Distributed Algorithms 2023

Covering maps

0

0

You enter a room with two doors, labeled 1 and 2. You just came in through doorway 1. > open door 2

0

You enter a room with two doors, labeled 1 and 2. You just came in through doorway 1. >

0

High-level plan

- Goal:
- show that problem X cannot be solved in the port-numbering model

High-level plan

- Goal:
- show that problem X cannot be solved in the port-numbering model
- General approach:
- construct port-numbered networks so that some nodes u, v, \ldots will always produce the same output
- show that if u, v, \ldots have the same output, then it is not a feasible solution for X

High-level plan

- Goal:

- show that problem X cannot be solved in the port-numbering model
- General approach:
- construct port-numbered networks so that some nodes u, v, \ldots will always produce the same output
- show that if u, v, \ldots have the same output, then it is not a feasible solution for X

Covering map

-Two port-numbered networks:

- $N=(V, P, p)$
- $N^{\prime}=\left(V^{\prime}, P^{\prime}, p^{\prime}\right)$
- Surjection $f: V \rightarrow V^{\prime}$ that preserves:
- inputs
- degrees
- connections
- port numbers

Covering map

- "Fools" any deterministic algorithm
- If f is a covering map from N to N^{\prime}, then:
- v and $f(v)$ have the same state before round 1
- v and $f(v)$ send the same messages in round 1
- v and $f(v)$ receive the same messages in round 1
- v and $f(v)$ have the same state after round 1

Covering map

- "Fools" any deterministic algorithm
- If f is a covering map from N to N^{\prime}, then:
- v and $f(v)$ have the same state before round T
- v and $f(v)$ send the same messages in round T
- v and $f(v)$ receive the same messages in round T
- v and $f(v)$ have the same state after round T

Common steps

- Starting point: graph problem X
- Which graph G would be a "hard instance"?
- How to choose a port numbering N of G ?
- How to choose the other network N^{\prime} ?
-How to construct mapping from N to N^{\prime} ?

Example: 2-node path

Example: 4-node path

Example: two cycles

Quiz

- Problem: 2-tuple dominating set in cycles
-Best approximation ratio for the PN model?

Common setup

- N is the network we care about
- simple port-numbered network
- well-defined and interesting underlying graph
- \mathbf{N}^{\prime} is something strange
- not necessarily a simple port-numbered network
- running A in N^{\prime} makes no sense
- introduced only to analyze what happens when we run A in N

Observations

- We can use covering maps to construct universal counterexamples
- adaptive: "for any given algorithm A we can find a hard input N"
- universal: "there is an input N that is hard for any algorithm $A^{\prime \prime}$

