Hardness of coloring
This week’s goals

Specific technical result:
- 3-coloring of cycles in the LOCAL model
- possible in $O(\log^* n)$ rounds (week 1)
- not possible in $o(\log^* n)$ rounds (this week)

General idea:
- how to use round elimination to prove negative results in the **LOCAL** model and/or for *randomized* algorithms
Challenge & workaround

• Round elimination does not work directly in the \textit{LOCAL} model
 • problem: \textit{independence} vs. unique identifiers
• But we can use it to study \textit{randomized} algorithms in the \textit{PN} model
 • random bits are independent!
• Then results for the LOCAL model follow!
General idea:
Randomized round elimination
Randomized round elimination

• **The same pair of problems**: X and $\text{re}(X)$
 • $\text{re}(X)$ does not depend on model of computing!

• **Different implications** in different models:
 • *if A is a deterministic PN-algorithm that solves X in T rounds then ...*
 • *if A is a randomized PN-algorithm that solves X in T rounds with high probability then ...*
Randomized round elimination

• We will use cycles as an example

• The same idea generalizes to biregular trees
 • probabilities that we get are just slightly different
Randomized round elimination in cycles

- A_0: local failure probability $< 1/x^3$

- A_1: form the set of *frequent labels*

 - labels that appear with probability $\geq 1/x$

- **Analysis**: focus on *lucky neighborhoods*

 - neighborhoods in which A_0 fails with probability $< 1/x^2$

 - e.g. 0.1%
 - e.g. 10%
 - e.g. 1%
Intuition

• **Before seeing anything:**
 • we know that A_0 failure rate is $< 1/x^3$

• **Gather more local information:**
 • gain more information on A_0 failure rate here
 • may increase or decrease — does it exceed $1/x^2$?
 • “unlucky”: much worse than average failure rate
 • “lucky”: not much worse than average failure rate
New active nodes

• Assume we are in a **lucky neighborhood**
 • by definition: \(P[A_0 \text{ fails}] < \frac{1}{x^2} \)

• Assume \([a, b]\) is a pair of **frequent labels**
 • happens here with probability \(\geq \frac{1}{x} \cdot \frac{1}{x} = \frac{1}{x^2} \)
 • \(A_0\) cannot fail here with probability \(\geq \frac{1}{x^2} \)
 • **label pair** \([a, b]\) **must be feasible**!

• \(A_1\) can fail only in unlucky neighborhoods!
Lucky neighborhoods

• **Assumption:** $P[A_0 \text{ fails}] < 1/x^3$
 e.g. 0.1%

• **Definition:** $P[A_0 \text{ fails | unlucky}] \geq 1/x^2$
 e.g. 1%

• $P[A_0 \text{ fails | unlucky}] \cdot P[\text{unlucky}] < 1/x^3$

• $P[\text{unlucky}] < 1/x$
 e.g. 10%
New passive nodes

• $\Pr[A_0 \text{ fails}] < \frac{1}{x^3}$

• $\Pr[A_0 \text{ output considered infrequent by } A_1] < \#\text{labels} \cdot \#\text{edges} \cdot \frac{1}{x}$

• Otherwise:
 • A_0 does not fail, its outputs form a valid solution
 • A_0 outputs only labels that A_1 considers frequent
 • A_1 has to succeed in solving $\text{re}(X)$
Summary

• $P[A_0 \text{ fails}] < \frac{1}{x^3}$

• Possible A_1-failures:
 • $P[\text{unlucky}] < \frac{1}{x}$
 • $P[A_0 \text{ fails}] < \frac{1}{x^3}$
 • $P[A_0 \text{ outputs some infrequent label}] < #\text{labels} \cdot #\text{edges} \cdot \frac{1}{x}$

• $P[A_1 \text{ fails}] < \text{constant} \cdot \frac{1}{x}$
Randomized round elimination in cycles

• A_0: local failure probability $< \frac{1}{x^3}$
• A_1: local failure probability $< \text{constant} \cdot \frac{1}{x}$
• Failure probability increases polynomially
• We can repeat this many times before A_k becomes useless
What works very often

• Do round elimination in deterministic PN model
 • gain intuition on how the problem behaves

• Then switch to randomized PN model
 • proper analysis of failure probabilities

• Results for deterministic & randomized LOCAL
 follow directly
Case study: **Coloring directed cycles**
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A a</td>
<td>F G</td>
<td>A a</td>
<td>A a</td>
</tr>
<tr>
<td>B b</td>
<td>E H</td>
<td>B b</td>
<td>B b</td>
</tr>
<tr>
<td>C c</td>
<td>D I</td>
<td>C c</td>
<td>C c</td>
</tr>
<tr>
<td>A bc</td>
<td>C J</td>
<td>D d</td>
<td>D d</td>
</tr>
<tr>
<td>B ac</td>
<td>A L</td>
<td>E e</td>
<td>E e</td>
</tr>
<tr>
<td>C ab</td>
<td>ACE GIK</td>
<td>F f</td>
<td>F f</td>
</tr>
<tr>
<td>A bc</td>
<td>BCF HIL</td>
<td>ACE fdb</td>
<td>A bdf</td>
</tr>
<tr>
<td>B ac</td>
<td>DEF JKL</td>
<td>BCF eda</td>
<td>B ade</td>
</tr>
<tr>
<td>C ab</td>
<td></td>
<td>DEF cba</td>
<td>C abdef</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D abc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E abcdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F abcde</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sinkless orientation

- **Deterministic PN:**
 - not possible in $o(\log n)$ rounds (last week)
 - possible in $O(\log n)$ rounds (last week)

- **Randomized PN:**
 - not possible in $o(\log \log n)$ rounds (exercise)
 - possible in $O(\log \log n)$ rounds (not easy)

- **Deterministic LOCAL?**