Distributed Algorithms 2022

Hardness of coloring
This week’s goals

• **Specific technical result:**
 • 3-coloring of cycles in the LOCAL model
 • possible in $O(\log^* n)$ rounds (week 1)
 • not possible in $o(\log^* n)$ rounds (this week)

• **General idea:**
 • how to use round elimination to prove negative results in the **LOCAL** model and/or for **randomized** algorithms
Challenge & workaround

• Round elimination does not work directly in the **LOCAL** model
 • problem: **independence** vs. unique identifiers

• But we can use it to study **randomized** algorithms in the **PN** model
 • random bits are independent!

• Then results for the LOCAL model follow!
General idea:
Randomized round elimination
Randomized round elimination

• **The same pair of problems:** X and $\text{re}(X)$
 • $\text{re}(X)$ does not depend on model of computing!

• **Different implications** in different models:
 • *if A is a deterministic PN-algorithm that solves X in T rounds then ...*
 • *if A is a randomized PN-algorithm that solves X in T rounds with high probability then ...*
Randomized round elimination

• We will use cycles as an example
• The same idea generalizes to biregular trees
 • probabilities that we get are just slightly different
Randomized round elimination in cycles

• A_0: local failure probability $< 1/x^3$
 e.g. 0.1%

• A_1: form the set of frequent labels
 • labels that appear with probability $\geq 1/x$
 e.g. 10%

• Analysis: focus on lucky neighborhoods
 • neighborhoods in which A_0 fails with probability $< 1/x^2$
 e.g. 1%
Intuition

• Before seeing anything:
 • we know that A_0 failure rate is $< 1/x^3$

• Gather more local information:
 • gain more information on A_0 failure rate here
 • may increase or decrease — does it exceed $1/x^2$?
 • “unlucky”: much worse than average failure rate
 • “lucky”: not much worse than average failure rate
New active nodes

• Assume we are in a *lucky neighborhood*
 • by definition: \(P[A_0 \text{ fails}] < \frac{1}{x^2} \)

• Assume \([a, b]\) is a pair of *frequent labels*
 • happens here with probability \(\geq \frac{1}{x} \cdot \frac{1}{x} = \frac{1}{x^2} \)
 • \(A_0 \) cannot fail here with probability \(\geq \frac{1}{x^2} \)
 • **label pair \([a, b]\) must be feasible!**

• \(A_1 \) can fail only in unlucky neighborhoods!
Lucky neighborhoods

• **Assumption:** \(P[A_0 \text{ fails}] < 1/x^3 \)
 e.g. 0.1%

• **Definition:** \(P[A_0 \text{ fails} | \text{ unlucky}] \geq 1/x^2 \)
 e.g. 1%

• \(P[A_0 \text{ fails} | \text{ unlucky}] \cdot P[\text{ unlucky}] < 1/x^3 \)

• \(P[\text{ unlucky}] < 1/x \)
 e.g. 10%
New passive nodes

- $P[A_0 \text{ fails}] < \frac{1}{x^3}$
- $P[A_0 \text{ output considered infrequent by } A_1] < \text{#labels} \cdot \text{#edges} \cdot \frac{1}{x}$

Otherwise:
- A_0 does not fail, its outputs form a valid solution
- A_0 outputs only labels that A_1 considers frequent
- A_1 has to succeed in solving $\text{re}(X)$
Summary

• $P[A_0 \text{ fails}] < \frac{1}{x^3}$

• Possible A_1-failures:
 • $P[\text{unlucky}] < \frac{1}{x}$
 • $P[A_0 \text{ fails}] < \frac{1}{x^3}$
 • $P[A_0 \text{ outputs some infrequent label}] < \#\text{labels} \cdot \#\text{edges} \cdot \frac{1}{x}$

• $P[A_1 \text{ fails}] < \text{constant} \cdot \frac{1}{x}$
Randomized round elimination in cycles

- A_0: local failure probability $< \frac{1}{x^3}$
- A_1: local failure probability $< \text{constant} \cdot \frac{1}{x}$
- Failure probability increases polynomially
- We can repeat this many times before A_k becomes useless
What works very often

• Do round elimination in deterministic PN model
 • gain intuition on how the problem behaves
• Then switch to randomized PN model
 • proper analysis of failure probabilities
• Results for deterministic & randomized LOCAL follow directly
Case study: Coloring directed cycles
$n^{O(1)}$-coloring
0 rounds
(unique IDs)

3-coloring
$O(\log^* n)$ steps
$O(\log^* n)$ rounds

2^k-coloring
$T - 1$ rounds

2k-coloring
T rounds

k-coloring

Fast color reduction

Round elimination

c-coloring
0 rounds

3-coloring
$T \ll \log^* n$ rounds

T steps
Sinkless orientation

• **Deterministic PN:**
 - not possible in $o(\log n)$ rounds (last week)
 - possible in $O(\log n)$ rounds (last week)

• **Randomized PN:**
 - not possible in $o(\log \log n)$ rounds (exercise)
 - possible in $O(\log \log n)$ rounds (not easy)

• **Deterministic LOCAL?**