Distributed Algorithms 2023

LOCAL model: Unique identifiers

LOCAL model

port-numbering model + unique identifiers

Nodes have distinct labels from $\{1,2, \ldots, \operatorname{poly}(n)\}$

LOCAL model

- Everything can be solved in diam(G)+1 rounds!
-Universal algorithm: "each node tells its neighbors everything it knows"
- 1 round: everyone aware of its adjacent nodes and incident edges
- T rounds: everyone aware of all nodes and edges within distance T
- diam(G)+1 rounds: everyone knows G

LOCAL model

- Not so interesting:

"What can be computed?"

- Very interesting:
"What can be computed efficiently?"
(efficient $\approx o(d i a m(G))$ rounds)

Coloring

Input

Unique IDs
$O\left(\Delta^{2}\right)$-coloring
$O(\Delta)$-coloring
$O(\Delta)$
$O(\Delta)$-coloring ($(\Delta+1)$-coloring $\quad O(\Delta)$
Unique IDs
($\Delta+1$)-coloring
$O\left(\Delta+\log ^{*} n\right)$

Algorithm

Cover-free families

Rotating clocks
Greedy color reduction
Combine these algorithms

Coloring

Input

Output

$O\left(\Delta^{2}\right)$-coloring $O\left(\log ^{*} n\right)$
$O\left(\Delta^{2}\right)$-coloring $O(\Delta)$-coloring $\quad O(\Delta)$
$O(\Delta)$-coloring $\quad(\Delta+1)$-coloring $O(\Delta)$
Unique IDs
$(\Delta+1)$-coloring $O\left(\Delta+\log ^{\star} n\right)$

Algorithm

Cover-free families

Rotating clocks

Greedy color reduction
Combine these algorithms

Greedy color reduction

- If I am a local maximum:
- pick the smallest free color that is not used by any of my neighbors
- $k+1$ colors $\rightarrow k$ colors
- provided that $k \geq \Delta+1$

Coloring

Input
 Output
 Rounds
 Algorithm

Unique IDs
 $O\left(\Delta^{2}\right)$-coloring $O\left(\log ^{*} n\right)$

Cover-free families
$O\left(\Delta^{2}\right)$-coloring $O(\Delta)$-coloring $O(\Delta)$
$O(\Delta)$-coloring $(\Delta+1)$-coloring $O(\Delta)$
Unique IDs
$(\Delta+1)$-coloring
$O\left(\Delta+\log ^{*} n\right)$
Rotating clocks

Greedy color reduction
Combine these algorithms

Rotating clocks

- $q=$ prime, $q>2 \Delta$
- q^{2} colors $\rightarrow q$ colors in q rounds
- If no conflicts:
- $(a, b) \rightarrow(0, b)$
- Otherwise:
- $(a, b) \rightarrow(a, b+a \bmod q)$

Coloring

Input
 Output
 Rounds
 Algorithm

$O\left(\Delta^{2}\right)$-coloring $O\left(\log ^{*} n\right)$
$O(\Delta)$
$O(\Delta)$-coloring $(\Delta+1)$-coloring $O(\Delta)$
Unique IDs
$(\Delta+1)$-coloring
$O\left(\Delta+\log ^{*} n\right)$

Cover-free families

Rotating clocks
Greedy color reduction
Combine these algorithms

Cover-free families

- Old color of node v is a set $S(v) \subseteq\{1,2, \ldots, m\}$
- Promise:
- new color of v is an element of $S(v)$
-Safe:
- pick an element of $S(v)$ that is not in any $S(u)$ for any neighbor u

Cover-free families

- Old color of node v is a set $S(v) \subseteq\{1,2, \ldots, m\}$
-Bad:
- sets of neighbors cover all values in my set
- no safe choice left

Cover-free families

- Old color of node v is a set $S(v) \subseteq\{1,2, \ldots, m\}$
- Good:
- my set is not fully covered by my neighbors
- there is a safe choice

1-cover-free family

- For up to 1 neighbor these sets are good:

$$
\begin{aligned}
& S_{1}=\left\{\begin{array}{ll}
1,2
\end{array}\right\} \\
& S_{2}=\left\{\begin{array}{lll}
1, & 3
\end{array}\right\} \\
& S_{3}=\left\{\begin{array}{ll}
1, & 4
\end{array}\right\} \\
& S_{4}=\left\{\begin{array}{ll}
2,3
\end{array}\right\} \\
& S_{5}=\left\{\begin{array}{ll}
2, & 4
\end{array}\right\} \\
& S_{6}=\{\quad 3,4\}
\end{aligned}
$$

2-cover-free family

- For up to 2 neighbors these sets are good:

$$
\begin{aligned}
& S_{1}=\{1,2,3 \\
& S_{2}=\{ \\
& S_{3}=\{
\end{aligned}
$$

Cover-free families

- Assume: x-coloring, maximum degree $\boldsymbol{\Delta}$
- Assume: a Δ-cover-free family $S_{1}, S_{2}, \ldots, S_{x}$
- all subsets of $\{1,2, \ldots, m\}$
- Nodes of color c pick set S_{c}
- There is always a safe choice for any node!
- Color reduction from x to m

Cover-free families

- Δ-cover-free family $S_{1}, S_{2}, \ldots, S_{x}$
- all subsets of $\{1,2, \ldots, m\}$
- Good if:
- Δ large \rightarrow works in high-degree graphs
- x large \rightarrow tolerates many input colors
- m small \rightarrow produces a good output coloring
-E.g. $x=m$ is trivial (why?)

Constructing cover-free families

- q = prime, $\mathbf{G F}(\mathbf{q}) \boldsymbol{\approx}$ integers modulo \mathbf{q}
- $f=$ degree-d polynomial over GF(q)
- at most d points where $f(x)=g(x)$
- q^{d+1} possible polynomials
- $\boldsymbol{S}_{\boldsymbol{f}}=\{\mathbf{(x , f (x)) | x = 0 , 1 , \ldots , q - 1 \}}$
- base set: all \boldsymbol{q}^{2} possible pairs (x, y)
- q^{d+1} possible subsets, each with q elements
- intersection of S_{f} and S_{g} has size at most d
- If $q>\Delta d$: a Δ-cover-free family
- why?

$f(x), g(x) \bmod q$

Cover-free families

- Construct Δ-cover-free families with suitable parameters

$$
\left.\begin{array}{rl}
\cdot n & \rightarrow \approx \Delta^{2} \log ^{2} n \\
& \rightarrow \approx \Delta^{2} \log ^{2} \log n \\
& \rightarrow \approx \Delta^{2} \log ^{2} \log \log n \\
& \cdots \\
& \rightarrow \approx \Delta^{2} \log ^{2} \Delta \\
& \rightarrow \approx \Delta^{2}
\end{array}\right\} O\left(\log ^{*} n\right) \text { steps }
$$

Coloring

Input

Unique IDs
$O\left(\Delta^{2}\right)$-coloring
$O(\Delta)$-coloring
$O(\Delta)$
$O(\Delta)$-coloring ($(\Delta+1)$-coloring $\quad O(\Delta)$
Unique IDs
($\Delta+1$)-coloring
$O\left(\Delta+\log ^{*} n\right)$

Algorithm

Cover-free families

Rotating clocks
Greedy color reduction
Combine these algorithms

