
Deterministic Distributed Algorithms, 10–21 May 2010, Exercises
http://www.cs.helsinki.fi/jukka.suomela/dda-2010/

Jukka Suomela, last updated on May 20, 2010

Instructions

Optional exercises are merely suggestions for further self-study: you can try
to solve them if you have time, and we will discuss them during the exercise
sessions if there are no further questions on compulsory exercises. You do
not need to write up answers to optional exercises in your final report.

However, you must answer all compulsory exercises. See the course web
page for more instructions. Some hints are given as endnotes.

Notation

In some exercises, we will need power towers. We will use the following
notation:

t(0, x) = 1, t(1, x) = x, t(2, x) = 2x, t(3, x) = 22x , t(4, x) = 222
x

, . . .

In particular,

t(i, 2) = 22·
·2︸︷︷︸

i times

.

Exercise 1

Compulsory

As the name of the course suggests, the focus is on deterministic distributed
algorithms, as opposed to randomised distributed algorithms. In a determin-
istic algorithm, nodes do not have access to any source of randomness; all
state transitions are deterministic, and the output of an algorithm is uniquely
determined by the problem instance (communication graph, port numbering,
and local inputs).

What would change if we changed the model and provided each node with
access to a stream of random bits? Which problems become solvable? (1) Of
course, if we use randomness, then the algorithm may perform poorly if the
random bits are “unfortunate”; in your answers, make it explicit what might
go wrong and how likely it is. (2)

This is a question that you should ponder throughout the course. When-
ever we mention a negative result, ask yourself whether this holds even in
the case of randomised algorithms. Whenever we present a distributed algo-
rithm, ask yourself if we could make the algorithm simpler or faster with the
help of randomness.

By the way, are there any reasons for focusing on deterministic distributed
algorithms instead of randomised distributed algorithms? (3)

1

http://www.cs.helsinki.fi/jukka.suomela/dda-2010/

Optional

In the above exercise, we have seen that randomised distributed algorithms
are strictly more general than deterministic distributed algorithms. And
during the lectures, we have seen that the model with unique identifiers
is strictly more general than the port-numbering model. In a sense, these
are the only essential limitations in the models that we use throughout this
course. We have made other assumptions, but they are merely a convenience
and could be removed without affecting computability and time complexity
of the algorithms.

The use of synchronous communication rounds is a good example of the
non-essential assumptions. Show that synchronous distributed algorithms
can be efficiently simulated in asynchronous networks. (4) Show that negative
results for synchronous algorithms imply negative results for asynchronous
algorithms as well. (5)

Exercise 2

Compulsory

Let us first study some properties of iterated logarithms.

(a) What is log∗ 101010?

(b) Let x be a positive integer, and define i = log∗ x and y = t(i, 2); see
above for the definition of t. What is y as a function of x? (6)

Now consider the adaptation of the Cole–Vishkin algorithm that finds a 3-
colouring in a cycle or tree. Analyse the running time of the algorithm in the
following cases. Provide the exact answer (exactly how many communication
rounds). (7)

(c) Nodes have 48-bit unique identifiers (e.g., MAC addresses).

(d) Nodes have 128-bit unique identifiers (e.g., IPv6 addresses).

Next, analyse the running time of the same algorithm in the following cases.
Provide an upper bound (as a function of n). (8)

(e) Nodes have unique identifiers from the set {1, 2, . . . , n2}.

(f) Nodes have unique identifiers from the set {1, 2, . . . , nc} for some con-
stant c.

(g) Nodes have unique identifiers from the set {1, 2, . . . , 10n}.

Optional

Design an algorithm that finds an edge colouring of the communication graph,
assuming that the nodes have unique identifiers. (9) Analyse the running time
of your algorithms. Don’t hide constants in O-notation; derive a concrete
upper bound.

2

Exercise 3

Compulsory

In this exercise, we will derive upper and lower bounds for Ramsey numbers.

(a) Prove that R2(3; 2) = 6. (10)

(b) Derive upper and lower bounds on R2(4; 2). (11)

(c) Derive an upper bound on R2(n; k), as a function of n and k. (12)

Optional

In the above exercise, show that there is a constant A such that R2(n; k) ≤
t(k,An) for large values of k. (13)

Exercise 4

Compulsory

In this exercise, we will derive more positive and negative results related
to graph colouring and colour reduction. Most of these problems have very
simple proofs; Ramsey’s theorem and the techniques of lecture 4 are needed
only in problem (k). In problem (b), you should give the algorithm in detail
(exactly which messages are sent in each round); for all other positive results,
it is enough to just sketch the basic idea of your algorithm.

First we will study algorithms for path graphs in the port-numbering
model :

(a) Show that it is not possible to find a 2-colouring in this setting. (14)

(b) Show that it is possible to reduce the number of colours from 3 to 2 in
O(n) rounds. (15)

(c) Show that it is not possible to reduce the number of colours from 3 to 2
in n/3 rounds. (16)

Next, we will study algorithms for directed paths in the port-numbering model
(edges are directed so that each node has outdegree ≤ 1 and indegree ≤ 1;
the local input of each node indicates which ports are outgoing edges and
which ports are incoming edges):

(d) Show that it is possible to find a 2-colouring in O(n) rounds.

(e) Show that it is not possible to find a 2-colouring in n/3 rounds.

3

Let us then study algorithms for directed cycles in the port-numbering model
(edges are directed so that each node has outdegree = 1 and indegree = 1;
the local input of each node indicates which ports are outgoing edges and
which ports are incoming edges):

(f) Show that it is not possible to find a 3-colouring.

(g) Show that it is not possible to reduce the number of colours from 3 to 2
in any odd cycle.

(h) Show that it is not possible to reduce the number of colours from 3 to 2
in some even cycles. (17)

(i) Is it possible to reduce the number of colours from 3 to 2 if the number
of nodes is exactly 4? If yes, how many communication rounds are
sufficient?

(j) Show that it is possible to reduce the number of colours from 4 to 3 in
1 communication round.

(k) Show that there exists a value k such that it is not possible to reduce
the number of colours from k to 3 in 1 communication round. (18)

Optional

Consider the setting of problems (j) and (k) above. Is it possible to reduce
the number of colours from 5 to 3 in 1 communication round? (19)

Exercise 5

Compulsory

In the lecture, we saw how to find a weak colouring in graphs with indegree 6=
outdegree. In this exercise, we will consider directed cycles. Such cycles have
indegree = outdegree = 1, and we cannot apply the Naor–Stockmeyer algo-
rithm. The input may be symmetric, and we need some auxiliary informa-
tion.

Assume that you are given a proper k-colouring of the directed cycle as
input (here k is some constant). Design an algorithm that finds a weak
2-colouring. (20) What is the running time of your algorithm? (21)

Optional

Define a weak edge colouring in an analogous manner: each non-isolated edge
has at least one adjacent edge with a different colour. Study the solvability
of this problem in the port-numbering model, with and without orientations.
When can you solve this problem and how fast? Does the solvability depend
on outdegrees and indegrees? (22)

4

Exercise 6–7

Compulsory

Either give anonymous feedback at

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en

or explain in your report why you decided not to give any course feedback.

Optional

Contact the course instructor if you would like to write a Master’s thesis on
distributed algorithms, or if you are interested in doing your PhD studies in
this area.

5

https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en

Hints

(1) Can you use randomness to break symmetry in a cycle without using
unique identifiers? Can you find a large independent set in a cycle? A maxi-
mal independent set in a cycle? A graph colouring in a cycle? What about
general graphs? Can you construct unique identifiers by using random bits?
What kind of auxiliary information can be replaced by using randomness and
what cannot?

(2) For example, a “randomised α-approximation algorithm for the vertex
cover problem with running time T” might fall in any of the following cate-
gories: (i) The algorithm outputs a valid vertex cover when it terminates, and
the approximation factor is at most α; with high probability, the algorithm
terminates in time T . (ii) The algorithm outputs a valid vertex cover when
it terminates; with high probability, the approximation factor is at most α;
the algorithm terminates in time T . (iii) With high probability, the algo-
rithm outputs a valid vertex cover; the approximation factor is at most α;
the algorithm terminates in time T . Combinations of these are also possible,
and instead of “with high probability”, some guarantees may hold only “in
expectation”.

(3) Fault-tolerance. Self-stabilising algorithms.

(4) Use the α-synchroniser [1].

(5) In the worst case, an asynchronous network may accidentally operate in
a completely synchronous manner.

(6) It is not necessarily x. Why? Derive as tight upper and lower bounds
as possible.

(7) Note that analysing the number of “iterations” is not enough. You need
to make sure that each iteration can be completed in one communication
round (if this is the case).

(8) Whenever possible, try to derive an upper bound of the form C+A log∗ n,
where A and C are some constants. Try to make the value of A as small as
possible.

(9) Try to find an edge colouring with 2∆ − 1 colours. One possibility is
to first find a vertex colouring with ∆ + 1 colours, and then use the vertex
colouring to derive an edge colouring. However, other approaches may lead
to faster running times [3].

(10) Naturally, it is enough to show that R2(3; 2) > 5, i.e., there is a 2-
colouring of K5 that does not contain a monochromatic triangle, and R2(3; 2)
≤ 6, i.e., any 2-colouring of K6 contains a monochromatic triangle.

(11) For example, you could try to show that 10 ≤ R2(4; 2) ≤ 100, for some
suitable values of 10 and 100. Your lower-bound construction in problem (a)
gives a lower bound on R2(4; 2) as well. For the upper bound, you can follow

6

the proof in the lecture slides: step (iii) shows that R2(4; 2) ≤ G2(7; 2), then
you can use step (ii) to derive a bound on G2(7; 2), etc. Eventually, this line
of reasoning will converge to an upper bound.

(12) It is enough to have a recursive definition of your upper bound function;
for example, you could show that R2(n; k) ≤ f(n, k), where f(n, k) is defined
in terms of f(n− 1, k) and/or f(n, k− 1). The proof by induction in lecture
slides already gives a recursive definition of the upper bound (using functions
R2 and G2); you just need to put everything together and fill in the missing
details. For example, in the lecture slides I just claim that Gc(k; k) is finite
for all c and k; you will need to derive a concrete upper bound (this is
straightforward if you consider the definition of Gc(k; k)). Simplify your
upper bound as much as you can.

(13) This is not easy if you try to follow the proof in the lectures. You can
have a look at an alternative proof, e.g., in Graham et al. [2, p. 7–9].

(14) Consider an odd path, i.e., a path with an odd number of edges.

(15) Consider two different cases: odd paths and even paths.

(16) Construct an example in which a two nodes have to make different de-
cisions, but their local neighbourhoods are identical. For example, you can
consider a path with colours 0, 1, 2, 0, 1, 2,

(17) Consider, for example, a 6-cycle. Covering maps and covering graphs
can be used as a proof technique.

(18) You do not need to derive the numerical value of k; it is OK to use,
e.g., Ramsey numbers as the value of k. You can solve this problem in two
steps: (i) Show that if n is sufficiently large, an algorithm with running time 1
cannot find a 3-colouring in some numbered directed n-cycle. You can follow
the same idea as in the lecture slides; this time we have the simple special case
T = 1. However, the algorithm has 3 possible outputs (3 colours) instead of 2
possible outputs (part of independent set or not). Note that you can simplify
the proof a lot: you can stop as soon as you have established that there must
exist a chain of at least 2 nodes such that both nodes produce the same
output – this already violates the assumption that the algorithm produces a
valid graph colouring. Following the full proof in the lectures would actually
show that in the worst case, the colouring will be bad almost everywhere!
(ii) Then you can set k = n and observe that a numbered directed n-cycle can
be seen as a special case of a directed cycle that is coloured with n colours.
Reason that if you cannot find a 3-colouring even in the case where colours
are globally unique, certainly you cannot find a 3-colouring in the general
case.

(19) This question is related to the existence of a 3-colouring in a certain
graph with 80 nodes.

(20) You can use the techniques from lecture 2 to first reduce the number

7

of colours from k to 3. Hence you only need to show how to find a weak
2-colouring if you are given a proper (non-weak) 3-colouring. You do not
need any techniques from lecture 5 – just keep in mind what is the definition
of a weak colouring.

(21) You can use O-notation here.

(22) You may want to consider the vertex cover algorithm that was presented
in lecture 1. In the algorithm, we used a subroutine that finds a set D that
consists of paths and cycles.

References

[1] Baruch Awerbuch. Complexity of network synchronization. Journal of
the ACM, 32(4):804–823, 1985.

[2] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey
Theory. John Wiley & Sons, New York, NY, USA, 1980.

[3] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algo-
rithms for sparse networks. Distributed Computing, 14(2):97–100, 2001.

8

http://dx.doi.org/10.1145/4221.4227
http://dx.doi.org/10.1145/4221.4227
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932

	Instructions
	Notation
	Exercise 1
	Compulsory
	Optional

	Exercise 2
	Compulsory
	Optional

	Exercise 3
	Compulsory
	Optional

	Exercise 4
	Compulsory
	Optional

	Exercise 5
	Compulsory
	Optional

	Exercise 6–7
	Compulsory
	Optional

