

## Distributed Algorithms 2023



#### Welcome!

- You should have already done this:
  - register in **Sisu**
  - read instructions in **MyCourses**
  - join our **Zulip workspace**
  - watch two pre-recorded videos
  - solve this week's quiz

This week: extra time to solve the quiz until midnight tomorrow!

## **Our weekly routine**

- Mon: prerecorded videos
- **Tue:** quiz (noon), lecture (12:15pm)
- Wed: 1 exercise (midnight)
- Thu: exercise session (10:15am)
- Fri: 2 exercises (midnight)

Workload: 10–11 h/week



- One quiz per week, in **MyCourses**
- Solve by *Tuesday* at noon
- Automatically graded
  - 2 points for correct answer
  - 0.5-point penalty per wrong answer

#### Exercises

- •5+ exercises per week, in the **textbook**
- Solve 1 by *Wednesday*, 2 more by *Friday*
- Submit your answers in **MyCourses**preferably as an easy-to-read PDF file
- The answers need to be complete
  - full details, complete proofs
  - e.g. why does your algorithm work correctly?

## **Challenging exercises**

- In the textbook, marked with a star  $\bigstar$
- Solve *at any point* during the course
- Again, the answers need to be complete



#### • To pass the course:

• you need to pass both *exams* 

#### •For a good grade:

- you need to *solve exercises*
- quiz + exercises = max 96 points in total
- challenging exercises = 4 extra points each
- 80 points = grade 5/5

## Learning objectives

- Understand models of distributed computing
- Design and analyze efficient distributed algorithms
- Prove impossibility results
- Use standard graph-theoretic concepts

Practiced in exercises Tested in midterm exams

## This is a theory course

#### 100% mathematics

- definitions
- theorems
- proofs ...

#### 0% practice

- programming
- hardware
- protocols ...

Expected: basic knowledge of university-level mathematics

Example: what is a mathematical proof

## **Course practicalities**

- Traditional on-campus course
  - on-campus lectures
  - on-campus exercise sessions
  - on-campus exams
- Primary tool for communication: **Zulip**
- Course material, submitting solutions:
  MyCourses

# This week's content...

#### Video 1a: introduction



#### Video 1b: coloring



#### **Slow color reduction**

- Algorithm idea:
  - all nodes with the **largest color** are active
  - active nodes pick the *smallest color that is not used by their neighbors*



- Consider a simpler algorithm idea:
  *all nodes* pick the smallest color that is not used by their neighbors
- What would go wrong?
  - construct an example in which this algorithm fails!

#### Video 1b: coloring fast

#### Fast color reduction

- Algorithm idea:
  - find the first bit that differs in successor
  - index *i*, bit value *b*
  - new color is (*i*, *b*)

- Algorithm idea:
  - find the first bit that differs in successor
  - index *i*, bit value *b*
  - new color is (*i*, *b*)
- What would go wrong if the new color was just b?
  - construct an example in which it fails!

- Algorithm idea:
  - find the first bit that differs in successor
  - index *i*, bit value *b*
  - new color is (*i*, *b*)
- What would go wrong if the new color was just i?
  - construct an example in which it fails!

- Algorithm idea:
  - find the first bit that differs in successor
  - index *i*, bit value *b*
  - new color is (*i*, *b*)

#### Why does the algorithm work correctly?

• why is my new color always different from the new colors of my successor and my predecessor?

#### **Coming next**

- Week 2: graph theory
- Weeks 3–6: models of distributed computing • examples of efficient distributed algorithms
- Weeks 7–11: proving impossibility results
- Week 12: conclusions, recap