

Distributed Algorithms 2024

Round elimination

Can we automate our own work?

Meta-algorithmics

- Normal algorithms example:
 - input: graph G
 - output: coloring of graph G
- Meta-algorithms example:
 - input: computational problem P
 - output: **algorithm** for solving P

How to represent problems or algorithms?

Plan

• Topic: round elimination

- function that maps problem X with complexity T to problem X' = re(X) with complexity T 1
- Video: how to use round elimination
 - "re" was a black box
- **Today:** how to **do** round elimination
 - what happens inside the black box and why?

Round elimination

- Basic idea already used by Linial (1987)
 - "it is not possible to 3-color cycles in o(log* n) rounds"
- Until 2015 it was thought this is an ad-hoc trick that only works for graph coloring
- Lots of new applications since 2016
- General idea formalized in 2019

Weak 3-labeling

• Labels: 1, 2, 3

Active nodes:

- degree 3
 not all labols s
- not all labels same

Passive nodes:

- degree 2
- both labels same

Distributed Algorithms 2024

Sinkless orientation

Plan

- **Topic:** complexity of *sinkless orientation*
 - task: high-degree nodes must have outdegree ≥ 1 • possible in $O(\log n)$ rounds, not in $o(\log n)$ rounds
- Video: why do we care about this?
 e.g. hardness of graph coloring
- **Today:** how to *prove* it? • round elimination & fixed points

Sinkless orientation

- Labels: { O, | }
 - O = "edge oriented away from the active node" I = "edge oriented towards the active node"
- Active: [O, ?, ?]
 - "at least one outgoing edge"
- **Passive:** [|, ?, ?]
 - "at least one outgoing edge"

Sinkless orientation: O, I

- active: [O, ?, ?]
- passive: [I, ?, ?]

Output problem: {O}, {I}, {O,I}

- active: [{I}, ?, ?]
- passive: [{O}, ?, ?] or [{O,I}, ?, ?]

Maximal problem: {|}, {O,|} active: [{|}, {O,|}, {O,|}]

• passive: [{0,I}, ?, ?]

Sinkless orientation: O, I

- active: [O, ?, ?]
- passive: [I, ?, ?]

Output problem: {O}, {I}, {O,I}

- active: [{I}, ?, ?]
- passive: [{O}, ?, ?] or [{O,I}, ?, ?]

Maximal problem: A, B

- active: [**A**, **B**, **B**]
- passive: [**B**, ?, ?]

Output problem

- Labels: { A, B }
 - A = "edge oriented away from the active node"
 - B = "edge oriented towards the active node"
- Active: [A, B, B]
 - "exactly one outgoing edge"
- **Passive:** [B, ?, ?]
 - "at least one outgoing edge"

Starting point: A, B
• active: [A, B, B]
• passive: [B, ?, ?]

Output problem: {A}, {B}, {A,B}

- active: [{B}, ?, ?]
- passive: ...

Maximal problem: {B}, {A,B} active: [{B}, {A,B}, {A,B}]

• passive: [{A,B}, ?, ?]

Starting point: A, B
• active: [A, B, B]
• passive: [B, ?, ?]

Output problem: {A}, {B}, {A,B}

- active: [{B}, ?, ?]
- passive: ...

Maximal problem: A, B

- active: [**A**, **B**, **B**]
- passive: [**B**, ?, ?]

Fixed points

- •X = re(X), and X is not 0-round solvable
- "X can be solved 1 round faster than X"
 contradiction
- One of our assumptions fails which one?

Fixed points

- •X = re(X), and X is not 0-round solvable
- X cannot be solved in o(log n) rounds in the deterministic PN model
- We can also derive hardness results for deterministic and randomized LOCAL model

Often used like this

- We are interested in problem X
- Find a suitable *relaxation* Y of X
 - problem Y is at most as hard as X
 - problem Y is nontrivial
- Show that $Y = \operatorname{re}(Y)$ or $Y = \operatorname{re}(\operatorname{re}(Y))$
 - Y cannot be solved fast
 - X cannot be solved fast

Sinkless and sourceless

- Labels: { O, | }
 - O = "edge oriented away from the active node" I = "edge oriented towards the active node"
- Active: [O, I, ?]
 - "at least one outgoing and one incoming edge"
- **Passive:** [I, O, ?]
 - "at least one outgoing and one incoming edge"