
DDA 2010, lecture 6:
Exploration and rendezvous

• Treasure hunt in port-numbered graphs



DDA 2010, lecture 6a:
Treasure hunt in port-numbered graphs

• Universal traversal sequences exist

2



Graph exploration

3

• Connected graph
with port-numbering

• Robot placed
in some starting node s

• Treasure hidden
in some target node t

• Program the robot
so that it will find
the treasure!

s

t



Graph exploration

4

• Connected graph
with port-numbering

• we will first focus
on the case of
d-regular graphs

• assume that we know
an upper bound on n

s

t



Graph exploration: random walks

5

• Simple solution with
randomness:

• just take a random walk

s

t



Graph exploration: random walks

6

• Simple solution with
randomness:

• just take a random walk

s

t



Graph exploration: random walks

7

• Simple solution with
randomness:

• just take a random walk

• might take a while...

s

t



Graph exploration: random walks

8

• Simple solution with
randomness:

• just take a random walk

• might take a while...

s

t



Graph exploration: random walks

9

• Simple solution with
randomness:

• just take a random walk

• might take a while...

• but eventually we will
stumble on the treasure

• expected time: poly(n)

• see references on
course web page

s

t



Graph exploration: random walks

10

• Random walk = sequence of port numbers
• any such sequence can be applied in any regular graph!

• Expected time from s to any v and back is O(n2)
• here we assume that graph is d-regular and d = O(1)

• proof: e.g., Motwani–Raghavan (1995), Section 6.4



Graph exploration: random walks

11

• Random walk = sequence of port numbers
• any such sequence can be applied in any regular graph!

• Expected time from s to any v and back is O(n2)

• Take a random walk w of length Θ(n2) and
apply it to any O(1)-regular graph G:

• for any v, walk w fails to visit v with probability < 1/4

• Markov’s inequality



Graph exploration: random walks

12

• Random walk = sequence of port numbers
• any such sequence can be applied in any regular graph!

• Expected time from s to any v and back is O(n2)

• Take a random walk w of length Θ(n2) and
apply it to any O(1)-regular graph G:

• for any v, walk w fails to visit v with probability < 1/4

• Take log x consecutive walks of length Θ(n2):
• failure probability < (1/4)log x = 1/(x2)



Graph exploration: random walks

13

• Take log x consecutive walks of length Θ(n2):
• failure probability < (1/4)log x = 1/(x2)

• Let x = number of possible choices (G, v)
• number of d-regular port-numbered graphs

with at most n nodes: nO(n)

• number of possible choices of v: O(n)

• log x = O(n log n)



Graph exploration: random walks

14

• Take log x consecutive walks of length Θ(n2):
• failure probability < (1/4)log x = 1/(x2)

• Let x = number of possible choices (G, v)
• log x = O(n log n)

• Expected number of failures is < x/(x2) < 1
• failure = walk does not reach v in G

• total length of walk = O(n3 log n)

• There exists a walk that never fails for any G, v!



Graph exploration:
universal traversal sequences

15

• Therefore for every n, d there exists
a universal traversal sequence w:

• w consists of poly(n) port numbers

• w always guides the robot from s to t
in any d-regular port-numbered graph
with at most n nodes

• This is completely deterministic!
• e.g., choose the first w in lexicographic order

• however, constructing w is not easy...



Graph exploration:
universal traversal sequences

16

• Slightly simpler case:
universal exploration sequence

• next outgoing port depends on previous incoming port

• Omer Reingold (2005) showed how to construct
universal exploration sequences efficiently

• together with many other techniques, the paper
shows that connectivity in undirected graphs can be
solved by using deterministic log-space algorithms...



DDA 2010, lecture 6a:
Meeting in a maze

• Dessmark et al. (2006):
“Deterministic rendezvous in graphs”

17



Rendezvous

18

• Connected graph
with port-numbering

• Two robots placed
in some nodes s1, s2

• Program the robots
so that they will
meet each other!

s1

s2



Rendezvous

19

• Identical robots:
• not solvable by using

a deterministic algorithm

• counterexample:

• symmetric cycle

• both robots
move in sync

s1

s2



Rendezvous

20

• Robots with
labels 1 and 2:

• as easy as exploration

• robot 1 explores

• robot 2 stands still

s1

s2



Rendezvous

21

• Robots with unknown 
unique labels L1 and L2:

• can’t choose
which one waits and 
which one explores

• random walks would
solve the problem

• but how to make it
deterministic?

s1

s2



Rendezvous in K2

22

• Robots with unknown unique labels L1 and L2

• Simplest special case: path with 2 nodes
• bad if neither moves

• bad if both move

• How to break symmetry
using the labels?

s1

s2



Rendezvous in K2 – simple idea

23

• s1 moves at time step L1

• s2 moves at time step L2

• will meet at time min {L1, L2}

• Slow if labels are large

• Requires global time!
• assumes that robots are

activated simultaneously

s1

s2



Rendezvous in K2 – better idea

24

• Labels are bit strings (possibly different lengths)
• agent with label Li = b1b2...bk

creates the string Xi = 10b1b1b2b2...bkbk

• most significant bit 1, Xi begins 1011...

• move according to Xi repeatedly:
bit 1 = move, bit 0 = wait

• Lemma: X1X1 cannot be a substring
of X2X2..., and vice versa

s1

s2



Rendezvous in K2 – better idea

25

• Lemma: X1X1 cannot be a substring
of X2X2..., and vice versa

• X1 begins 101...

• X2X2... contains ...101... only
at the beginning of each fragment X2

• Same length, bit pairs differ:
• X1X1 = 1011aa...bb00cc...dd1011...

X2X2 = 1011aa...bb11cc...dd1011...

s1

s2



Rendezvous in K2 – better idea

26

• Lemma: X1X1 cannot be a substring
of X2X2..., and vice versa

• X1 begins 101...

• X2X2... contains ...101... only
at the beginning of each fragment X2

• Different lengths, boundary differs:
• X1X1 = 1011aa...bb1011...

X2X2 = 1011aa...bb11cc...dd1011...

s1

s2



Rendezvous in K2 – better idea

27

• Lemma: X1X1 cannot be a substring
of X2X2..., and vice versa

• agents can’t stay in sync forever

• Corollary: Even if s1 and s2

are activated at different times,
they will meet after O(log l) rounds,
where l = min {L1, L2}

s1

s2



Rendezvous in trees

28

• First explore the tree
• depth-first search,

keep stack of port numbers

• There is a unique central node
or central edge that minimises
maximum distance to other nodes

• central node: meet there

• central edge: go to one endpoint, 
apply algorithm for K2



Rendezvous in general graphs

• We have seen:
• how to solve the case that labels are 1 and 2:

treasure hunt

• how to solve the case of arbitrary labels but
simple graphs

• similar ideas can be combined and
generalised to arbitrary graphs

• Rendezvous can be solved using
a deterministic algorithm in general graphs!

29



Rendezvous in general graphs

• What if we have more than 2 robots?
• just pretend that we have the case of 2 robots

• when any 2 robots with labels Li and Lk meet,
they form a group and then act as if they were
one robot with label min {Li, Lk}

30


