DDA 2010, lecture 1:
Introduction

e Synchronous deterministic distributed algorithms

e TWo models:

e Port-numbering model

e Unique identifiers

Some notational conventions

e Graphs:

o unless otherwise mentioned,
graphs are undirected and simple

e graphs are pairs: G = (V, E),
V set of nodes, E set of edges

e undirected edges are unordered pairs: if there is an edge
betweenu e Vand v e V, we have {u, v} € E

« directed edges are ordered pairs, e.g. (u, v) € E

e deg(v) =degreeof veV

Some notational conventions

e Parameters:
e n=1|V|, number of nodes

e Ais an upper bound on degrees:
deg(v) <AforallveV

e These are often used in algorithm analysis
e e.g., “running time O(A + log n)”

e Sometimes we assume that A is a global constant
e “bounded-degree graphs”, A = O(1)

DDA 2010, lecture 1a:
Port-numbering model

e Synchronous deterministic distributed algorithms
in the port-numbering model

e Limited model, we will study extensions later

Distributed algorithms

« Communication graph G

G « Node = computer

e €.g., Turing machine,
finite state machine

e Edge = communication
link

e computers can
exchange messages

Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a correct
output in any graph G

Distributed algorithms

e Usually, computational

G problems are related to
the structure of the

communication graph G

e example: find a maximal
independent set for G

e the same graph is both
the input and the system
that tries to solve the
problem...

Port-numbering model

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary

Synchronous distributed algorithms

@ 1. Each node reads its
own local input

@ @ « Depends on the problem,

for example:
e node weight

e weights of
incident edges

e May be empty

Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds

10

Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q 0 communication rounds
until all nodes

0 have announced
their local outputs

e Solution of the problem

11

Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q ” communication rounds
until all nodes
a have announced
A their local outputs
I

Example: Find a maximal independent set /

kLocal output of a node v indicates whether v e [,

12

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

13

Synchronous distributed algorithms

« Communication round:

each node
1.sends a message
N «— to each port
—

(message propagation...)

\

14

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

15

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3. updates its own state

16

Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3. updates its own state

4. possibly stops and
announces its output

17

Synchronous distributed algorithms

« Communication rounds
are repeated until all

@ nodes have stopped and
announced their outputs
Q ” e Running time =
a number of rounds

e Worst-case analysis

18

Synchronous distributed algorithms:
networks of state machines

Do

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously

19

Synchronous distributed algorithms:
networks of state machines

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously

b) d) 1) a, 1) c, 2) port number:
we can reconstruct
the outgoing message

20

Synchronous distributed algorithms:
networks of state machines

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously

a’=f2a,b,2,c,1)<\ .
b = fsb, d, 1, a, 1, c, 2) Same function

(
(f, = algorithm f
y , 2 = algorithm for
¢’ = fac, a, 2, b, 3) degree-2 nodes
d’ =f1(d; by 1)

21

Synchronous distributed algorithms:
networks of state machines

e Equivalently:

22

e Node = state machine
(not necessarily finite)

e All nodes update

their

states simultaneously

 Initial state = local input

(incl. degree of t

e Final state = loca

ne node)

| output

DDA 2010, lecture 1b:
Computability in port-numbering model

o Impossibility of symmetry breaking

e Covering maps and covering graphs:
tools for proving more impossibility results

23

Symmetry can’t be broken

e Input may be symmetric
e symmetric graph

e symmetric port
numbering

e identical local inputs

24

Symmetry can’t be broken

@ e Same input

e Same algorithm
@ e« Same initial state

25

Symmetry can’t be broken

e Same current state

» Messages sent to port 1
are identical to each
other

 Messages sent to port 2
are identical to each
other

26

Symmetry can’t be broken

/

\

27

Symmetry can’t be broken

e Messages received from
port 1 are identical to
each other

e Messages received from
port 2 are identical to
each other

28

Symmetry can’t be broken

e« Same old state

e Same set of
received messages

e Same deterministic
algorithm

e Same new state

29

Symmetry can’t be broken

e Same new state

e Either none of

the nodes stops —
or all of them

stop and produce
identical outputs

e Symmetry can’t

30

be broken!

e let’s formalise this...

Covering maps

Covering map f: V' = V

e surjection
e preserves neighbourhoods
e preserves port numbering

31

Covering maps

32

Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering

Covering maps

33

Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering

Covering maps

34

Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering

Covering maps

Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering

35

Covering maps and covering graphs

H is a covering graph of
G if there is a covering
mapf: V' -V

36

Covering maps and covering graphs

e Run the same algorithm in G and H
e V' e V' and f(v’') € V have the same input for all v’

e ThenVv’ € V' and f(V’) € V: G=(V,E)
« have identical initial states S 1

e send and receive the same messages

e have identical state transitions 4, H=(,E)
e produce identical ;13 2 .
local outputs! 5 3

37

Covering maps and covering graphs

38

Covering maps and covering graphs

39

Covering maps and covering graphs

Same output

40

Covering maps and covering graphs

e Symmetric cycles are a simple special case
of covering maps

G = (V, E)

(s

Same output

41

Computability in
the port-numbering model

e Very limited model

e in a cycle, we can only

2 2 find a trivial solution:
1 1 empty set, all nodes, ...
2 e we can’t even break
symmetry in a 2-node
1 1 network!
O—=O

e What can be solved?

42

DDA 2010, lecture 1c:
Algorithms in port-numbering model

e Some problems can be solved
in the port-numbering model...

e and covering graphs can be used as
an algorithm design technique, too!

 Example: vertex cover approximation

43

Symmetry breaking out of thin air:
bipartite double covers

» Replace each node by
two virtual nodes:
black and white

 original nodes
simulate virtual nodes

e each computers runs
two programs in parallel:
“black program” and
“white program”

e Edges: black-to-white

44

Symmetry breaking out of thin air:
bipartite double covers

G = (V, E) e Virtual graph H is
a covering graph of G

e [t is a double cover:
2 nodes of H map
to each node of G

e |t is bipartite

e and we have already
coloured its two parts:
black and white!

45

Symmetry breaking out of thin air:
bipartite double covers

2-coloured graph

46

Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited

47

Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited

48

Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited

49

Symmetry breaking out of thin air:
bipartite double covers

e Port-numbered graphs
without colouring:

e not possible to find
a maximal matching
(consider an even cycle)

e Port-numbered graphs
with 2-colouring:

e very easy to find
a maximal matching!

50

Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

51

Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

e Each black node accepts
the first proposal it gets

e break ties using
port numbers

52

Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

 until its proposal
is accepted, or
all neighbours
have rejected

53

Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

e Each black node accepts
the first proposal it gets

e break ties using
port numbers

54

Maximal matching in 2-coloured graphs

e Accepted proposals M:
matching

e white nodes don’t propose
after acceptance

e black nodes don’t accept
more than once

 all nodes incident to
at most one edge

55

Maximal matching in 2-coloured graphs

e Accepted proposals M:
maximal matching!

e assume {u, vie E\M
u unmatched

e then u has sent a proposal
to v and v has rejected it

e therefore v had already
received another proposal,
v is matched

e can’t add {u, v} to M

56

Maximal matching in
bipartite double cover

Map back to original graph

At least 1 of 2

virtual edges in M)

N
N

57

Maximal matching in
bipartite double cover

Different possibilities...

At least 1 of 2

virtual edges in M
- y,

58

Maximal matching in
bipartite double cover

Different possibilities...

59

Maximal matching in
bipartite double cover

« However, this is not
possible, because
M is a matching

e M induces a subgraph of
H with max. degree 1

e therefore:

D induces a subgraph of
G with max. degree 2

60

Maximal matching in
bipartite double cover

e And this is not possible,
because M is maximal

e each edge of His
in M or shares at least
one endpoint with M

e endpoints of M form
a vertex cover in H

e endpoints of D form
a vertex cover in G!

61

Finding a vertex cover

e So we will find aset D
of edges such that:

e D induces a subgraph of
maximum degree 2

e D must consist of
paths and cycles

® e endpoints of D form
a vertex cover C

e is it a small vertex cover?

62

Finding a vertex cover

/

iy

N
An optimal
vertex cover
C* needs to |
cover these |-~

edges, too!
Y,

. J
<(Thus C*
2 of these
5 nodes

o

~

must contain

)

e So we will find a set D

63

of edges such that:

e D induces a subgraph of
maximum degree 2

e D must consist of
paths and cycles

e endpoints of D form
a vertex cover C

e is it a small vertex cover?

Finding a vertex cover

e Different cases:

e Cycle with 3 edges:
3nodesin(C, >2in C*

e Cycle with 4 edges:
4 nodesinC, >2in C*
e Cycle with 5 edges:
5 nodesin C, > 3in C*

1IC| < 2|C*]

64

Finding a vertex cover

|IC| < 3|C7|

e Different cases:

e Path with 1 edge:
2 nodesin(C, >1in C*

e Path with 2 edges:
3nodesin(C, >1in C*

e Path with 3 edges:
4 nodesin C, =2 in C*

e Path with 4 edges:
5 nodesin C, > 2 in C*

65

Finding a vertex cover

e In each path or cycle:

e C has at most 3 times
as many nodes as C*

e Summing over all
paths and cycles:

e« [C] =3]C7

e The algorithm finds
a 3-approximation of
minimum vertex cover!

66

Finding a vertex cover:
summary

e Vertex cover is a graph problem
that can be solved reasonably well
in the port-numbering model with
a deterministic distributed algorithm

e And the algorithm was simple and fast: O(A) rounds!

67

Finding a vertex cover:
two very different worlds

e Centralised setting, polynomial-time algorithms:
 trivial to find a minimal vertex cover: greedy algorithm

e it requires more thought to find
a good approximation of minimum vertex cover

e Distributed setting, port-numbering model:

e impossible to find a minimal vertex cover:
symmetry breaking issues

e but we have seen that it is possible to find
a good approximation of minimum vertex cover

68

Finding a vertex cover:
symmetry breaking

e Vertex cover approximation does not
require symmetry breaking

e Proof: algorithm in the port-numbering model
« However, many interesting problems do...

o Let’s study a stronger model of
distributed computing

69

