DDA 2010, lecture 1:
Introduction

e Synchronous deterministic distributed algorithms

e TWo models:

e Port-numbering model

e Unique identifiers



Some notational conventions

e Graphs:

o unless otherwise mentioned,
graphs are undirected and simple

e graphs are pairs: G = (V, E),
V set of nodes, E set of edges

e undirected edges are unordered pairs: if there is an edge
betweenu e Vand v e V, we have {u, v} € E

« directed edges are ordered pairs, e.g. (u, v) € E

e deg(v) =degreeof veV



Some notational conventions

e Parameters:
e n=1|V|, number of nodes

e Ais an upper bound on degrees:
deg(v) <AforallveV

e These are often used in algorithm analysis
e e.g., “running time O(A + log n)”

e Sometimes we assume that A is a global constant
e “bounded-degree graphs”, A = O(1)



DDA 2010, lecture 1a:
Port-numbering model

e Synchronous deterministic distributed algorithms
in the port-numbering model

e Limited model, we will study extensions later



Distributed algorithms

« Communication graph G

G « Node = computer

e €.g., Turing machine,
finite state machine

e Edge = communication
link

e computers can
exchange messages



Distributed algorithms

o All nodes are identical,
G run the same algorithm

e We can choose
the algorithm

e An adversary chooses
the structure of G

e Our algorithm must
produce a correct
output in any graph G



Distributed algorithms

e Usually, computational

G problems are related to
the structure of the

communication graph G

e example: find a maximal
independent set for G

e the same graph is both
the input and the system
that tries to solve the
problem...




Port-numbering model

e A node of degree d can
refer to its neighbours
by integers 1, 2, ..., d

e Port-numbering chosen
by adversary




Synchronous distributed algorithms

@ 1. Each node reads its
own local input

@ @ « Depends on the problem,

for example:
e node weight

e weights of
incident edges

e May be empty



Synchronous distributed algorithms

1. Each node reads its
own local input

2. Repeat synchronous
communication rounds
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Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q 0 communication rounds
until all nodes

0 have announced
their local outputs

e Solution of the problem
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Synchronous distributed algorithms

1. Each node reads its
own local input

Q 2. Repeat synchronous
Q ” communication rounds
until all nodes
a have announced
A their local outputs
I

Example: Find a maximal independent set /

kLocal output of a node v indicates whether v e [ ,
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port
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Synchronous distributed algorithms

« Communication round:

each node
1.sends a message
N «— to each port
—

(message propagation...)

\
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3. updates its own state
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Synchronous distributed algorithms

« Communication round:
each node

1.sends a message
to each port

2.receives a message
from each port

3. updates its own state

4. possibly stops and
announces its output
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Synchronous distributed algorithms

« Communication rounds
are repeated until all

@ nodes have stopped and
announced their outputs
Q ” e Running time =
a number of rounds

e Worst-case analysis
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Synchronous distributed algorithms:
networks of state machines

Do

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously
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Synchronous distributed algorithms:
networks of state machines

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously

b) d) 1) a, 1) c, 2) port number:
we can reconstruct
the outgoing message
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Synchronous distributed algorithms:
networks of state machines

e Equivalently:

e Node = state machine
(not necessarily finite)

e All nodes update their
states simultaneously

a’=f2a,b,2,c,1)<\ .
b = fsb, d, 1, a, 1, c, 2) Same function

(
( f, = algorithm f
y , 2 = algorithm for
¢’ = fac, a, 2, b, 3) degree-2 nodes
d’ =f1(d; by 1)
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Synchronous distributed algorithms:
networks of state machines

e Equivalently:
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e Node = state machine
(not necessarily finite)

e All nodes update

their

states simultaneously

 Initial state = local input

(incl. degree of t

e Final state = loca

ne node)

| output



DDA 2010, lecture 1b:
Computability in port-numbering model

o Impossibility of symmetry breaking

e Covering maps and covering graphs:
tools for proving more impossibility results

23



Symmetry can’t be broken

e Input may be symmetric
e symmetric graph

e symmetric port
numbering

e identical local inputs
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Symmetry can’t be broken

@ e Same input

e Same algorithm
@ e« Same initial state
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Symmetry can’t be broken

e Same current state

» Messages sent to port 1
are identical to each
other

 Messages sent to port 2
are identical to each
other
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Symmetry can’t be broken

/

\
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Symmetry can’t be broken

e Messages received from
port 1 are identical to
each other

e Messages received from
port 2 are identical to
each other
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Symmetry can’t be broken

e« Same old state

e Same set of
received messages

e Same deterministic
algorithm

e Same new state
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Symmetry can’t be broken

e Same new state

e Either none of

the nodes stops —
or all of them

stop and produce
identical outputs

e Symmetry can’t
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be broken!

e let’s formalise this...



Covering maps

Covering map f: V' = V

e surjection
e preserves neighbourhoods
e preserves port numbering
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Covering maps
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Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering



Covering maps
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Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering



Covering maps
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Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering



Covering maps

Coveringmap f: V. - V

e surjection
e preserves neighbourhoods
e preserves port numbering
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Covering maps and covering graphs

H is a covering graph of
G if there is a covering
mapf: V' -V
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Covering maps and covering graphs

e Run the same algorithm in G and H
e V' e V' and f(v’') € V have the same input for all v’

e ThenVv’ € V' and f(V’) € V: G=(V,E)
« have identical initial states S 1

e send and receive the same messages

e have identical state transitions 4, H=(,E)
e produce identical ;13 2 .
local outputs! 5 3
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Covering maps and covering graphs

38



Covering maps and covering graphs

39



Covering maps and covering graphs

Same output
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Covering maps and covering graphs

e Symmetric cycles are a simple special case
of covering maps

G = (V, E)

(s

Same output
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Computability in
the port-numbering model

e Very limited model

e in a cycle, we can only

2 2 find a trivial solution:
1 1 empty set, all nodes, ...
2 e we can’t even break
symmetry in a 2-node
1 1 network!
O—=O

e What can be solved?
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DDA 2010, lecture 1c:
Algorithms in port-numbering model

e Some problems can be solved
in the port-numbering model...

e and covering graphs can be used as
an algorithm design technique, too!

 Example: vertex cover approximation
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Symmetry breaking out of thin air:
bipartite double covers

» Replace each node by
two virtual nodes:
black and white

 original nodes
simulate virtual nodes

e each computers runs
two programs in parallel:
“black program” and
“white program”

e Edges: black-to-white
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Symmetry breaking out of thin air:
bipartite double covers

G = (V, E) e Virtual graph H is
a covering graph of G

e [t is a double cover:
2 nodes of H map
to each node of G

e |t is bipartite

e and we have already
coloured its two parts:
black and white!
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Symmetry breaking out of thin air:
bipartite double covers

2-coloured graph
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Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited
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Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited
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Symmetry breaking out of thin air:
bipartite double covers

Port-numbering inherited
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Symmetry breaking out of thin air:
bipartite double covers

e Port-numbered graphs
without colouring:

e not possible to find
a maximal matching
(consider an even cycle)

e Port-numbered graphs
with 2-colouring:

e very easy to find
a maximal matching!
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Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers
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Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

e Each black node accepts
the first proposal it gets

e break ties using
port numbers
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Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

 until its proposal
is accepted, or
all neighbours
have rejected
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Maximal matching in 2-coloured graphs

e Each white node sends
proposals to its black
neighbours

e one by one,
order by port numbers

e Each black node accepts
the first proposal it gets

e break ties using
port numbers
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Maximal matching in 2-coloured graphs

e Accepted proposals M:
matching

e white nodes don’t propose
after acceptance

e black nodes don’t accept
more than once

 all nodes incident to
at most one edge

55



Maximal matching in 2-coloured graphs

e Accepted proposals M:
maximal matching!

e assume {u, vie E\M
u unmatched

e then u has sent a proposal
to v and v has rejected it

e therefore v had already
received another proposal,
v is matched

e can’t add {u, v} to M
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Maximal matching in
bipartite double cover

Map back to original graph

At least 1 of 2

virtual edges in M)

N
N
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Maximal matching in
bipartite double cover

Different possibilities...

At least 1 of 2

virtual edges in M
- y,
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Maximal matching in
bipartite double cover

Different possibilities...
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Maximal matching in
bipartite double cover

« However, this is not
possible, because
M is a matching

e M induces a subgraph of
H with max. degree 1

e therefore:

D induces a subgraph of
G with max. degree 2
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Maximal matching in
bipartite double cover

e And this is not possible,
because M is maximal

e each edge of His
in M or shares at least
one endpoint with M

e endpoints of M form
a vertex cover in H

e endpoints of D form
a vertex cover in G!
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Finding a vertex cover

e So we will find aset D
of edges such that:

e D induces a subgraph of
maximum degree 2

e D must consist of
paths and cycles

® e endpoints of D form
a vertex cover C

e is it a small vertex cover?
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Finding a vertex cover

/

iy

N
An optimal
vertex cover
C* needs to |
cover these |-~

edges, too!
Y,

. J
<( Thus C*
2 of these
5 nodes

o

~

must contain

)

e So we will find a set D
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of edges such that:

e D induces a subgraph of
maximum degree 2

e D must consist of
paths and cycles

e endpoints of D form
a vertex cover C

e is it a small vertex cover?



Finding a vertex cover

e Different cases:

e Cycle with 3 edges:
3nodesin(C, >2in C*

e Cycle with 4 edges:
4 nodesinC, >2in C*
e Cycle with 5 edges:
5 nodesin C, > 3in C*

1IC| < 2|C*]
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Finding a vertex cover

|IC| < 3|C7|

e Different cases:

e Path with 1 edge:
2 nodesin(C, >1in C*

e Path with 2 edges:
3nodesin(C, >1in C*

e Path with 3 edges:
4 nodesin C, =2 in C*

e Path with 4 edges:
5 nodesin C, > 2 in C*
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Finding a vertex cover

e In each path or cycle:

e C has at most 3 times
as many nodes as C*

e Summing over all
paths and cycles:

e« [C] =3]C7

e The algorithm finds
a 3-approximation of
minimum vertex cover!
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Finding a vertex cover:
summary

e Vertex cover is a graph problem
that can be solved reasonably well
in the port-numbering model with
a deterministic distributed algorithm

e And the algorithm was simple and fast: O(A) rounds!
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Finding a vertex cover:
two very different worlds

e Centralised setting, polynomial-time algorithms:
 trivial to find a minimal vertex cover: greedy algorithm

e it requires more thought to find
a good approximation of minimum vertex cover

e Distributed setting, port-numbering model:

e impossible to find a minimal vertex cover:
symmetry breaking issues

e but we have seen that it is possible to find
a good approximation of minimum vertex cover
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Finding a vertex cover:
symmetry breaking

e Vertex cover approximation does not
require symmetry breaking

e Proof: algorithm in the port-numbering model
« However, many interesting problems do...

o Let’s study a stronger model of
distributed computing
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