

Distributed Algorithms 2024

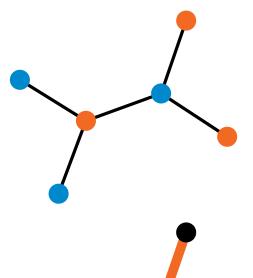
Port-numbering model

Port-numbered network N = (V, P, p)

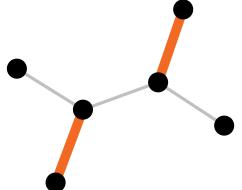
Distributed algorithm
A = (init, send, receive)

Output of algorithm A in network N

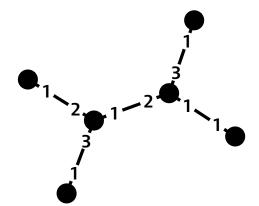
Bipartite maximal matching



Input: proper 2-coloring



Output: maximal matching



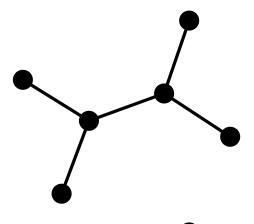
Model of computing:

PN model

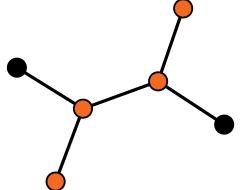
Algorithm

- Orange nodes send proposals to their neighbors, one by one
 - order by port numbers
- Blue nodes accept the first proposal they get, reject everything else
 - break ties by port numbers

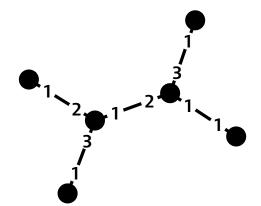
Vertex Cover



Input: nothing



Output: 3-approximation of minimum vertex cover

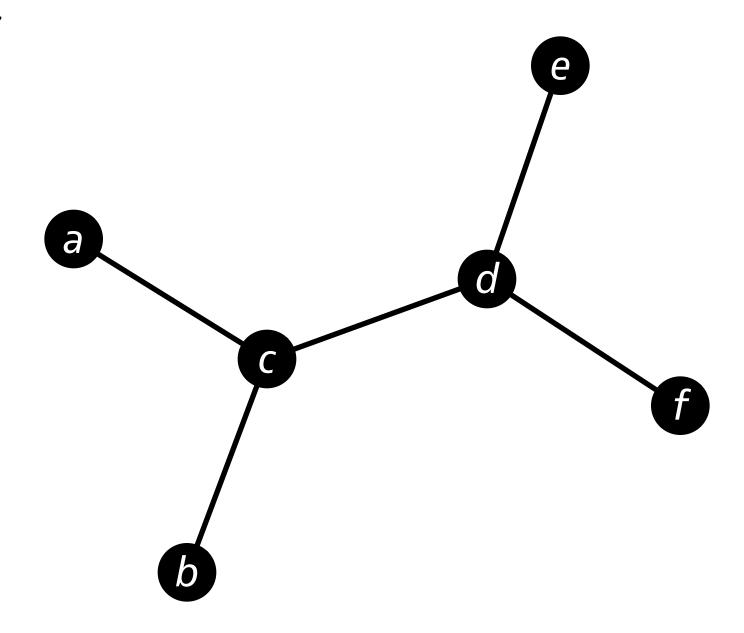


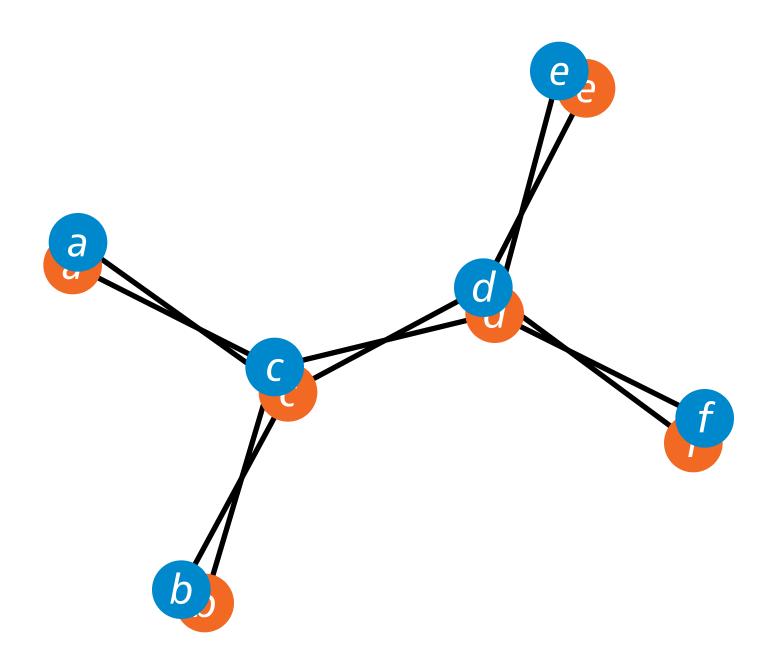
Model of computing: PN model

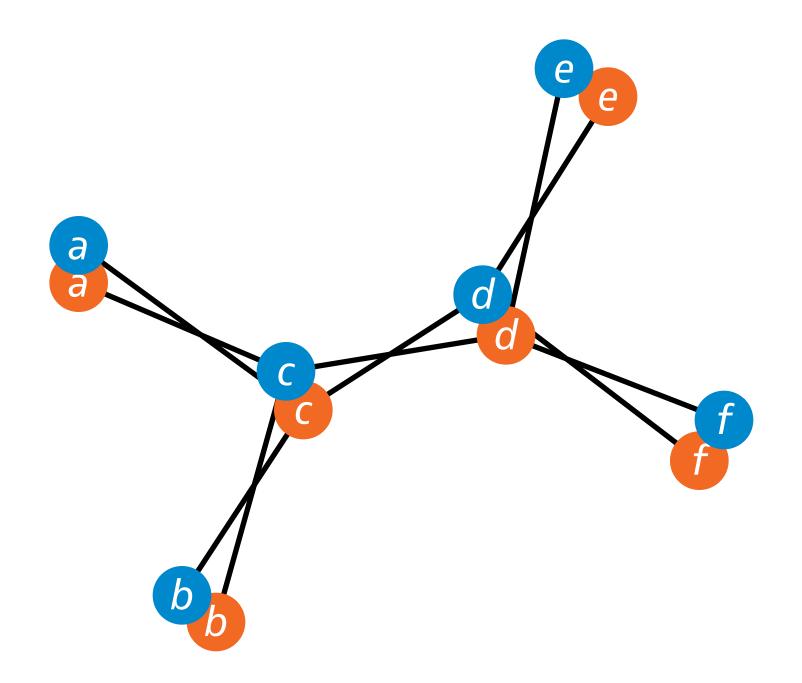
Algorithm

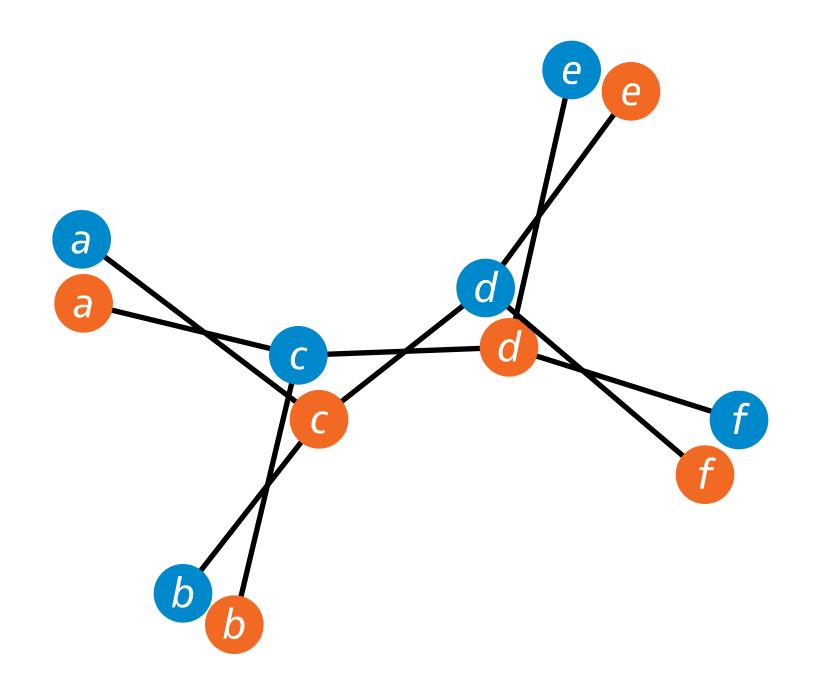
- Construct bipartite double cover G'
 - one node in G: two virtual copies in G'
 - one edge in G: two virtual copies in G'
- Find a maximal matching M' in G'
- Take all original nodes of G whose virtual copies are matched in M'

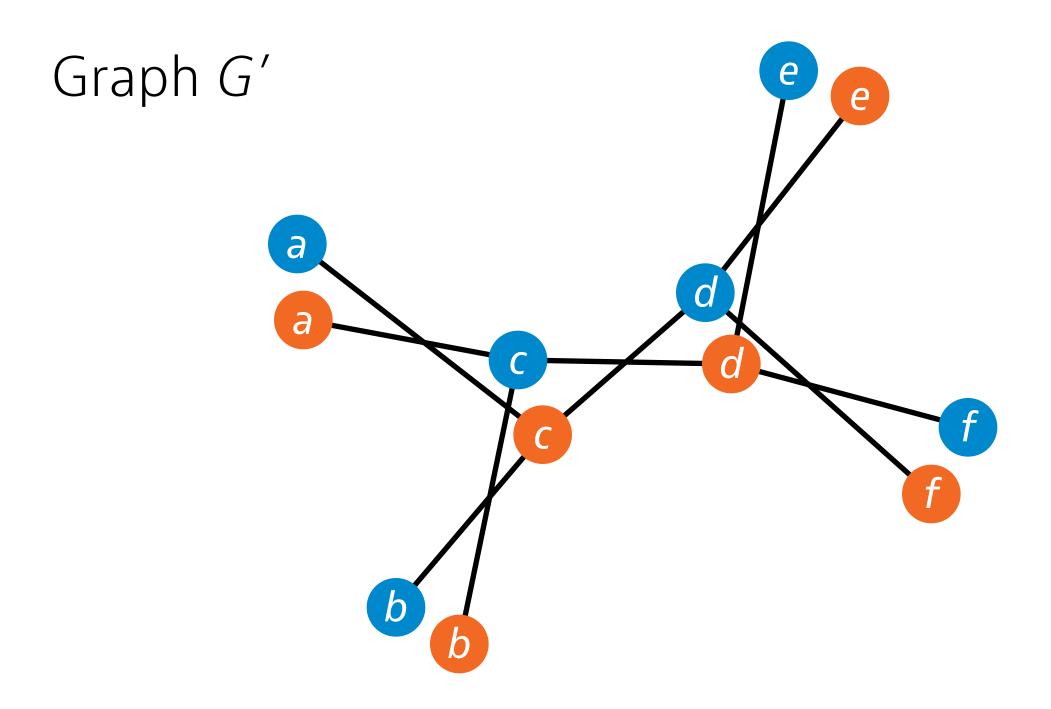
Graph G

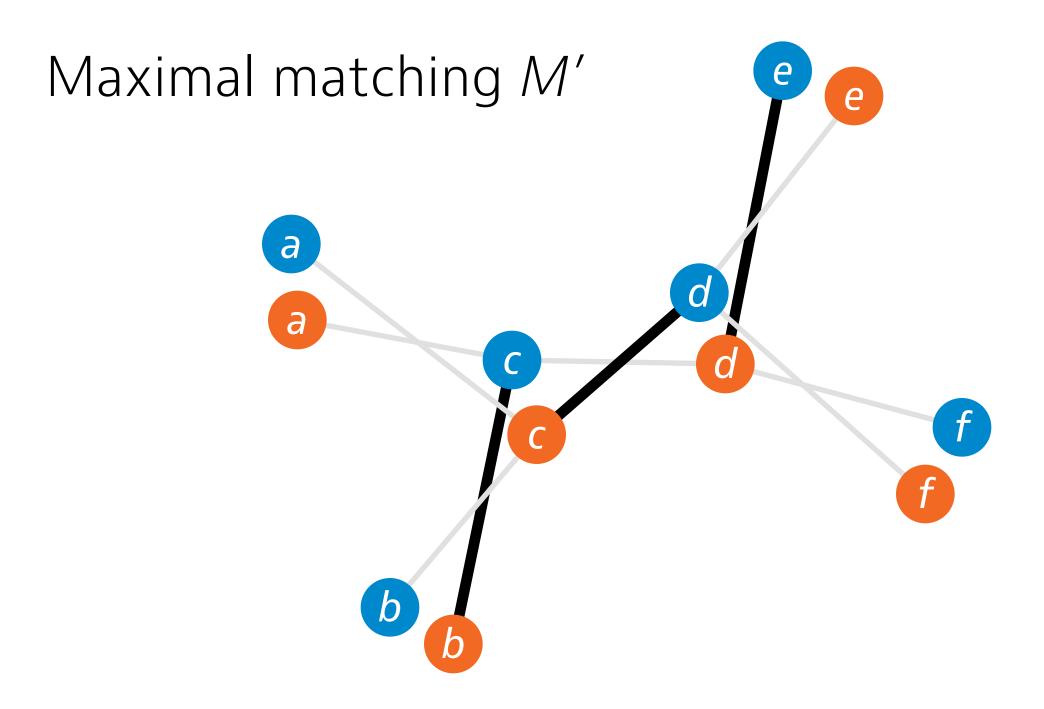


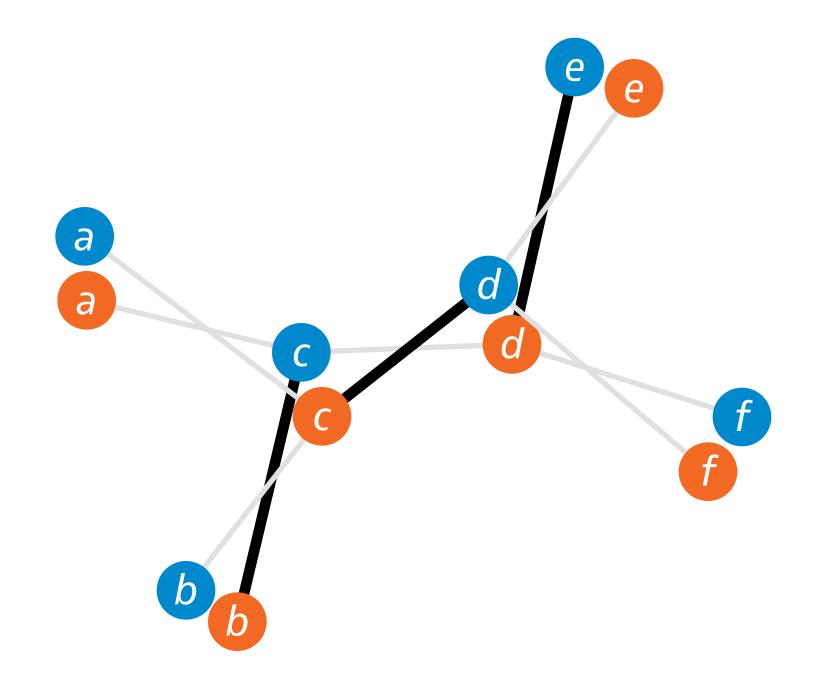


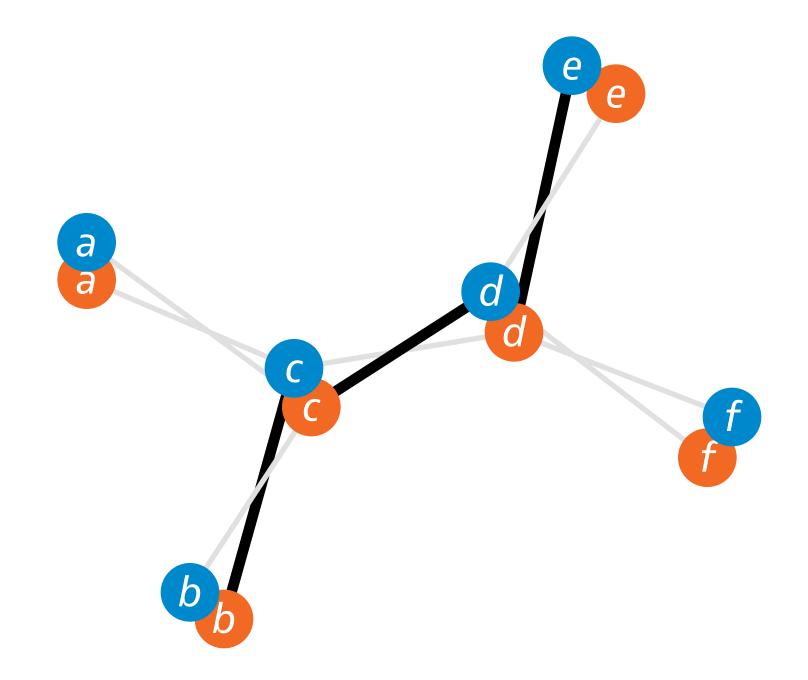


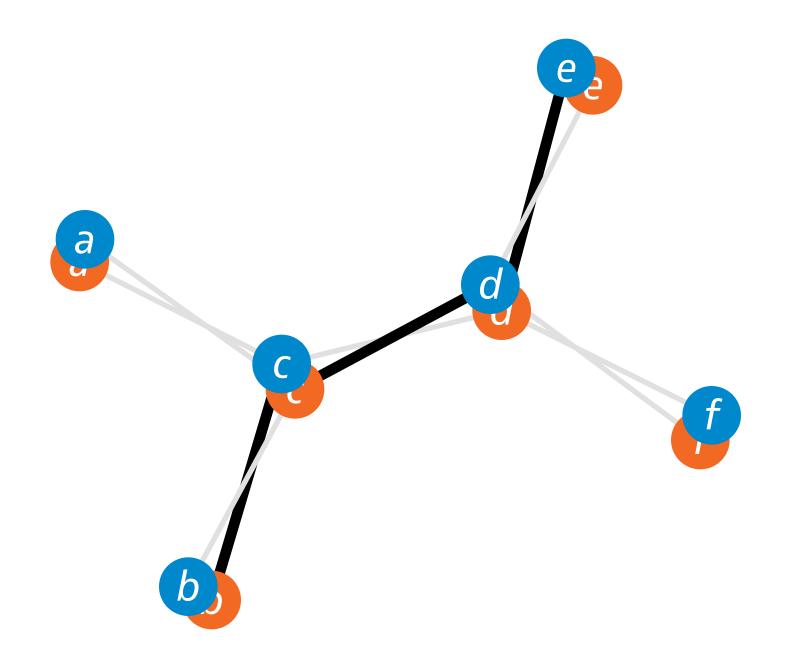


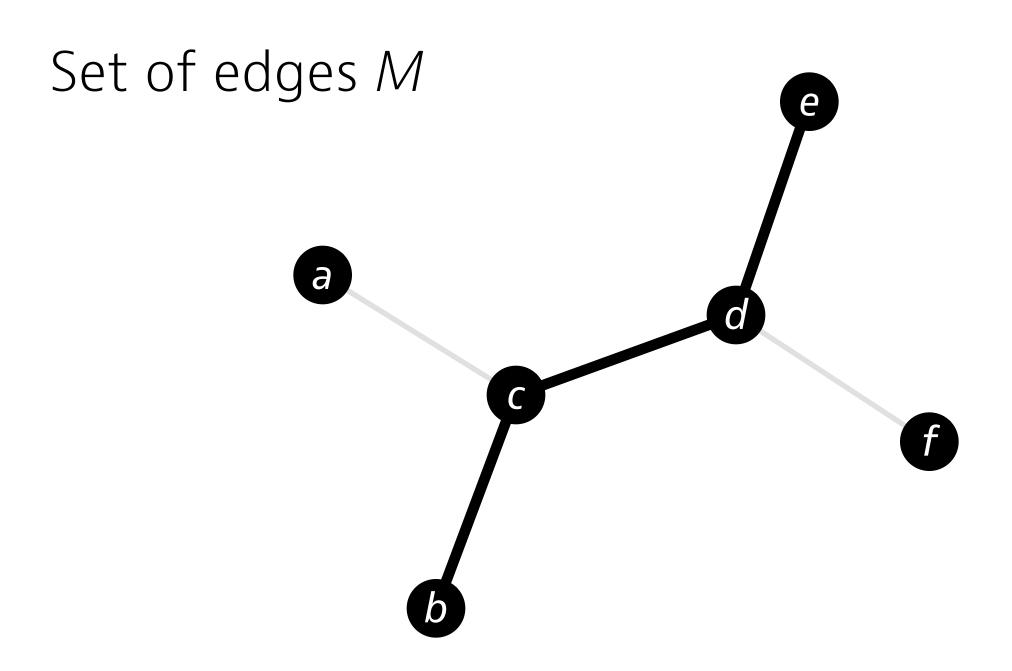












Set of nodes C

Distributed Algorithms 2024

LOCAL model: Unique identifiers

LOCAL model

port-numbering model + unique identifiers

Nodes have distinct labels from $\{1, 2, ..., poly(n)\}$

LOCAL model

- Everything can be solved in diam(G)+1 rounds!
- Universal algorithm: "each node tells its neighbors everything it knows"
 - 1 round: everyone aware of its adjacent nodes and incident edges
 - **T rounds:** everyone aware of all nodes and edges within distance T
 - diam(G)+1 rounds: everyone knows G

LOCAL model

Not so interesting:

"What can be computed?"

Very interesting:

"What can be computed efficiently?"

(efficient $\approx o(diam(G))$ rounds)

Coloring

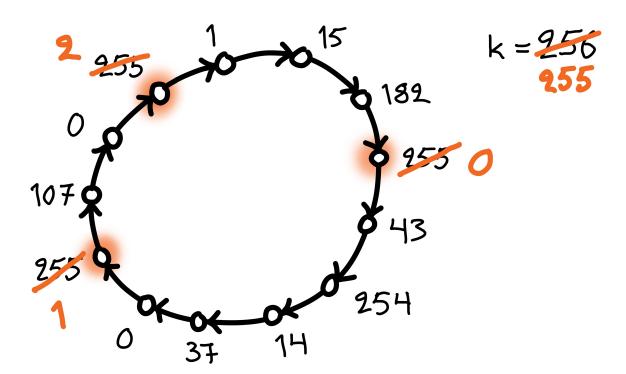
Input	Output	Rounds	Algorithm
Unique IDs	$O(\Delta^2)$ -coloring	O(log* n)	Cover-free families
$O(\Delta^2)$ -coloring	O(Δ)-coloring	$O(\Delta)$	Rotating clocks
$O(\Delta)$ -coloring	(∆+1)-coloring	$O(\Delta)$	Greedy color reduction
Unique IDs	(∆+1)-coloring	$O(\Delta + \log^* n)$	Combine these algorithms

Coloring

Input	Output	Rounds	Algorithm
Unique IDs	$O(\Delta^2)$ -coloring	O(log* n)	Cover-free families
$O(\Delta^2)$ -coloring	O(Δ)-coloring	$O(\Delta)$	Rotating clocks
$O(\Delta)$ -coloring	$(\Delta+1)$ -coloring	$O(\Delta)$	Greedy color reduction
Unique IDs	(Δ+1)-coloring	$O(\Delta + \log^* n)$	Combine these algorithms

Greedy color reduction

- If I am a *local maximum*:
 - pick the smallest free color that is not used by any of my neighbors
- k+1 colors $\rightarrow k$ colors
 - provided that $k \ge \Delta + 1$

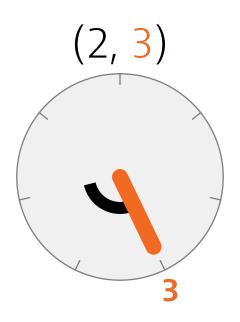


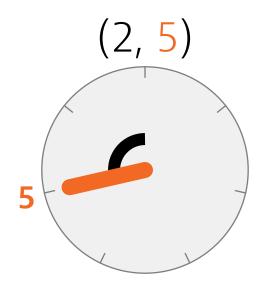
Coloring

Input	Output	Rounds	Algorithm
Unique IDs	$O(\Delta^2)$ -coloring	O(log* n)	Cover-free families
$O(\Delta^2)$ -coloring	O(Δ)-coloring	$O(\Delta)$	Rotating clocks
$O(\Delta)$ -coloring	$(\Delta+1)$ -coloring	$O(\Delta)$	Greedy color reduction
Unique IDs	(Δ+1)-coloring	$O(\Delta + \log^* n)$	Combine these algorithms

Rotating clocks

- $q = \text{prime}, q > 2\Delta$
- q^2 colors $\rightarrow q$ colors in q rounds
- If no conflicts:
 - $(a, b) \rightarrow (0, b)$
- Otherwise:
 - $(a, b) \rightarrow (a, b+a \mod q)$





Coloring

Input	Output	Rounds	Algorithm
Unique IDs	$O(\Delta^2)$ -coloring	O(log* n)	Cover-free families
$O(\Delta^2)$ -coloring	$O(\Delta)$ -coloring	$O(\Delta)$	Rotating clocks
$O(\Delta)$ -coloring	$(\Delta+1)$ -coloring	$O(\Delta)$	Greedy color reduction
Unique IDs	(Δ+1)-coloring	$O(\Delta + \log^* n)$	Combine these algorithms

• Old color of node v is a set $S(v) \subseteq \{1, 2, ..., m\}$

Promise:

• new color of v is an element of S(v)

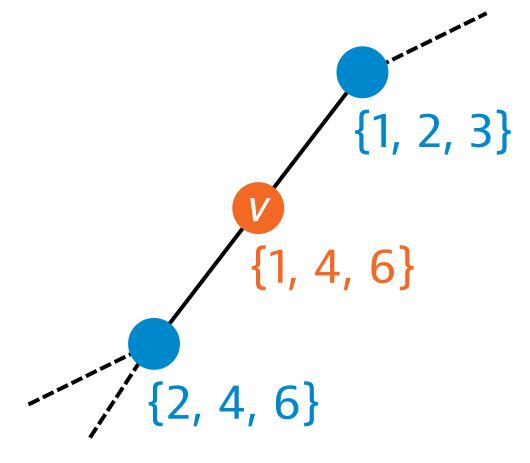
Safe:

• pick an element of S(v) that is not in any S(u) for any neighbor u

• Old color of node v is a set $S(v) \subseteq \{1, 2, ..., m\}$

·Bad:

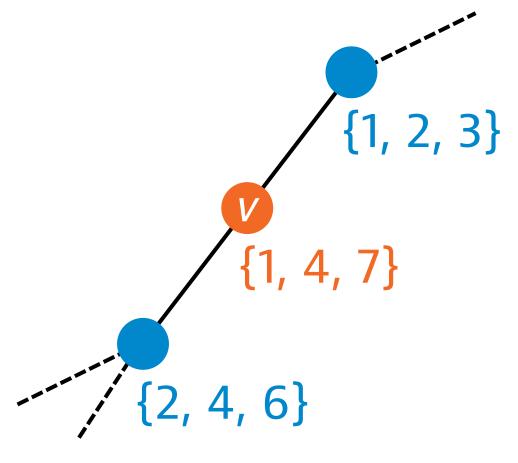
- sets of neighbors cover all values in my set
- no safe choice left



• Old color of node v is a set $S(v) \subseteq \{1, 2, ..., m\}$

· Good:

- my set is not fully covered by my neighbors
- there is a safe choice



1-cover-free family

For up to 1 neighbor these sets are good:

```
S_1 = \{ 1, 2 \}
S_2 = \{ 1, 3 \}
S_3 = \{ 1, 4 \}
S_4 = \{ 2, 3 \}
S_5 = \{ 2, 4 \}
S_6 = \{ 3, 4 \}
```

2-cover-free family

For up to 2 neighbors these sets are good:

```
S_1 = \{ 1, 2, 3 \}

S_2 = \{ 3, 4, 5 \}

S_3 = \{ 5, 6, 7 \}

S_4 = \{ 1, 4, 7 \}

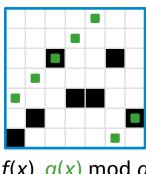
S_5 = \{ 2, 4, 6 \}
```

- Assume: x-coloring, maximum degree Δ
- Assume: a Δ -cover-free family $S_1, S_2, ..., S_x$
 - all subsets of {1, 2, ..., **m**}
- Nodes of color c pick set S_c
- There is always a safe choice for any node!
- Color reduction from x to m

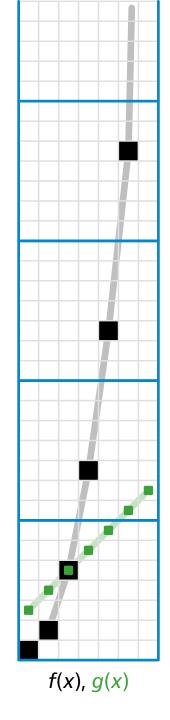
- Δ -cover-free family $S_1, S_2, ..., S_x$
 - all subsets of {1, 2, ..., **m**}
- Good if:
 - Δ large \rightarrow works in high-degree graphs
 - x large → tolerates many input colors
 - m small → produces a good output coloring
- E.g. x = m is trivial (why?)

Constructing cover-free families

- q = prime, $GF(q) \approx \text{integers modulo } q$
- f = degree-d polynomial over GF(q)
 - at most d points where f(x) = g(x)
 - q^{d+1} possible polynomials
- $\cdot S_f = \{ (x, f(x)) \mid x = 0, 1, ..., q-1 \}$
 - base set: all q^2 possible pairs (x, y)
 - q^{d+1} possible subsets, each with q elements
 - intersection of S_f and S_g has size at most d
- If $q > \Delta d$: a Δ -cover-free family
 - why?



f(x), g(x) mod g



 Construct ∆-cover-free families with suitable parameters

```
• n \rightarrow \approx \Delta^2 \log^2 n

\rightarrow \approx \Delta^2 \log^2 \log n

\rightarrow \approx \Delta^2 \log^2 \log \log n

...

\rightarrow \approx \Delta^2 \log^2 \Delta

\rightarrow \approx \Delta^2
```

O(log* n) steps

Coloring

Input	Output	Rounds	Algorithm
Unique IDs	$O(\Delta^2)$ -coloring	O(log* n)	Cover-free families
$O(\Delta^2)$ -coloring	O(Δ)-coloring	$O(\Delta)$	Rotating clocks
$O(\Delta)$ -coloring	(∆+1)-coloring	$O(\Delta)$	Greedy color reduction
Unique IDs	(∆+1)-coloring	$O(\Delta + \log^* n)$	Combine these algorithms