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Port-numbered network
N = (V, P, p)

Distributed algorithm
A = (init, send, receive)

Output of algorithm A
in network N



Bipartite
maximal 
matching



Input:
proper 2-coloring

Output:
maximal matching

Model of computing:
PN model2
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Algorithm
•Orange nodes send proposals to
their neighbors, one by one
• order by port numbers

•Blue nodes accept the first proposal they get,
reject everything else
• break ties by port numbers



Vertex
cover



Input:
nothing

Output: 3-approximation 
of minimum vertex cover

Model of computing:
PN model2
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Algorithm
•Construct bipartite double cover G’
• one node in G: two virtual copies in G’
• one edge in G: two virtual copies in G’

•Find a maximal matching M’ in G’
•Take all original nodes of G whose
virtual copies are matched in M’
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LOCAL model
=

port-numbering model
+ unique identifiers

Nodes have distinct labels from {1, 2, …, poly(n)}



LOCAL model
•Everything can be solved in diam(G)+1 rounds!
•Universal algorithm: “each node tells its 

neighbors everything it knows”
• 1 round: everyone aware of its adjacent nodes 
and incident edges
• T rounds: everyone aware of all nodes and edges 
within distance T
• diam(G)+1 rounds: everyone knows G



LOCAL model
•Not so interesting:

“What can be computed?”

•Very interesting:
“What can be computed efficiently?”

(efficient ≈ o(diam(G)) rounds)



Coloring
Input Output Rounds Algorithm

Unique IDs O(Δ2)-coloring O(log* n) Cover-free 
families

O(Δ2)-coloring O(Δ)-coloring O(Δ) Rotating
clocks

O(Δ)-coloring (Δ+1)-coloring O(Δ) Greedy color 
reduction

Unique IDs (Δ+1)-coloring O(Δ + log* n) Combine these
algorithms
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Greedy color reduction
• If I am a local maximum:
• pick the smallest free color that is not used
by any of my neighbors

•k+1 colors → k colors
• provided that k ≥ Δ+1
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Rotating clocks
•q = prime, q > 2Δ
•q2 colors → q colors in q rounds
• If no conflicts:
• (a, b) → (0, b)

•Otherwise:
• (a, b) → (a, b+a mod q)

(2, 3)

(2, 5)

3

5
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•Old color of node v is a set S(v) ⊆ {1, 2, …, m}
•Promise:
• new color of v is an element of S(v)

•Safe:
• pick an element of S(v) that is not
in any S(u) for any neighbor u

Cover-free families

v

{1, 2, 3}

{1, 4, 7}

{2, 4, 6}



•Old color of node v is a set S(v) ⊆ {1, 2, …, m}
•Bad:
• sets of neighbors cover
all values in my set
• no safe choice left

Cover-free families

v

{1, 2, 3}

{1, 4, 6}

{2, 4, 6}



•Old color of node v is a set S(v) ⊆ {1, 2, …, m}
•Good:
•my set is not fully covered
by my neighbors
• there is a safe choice

Cover-free families

v

{1, 2, 3}

{1, 4, 7}

{2, 4, 6}



1-cover-free family
•For up to 1 neighbor these sets are good:

S1 = { 1, 2 }
S2 = { 1, 3 }
S3 = { 1, 4 }
S4 = { 2, 3 }
S5 = { 2, 4 }
S6 = { 3, 4 }



2-cover-free family
•For up to 2 neighbors these sets are good:

S1 = { 1, 2, 3 }
S2 = { 3, 4, 5 }
S3 = { 5, 6, 7 }
S4 = { 1, 4, 7 }
S5 = { 2, 4, 6 }



Cover-free families
•Assume: x-coloring, maximum degree Δ
•Assume: a Δ-cover-free family S1, S2, …, Sx
• all subsets of {1, 2, …, m}

•Nodes of color c pick set Sc

•There is always a safe choice for any node!
•Color reduction from x to m



Cover-free families
•Δ-cover-free family S1, S2, …, Sx
• all subsets of {1, 2, …, m}

•Good if:
• Δ large → works in high-degree graphs
• x large → tolerates many input colors
•m small → produces a good output coloring

•E.g. x = m is trivial (why?)



Constructing
cover-free
families



• q = prime, GF(q) ≈ integers modulo q
• f = degree-d polynomial over GF(q)
• at most d points where f(x) = g(x)
• qd+1 possible polynomials

• Sf = { (x, f(x)) | x = 0, 1, …, q−1 }
• base set: all q2 possible pairs (x, y)
• qd+1 possible subsets, each with q elements
• intersection of Sf and Sg has size at most d

• If q > Δd: a Δ-cover-free family
• why?

f(x)f(x) mod q f(x), g(x)f(x), g(x) mod q



Cover-free families
•Construct Δ-cover-free families with
suitable parameters
•n → ≈ Δ2 log2 n
n → ≈ Δ2 log2 log n
n → ≈ Δ2 log2 log log n
n · · ·
n → ≈ Δ2 log2 Δ
n → ≈ Δ2

O(log* n) steps



Coloring
Input Output Rounds Algorithm

Unique IDs O(Δ2)-coloring O(log* n) Cover-free 
families

O(Δ2)-coloring O(Δ)-coloring O(Δ) Rotating
clocks

O(Δ)-coloring (Δ+1)-coloring O(Δ) Greedy color 
reduction

Unique IDs (Δ+1)-coloring O(Δ + log* n) Combine these
algorithms


