Distributed Algorithms 2023

Sinkless orientation

This week's plan

-Topic: complexity of sinkless orientation

- task: high-degree nodes must have outdegree ≥ 1
- possible in $O(\log n)$ rounds, not in o $(\log n)$ rounds
-Video: why do we care about this?
- e.g. hardness of graph coloring
-Today: how to prove it?
- round elimination \& fixed points

Sinkless orientation

-Labels: $\{\mathrm{O}, \mathrm{I}\}$

- $\mathrm{O}=$ "edge oriented away from the active node" I = "edge oriented towards the active node"
-Active: [O, ?, ?]
- "at least one outgoing edge"
-Passive: [I, ?, ?]
- "at least one outgoing edge"

Sinkless orientation: O, I

- active: $[0, ?, ?]$
- passive: [I, ?, ?]

Output problem: \{O\}, \{1\}, \{O,I\}

- active: [\{1, ? ?, ?]
- passive: [\{O\}, ?, ?] or [\{O, I\}, ?, ?]

Maximal problem: \{1\}, \{O,I\}

- active: $[\{\mid\},\{O, \mid\},\{O, \mid\}]$
- passive: [\{O, $\}$, ?, ?]

Sinkless orientation: O, I

- active: $[0, ?, ?]$
- passive: [I, ?, ?]

Output problem: $\{0\},\{1\},\{\mathrm{O}, \mathrm{I}\}$

- active: [\{I\}, ?, ?]
- passive: [\{O\}, ?, ?] or [\{O, I\}, ?, ?]

Maximal problem: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Output problem

- Labels: \{ A, B \}
- $\mathrm{A}=$ "edge oriented away from the active node"
- $\mathrm{B}=$ "edge oriented towards the active node"
-Active: [A, B, B]
- "exactly one outgoing edge"
-Passive: [B, ?, ?]
-"at least one outgoing edge"

Starting point: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: $\{A\},\{B\},\{A, B\}$

- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: $\{B\},\{A, B\}$
-active: [$\{B\},\{A, B\},\{A, B\}]$

- passive: [\{A,B\}, ?, ?]

Starting point: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Output problem: $\{A\},\{B\},\{A, B\}$

- active: [\{B\}, ?, ?]
- passive: ...

Maximal problem: A, B

- active: [A, B, B]
- passive: [B, ?, ?]

Fixed points

- $\boldsymbol{X}=\boldsymbol{r e}(\boldsymbol{X})$, and X is not 0 -round solvable
- " X can be solved 1 round faster than X "
- contradiction
- One of our assumptions fails - which one?

Fixed points

- $\boldsymbol{X}=\mathbf{r e}(\boldsymbol{X})$, and X is not 0 -round solvable
- X cannot be solved in o(log n) rounds in the deterministic PN model
- We can also derive hardness results for deterministic and randomized LOCAL model

Often used like this

- We are interested in problem X
- Find a suitable relaxation Y of X
- problem Y is at most as hard as X
- problem Y is nontrivial
- Show that $Y=$ re (Y) or $Y=r e(r e(Y))$
- Y cannot be solved fast
- X cannot be solved fast

Sinkless and sourceless

-Labels: $\{\mathrm{O}, \mathrm{I}\}$

- $\mathrm{O}=$ "edge oriented away from the active node" I = "edge oriented towards the active node"
- Active: [O, I, ?]
- "at least one outgoing and one incoming edge"
-Passive: [I, O, ?]
-"at least one outgoing and one incoming edge"

