = re(X), and X is not 0-round solvable
- "X can be solved 1 round faster than X"
 - contradiction
- One of our assumptions fails which one?

Fixed points

- X = re(X), and X is not 0-round solvable
- X cannot be solved in o(log n) rounds in the deterministic PN model
- We can also derive hardness results for deterministic and randomized LOCAL model

Often used like this

- We are interested in problem X
- Find a suitable *relaxation* Y of X
 - problem Y is at most as hard as X
 - problem Y is nontrivial
- Show that Y = re(Y) or Y = re(re(Y))
 - Y cannot be solved fast
 - X cannot be solved fast

Sinkless and sourceless

- **Labels:** { ○, | }
 - O = "edge oriented away from the active node"
 I = "edge oriented towards the active node"
- **Active:** [O, I, ?]
 - "at least one outgoing and one incoming edge"
- **Passive:** [1, 0, ?]
 - "at least one outgoing and one incoming edge"