

Distributed Algorithms 2023

CONGEST model: Bandwidth limitations

LOCAL model

port-numbering model + unique identifiers

Nodes have distinct labels from $\{1, 2, ..., poly(n)\}$

CONGEST model = LOCAL model + bandwidth limitation

Messages at most $O(\log n)$ bits

LOCAL · unbounded messages

• everything trivial to solve in O(diameter) rounds: gather full input and solve locally

CONGEST · bounded messages

- gathering everything is way too expensive
- O(diameter) and O(n) is nontrivial

Designing efficient algorithms in **CONGEST model**

Pipelining

Pipelining

- Multiple operations in progress simultaneously
- Using *different resources*
- In APSP algorithm:
 - multiple waves
 - using different communication links

Pipelining

- Does not reduce the total number of messages
 - only removes idle periods between messages
- If all communication links are already sending useful data every round, no room for pipelining

What kind of problems cannot be solved fast in CONGEST model?

Typical hard problems

- A: complicated, lots of information
- B: bottleneck
 - can only send small number of bits per round from A to C
- C: need to know A

Proving hardness

- Counting argument
- Many possible inputs in A
- Few possible messages across bottleneck B

Proving hardness

- Counting argument
- Many possible inputs in A
- Few possible messages across bottleneck B
- Contradiction:
 - different inputs in A
 - same messages across B
 - same output in C

