Distributed Algorithms 2023

Local neighborhoods

High-level plan

Algorithm A runs in \boldsymbol{T} rounds and solves problem X
$\rightarrow A$ is a mapping from radius- \boldsymbol{T} neighborhoods to local outputs
Such a mapping cannot solve X correctly
\rightarrow Problem X is not solvable in T rounds

Example: coloring

- Problem: find a vertex coloring with the smallest possible number of colors
-Proof: three different approaches!

Example: coloring

- Idea 1: consider a path, fix solutions in two neighborhoods, construct another path

Example: coloring

- Idea 2: consider an odd cycle, look at a node that outputs "3", construct a path

Example: coloring

- Idea 3: if we can 2-color paths locally, then we can also 2-color odd cycles

What about...

-PN model?
-CONGEST model?

- Randomized algorithms?

Example: leaf distance

- Graph family: trees
- Model: LOCAL
- Input: unique IDs and value of n
- Output: distance to the nearest leaf node

Example: is it a forest?

-Input is a forest: all nodes output "yes", otherwise: at least one node outputs "no"

- Questions:
- is this solvable in PN, and how fast?
- is this solvable in LOCAL, and how fast?
- does it help if we know n ?

Example: is it a forest?

-PN, n is not known?

Example: is it a forest?

-PN, n is known?

Example: is it a forest?

-LOCAL, n is not known?

Example: is it a forest?

- LOCAL, n is known?

