Distributed Algorithms 2023

Hardness of coloring

This week's goals

-Specific technical result:

-3-coloring of cycles in the LOCAL model

- possible in $O(l o g * n)$ rounds (week 1)
- not possible in o(log* n) rounds (this week)
- General idea:
- how to use round elimination to prove negative results in the LOCAL model and/or for randomized algorithms

Challenge \& workaround

- Round elimination does not work directly in the LOCAL model
- problem: independence vs. unique identifiers
- But we can use it to study randomized algorithms in the PN model
-random bits are independent!
- Then results for the LOCAL model follow!

General idea: Randomized round elimination

Randomized round elimination

- The same pair of problems: X and re (X)
-re (X) does not depend on model of computing!
- Different implications in different models:
- if A is a deterministic $P N$-algorithm that solves X in T rounds then ...
- if A is a randomized $P N$-algorithm that solves X in T rounds with high probability then ...

Randomized round elimination

- We will use cycles as an example
- The same idea generalizes to biregular trees
- probabilities that we get are just slightly different

Randomized round elimination in cycles

- $\boldsymbol{A}_{\mathbf{0}}$: local failure probability $<1 / x^{3}-$ e.g. 0.1%
- \boldsymbol{A}_{1} : form the set of frequent labels
- labels that appear with probability $\geq 1 / x<$ e.g. 10%
- Analysis: focus on Iucky neighborhoods
- neighborhoods in which
A_{0} fails with probability $<1 / x^{2}$ e.g. 1\%

Intuition

-Before seeing anything:

- we know that A_{0} failure rate is $<1 / x^{3}$
- Gather more local information:
- gain more information on A_{0} failure rate here - may increase or decrease - does it exceed $1 / x^{2}$?
-"unlucky": much worse than average failure rate
- "lucky": not much worse than average failure rate

New active nodes

- Assume we are in a lucky neighborhood
- by definition: $\mathrm{P}\left[A_{0}\right.$ fails $]<1 / x^{2}$
- Assume $[a, b]$ is a pair of frequent labels
- happens here with probability $\geq 1 / x \cdot 1 / x=1 / x^{2}$
- A_{0} cannot fail here with probability $\geq 1 / x^{2}$
- label pair $[a, b]$ must be feasible!
- A_{1} can fail only in unlucky neighborhoods!

Lucky neighborhoods

- Assumption: $\mathrm{P}\left[A_{0}\right.$ fails $]<1 / x^{3}$ eeg. 0.1%
- Definition: $\mathrm{P}\left[A_{0}\right.$ fails | unlucky $] \geq 1 / x^{2}$
- $\mathrm{P}\left[A_{0}\right.$ fails | unlucky . P [unlucky $]<1 / x^{3}$
- $P[$ unlucky $]<1 / x$

```
e.g. 10%
```


New passive nodes

- $P\left[A_{0}\right.$ fails $]<1 / x^{3}$
- $\mathrm{P}\left[A_{0}\right.$ output considered infrequent by $\left.A_{1}\right]$ < \#labels " \#edges 1 1/x
- Otherwise:
- A_{0} does not fail, its outputs form a valid solution
- A_{0} outputs only labels that A_{1} considers frequent - A_{1} has to succeed in solving re (X)

Summary

- $P\left[A_{0}\right.$ fails $]<1 / x^{3}$
- Possible A_{1}-failures:
- P[unlucky] < $1 / x$
- $P\left[A_{0}\right.$ fails $]<1 / x^{3}$
- $\mathrm{P}\left[A_{0}\right.$ outputs some infrequent label] < \#labels " \#edges $\cdot 1 / x$
- $\mathrm{P}\left[A_{1}\right.$ fails $]<$ constant $\cdot 1 / x$

Randomized round elimination in cycles

- $\boldsymbol{A}_{\mathbf{0}}$: local failure probability $<1 / x^{3}$
- $\boldsymbol{A}_{\mathbf{1}}$: local failure probability < constant $-1 / x$
- Failure probability increases polynomially
- We can repeat this many times before A_{k} becomes useless

What works very often

- Do round elimination in deterministic PN model
- gain intuition on how the problem behaves
- Then switch to randomized PN model
- proper analysis of failure probabilities
- Results for deterministic \& randomized LOCAL follow directly

Case study: Coloring directed cycles

$n^{0(1)}$-coloring
0 rounds (unique IDs)

$O\left(\log ^{*} n\right)$ steps

3-coloring $O\left(\log ^{*} n\right)$ rounds

$2^{\mathbf{k}}$-coloring	2k-coloring	Fast color reduction
T-1 rounds	T rounds	
$\mathbf{2}^{\mathbf{k}}$-coloring	\boldsymbol{k}-coloring	Round elimination

c-coloring
0 rounds

3-coloring

$T \ll \log ^{\star} n$
rounds

Sinkless orientation

- Deterministic PN:
- not possible in o(log n) rounds (last week)
- possible in $O(\log n)$ rounds (last week)
-Randomized PN:
- not possible in o(log log n) rounds (exercise)
- possible in $O(\log \log n)$ rounds (not easy)
-Deterministic LOCAL?

