

Distributed Algorithms 2024

Recap: Key ideas from previous weeks

Models of computing

- PN
- **LOCAL** unique identifiers
- **CONGEST** bandwidth constraints
- Deterministic and **randomized** algorithms

Canonical problems

Vertex coloring

- coloring = schedule coloring breaks symmetry
- Used to solve many other problems
- Used to show that other problems are hard
- Demonstrates different algorithm design ideas and lower-bound techniques

Algorithm ideas

- Conflict avoidance & coordination
- Process nodes by color classes
- Send proposals one by one
- Random subset of nodes is active
- Pipelining
- Algebraic techniques

Lower bound proofs

- Covering maps PN model
- Local neighborhoods any model
- Round elimination
- Simulation arguments
- Reductions

Key lessons learned

New kinds of challenges

Unknown systems

algorithms that work in any network

Partial information

• making decisions based on local information

Parallelism

• many nodes act simultaneously

What else is there?

Networks vs. big data

Models for computer networks PN, LOCAL, CONGEST

Models for big data systems

- congested clique
- BSP (bulk-synchronous parallel)
- MPC (massively parallel computation)
- *k*-machine model

Asynchrony & failures

Asynchronous networks

• no failures \rightarrow can use synchronizers

Tolerating failures

• crash faults, Byzantine faults ...

Recovery from failures

self-stabilization

And a lot more...

Different kinds of models

- shared memory message passing
- physical models (e.g. radio networks, quantum)
- mobile agents (e.g. robot navigation, exploration)
- security and privacy

Different kinds of questions

- solving proving verifying fixing
- #rounds #messages #bits

Our current research

- Is quantum-LOCAL any stronger than LOCAL?
- Locality in different settings:
 - online algorithms
 - dynamic algorithms
 - volume vs. distance
- Massively parallel matrix multiplication

What next?

Exercises

• Exercises 12.1–12.4: small research project

- what are possible distributed complexities?
- LOCAL model
- locally verifiable problems
- cycles
- Exercise 12.5: an example of an open research question

- Allowed: one A4-sized 2-sided cheat sheet
- No other material or equipment

Course feedback

•1 extra point for everyone who provides feedback in the official Aalto course feedback system (in MyCourses)

After this course

- Ask us if you are interested in doing more:
 - thesis topics
 - research projects
 - summer jobs
 - doctoral studies ...