Distributed Algorithms 2023

Sinkless orientation
This week’s plan

• **Topic:** complexity of *sinkless orientation*
 • task: high-degree nodes must have outdegree ≥ 1
 • possible in $O(\log n)$ rounds, not in $o(\log n)$ rounds

• **Video:** *why* do we care about this?
 • e.g. hardness of graph coloring

• **Today:** how to *prove* it?
 • round elimination & fixed points
Sinkless orientation

• **Labels:** \{ O, I \}
 • O = “edge oriented away from the active node”
 • I = “edge oriented towards the active node”

• **Active:** [O, ?, ?]
 • “at least one outgoing edge”

• **Passive:** [I, ?, ?]
 • “at least one outgoing edge”
Sinkless orientation: O, I

- active: $[O, ?, ?]$
- passive: $[I, ?, ?]$

Output problem: $\{O\}, \{I\}, \{O, I\}$

- active: $\{I\}, ?, ?$
- passive: $\{O\}, ?, ?$ or $\{O, I\}, ?, ?$

Maximal problem: $\{I\}, \{O, I\}$

- active: $\{I\}, \{O, I\}, \{O, I\}$
- passive: $\{O, I\}, ?, ?$
Sinkless orientation: O, I
 • active: [O, ?, ?]
 • passive: [I, ?, ?]

Output problem: \{O\}, \{I\}, \{O,I\}
 • active: [\{I\}, ?, ?]
 • passive: [\{O\}, ?, ?] or [\{O,I\}, ?, ?]

Maximal problem: A, B
 • active: [A, B, B]
 • passive: [B, ?, ?]
Output problem

- **Labels**: \{ A, B \}
 - A = “edge oriented away from the active node”
 - B = “edge oriented towards the active node”

- **Active**: [A, B, B]
 - “exactly one outgoing edge”

- **Passive**: [B, ?, ?]
 - “at least one outgoing edge”
Starting point: A, B
- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: \{B\}, \{A,B\}
- active: [\{B\}, \{A,B\}, \{A,B\}]
- passive: [\{A,B\}, ?, ?]
Starting point: A, B
- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: \{A\}, \{B\}, \{A,B\}
- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: A, B
- active: [A, B, B]
- passive: [B, ?, ?]
Fixed points

• \(X = \text{re}(X) \), and \(X \) is not 0-round solvable
• “\(X \) can be solved 1 round faster than \(X \)”
 • contradiction
• One of our assumptions fails — which one?
Fixed points

• $X = \text{re}(X)$, and X is not 0-round solvable

• *X cannot be solved in $o(\log n)$ rounds* in the deterministic PN model

• We can also derive hardness results for deterministic and randomized LOCAL model
Often used like this

• We are interested in problem X
• Find a suitable $\text{relaxation} \ Y$ of X
 • problem Y is at most as hard as X
 • problem Y is nontrivial
• Show that $Y = \text{re}(Y)$ or $Y = \text{re}(\text{re}(Y))$
 • Y cannot be solved fast
 • X cannot be solved fast
Sinkless and sourceless

• **Labels:** \(\{ O, I \} \)
 - \(O \) = "edge oriented away from the active node"
 - \(I \) = "edge oriented towards the active node"

• **Active:** \[O, I, ? \]
 - "at least one outgoing and one incoming edge"

• **Passive:** \[I, O, ? \]
 - "at least one outgoing and one incoming edge"