

Distributed Algorithms 2023

Hardness of coloring

This week's goals

• Specific technical result:

- 3-coloring of cycles in the LOCAL model
- possible in O(log* n) rounds (week 1)
- not possible in o(log* n) rounds (this week)

• General idea:

 how to use round elimination to prove negative results in the LOCAL model and/or for randomized algorithms

Challenge & workaround

- Round elimination does not work directly in the *LOCAL* model
 - problem: **independence** vs. unique identifiers
- But we can use it to study *randomized* algorithms in the *PN* model
 random bits are independent!
- Then results for the LOCAL model follow!

General idea: Randomized round elimination

Randomized round elimination

- The same pair of problems: X and re(X)
 re(X) does not depend on model of computing!
- **Different implications** in different models:
 - *if A is a deterministic PN-algorithm that solves X in T rounds then ...*
 - if A is a randomized PN-algorithm that solves X in T rounds with high probability then ...

Randomized round elimination

- We will use cycles as an example
- The same idea generalizes to biregular trees
 probabilities that we get are just slightly different

Randomized round elimination in cycles

- A_0 : local failure probability < $1/x^3$ _ e.g. 0.1%
- **A**₁: form the set of **frequent labels**
 - labels that appear with probability $\ge 1/x <$

- Analysis: focus on *lucky neighborhoods*
 - neighborhoods in which A_0 fails with probability < $1/x^2$

Intuition

Before seeing anything:

• we know that A_0 failure rate is < $1/x^3$

Gather more local information:

- gain more information on A_0 failure rate here
- may increase or decrease does it exceed $1/x^2$?
- "unlucky": much worse than average failure rate
- "lucky": not much worse than average failure rate

New active nodes

- Assume we are in a *lucky neighborhood*by definition: P[A₀ fails] < 1/x²
- Assume [a, b] is a pair of frequent labels
 - happens here with probability $\ge 1/x \cdot 1/x = 1/x^2$
 - A_0 cannot fail here with probability $\ge 1/x^2$ • **label pair** [*a*, *b*] **must be feasible**!
- • A_1 can fail only in unlucky neighborhoods!

Lucky neighborhoods

- •Assumption: $P[A_0 \text{ fails}] < 1/x^3 e.g. 0.1\%$
- **Definition:** $P[A_0 \text{ fails} | \text{ unlucky}] \ge 1/x^2$

e.g. 1%

- $P[A_0 \text{ fails } | \text{ unlucky}] \cdot P[\text{unlucky}] < 1/x^3$
- P[unlucky] < 1/x e.g. 10%

New passive nodes

- P[A₀ fails] < **1/x³**
- P[A₀ output considered infrequent by A₁]
 < #labels · #edges · 1/x

• Otherwise:

- A_0 does not fail, its outputs form a valid solution
- A_0 outputs only labels that A_1 considers frequent
- A_1 has to succeed in solving re(X)

Summary

- $P[A_0 \text{ fails}] < 1/x^3$
- Possible *A*₁-failures:
 - P[unlucky] < **1/x**
 - P[A₀ fails] < **1/x³**
 - P[A₀ outputs some infrequent label]
 < #labels · #edges · 1/x
- $P[A_1 \text{ fails}] < \text{constant} \cdot 1/x$

Randomized round elimination in cycles

- •**A**₀: local failure probability < 1/x³
- A₁: local failure probability < constant 1/x
- Failure probability increases polynomially
- We can repeat this many times before A_k becomes useless

What works very often

- Do round elimination in deterministic PN model
 gain intuition on how the problem behaves
- Then switch to randomized PN model
 proper analysis of failure probabilities
- Results for deterministic & randomized LOCAL follow directly

Case study: **Coloring directed cycles**

A a B b C c	FG EH DI CJ BK AL	A a B b C c D d E e F f	A a B b C c D d E e F f	A a B b C c D d E e F f
A bc B ac C ab	ACE GIK BCF HIL DEF JKL	ACE fdb BCF eda DEF cba	A bdf B ade C abdef D abc E abcdf F abcde	A bcdef B acdef C abdef D abcef E abcdf F abcde

0 rounds

RE RE RE RE RE RE

3-coloring T << log* n rounds

Sinkless orientation

• Deterministic PN:

- not possible in o(log n) rounds (last week)
- possible in O(log n) rounds (last week)

• Randomized PN:

not possible in o(log log n) rounds (exercise)
possible in O(log log n) rounds (not easy)

• Deterministic LOCAL?