DDA 2010, lecture 4:
Applications of Ramsey’s theorem

e Using Ramsey’s theorem, we can show that
these problems can’t be solved in O(1) rounds:

e finding large independent sets in cycles
e graph colourings and maximal matchings in cycles
e better than 2-approximation of vertex cover

e and many more...



DDA 2010, lecture 4a:
Introduction and background

e Hardness of graph colouring and
other symmetry-breaking problems



Graph colouring

e Graph colouring is a central symmetry-breaking
primitive in distributed algorithms

e Colouring can be used to schedule the actions of the
nodes: e.g., neighbours don’t transmit simultaneously

e Given a graph colouring, we can solve other problems:
maximal independent set, maximal matching, etc.

« We can use colours to simulate greedy algorithms:
finding small dominating sets, etc.



Graph colouring

e Graph colouring is a central symmetry-breaking
primitive in distributed algorithms

e Many problems are as difficult as graph colouring

e Given an algorithm that finds a maximal independent set,
we can use it to find a graph colouring, and vice versa

e To understand the capabilities of distributed
algorithms, it is important to know how fast
we can find a graph colouring



Hardness of graph colouring

e Cole-Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

e assuming we have unique identifiers

e Could we get exactly constant running time?

e it seems very difficult to come up with
an O(1)-time algorithm for graph colouring...

e but how could one possibly prove that no such
algorithm exists?

e there are infinitely many algorithms!



Hardness of graph colouring

e Cole-Vishkin algorithm can be used to colour
cycles in almost constant running time: O(log* n)

e assuming we have unique identifiers
e Could we get exactly constant running time?

e This was resolved by Nathan Linial in 1992:
e 3-colouring an n-cycle requires Q(log™ n) rounds

e Cole-Vishkin technique is within constant factor
of the best possible algorithm!



Hardness of other problems

e Linial’s result shows that it is not possible
to solve these problems in cycles in O(1) time:

e vertex colouring, edge colouring,
maximal independent set, maximal matching, ...

« Naor and Stockmeyer (1995): generalisations

e using Ramsey’s theorem

 What about other problems?



Hardness of other problems

e Linial: we can’t find maximal
independent sets in constant time

« However, could we perhaps find a “fairly large”
independent set in constant time?

e e.g., an independent set with at least n/10 nodes?

e We will see that this is not possible, either
e strong negative result

e proof uses Ramsey’s theorem



DDA 2010, lecture 4b:
Finding a non-trivial independent set

e Czygrinow et al. (2008)

e constant-time algorithms can’t find
large independent sets in cycles



Lower-bound result for
finding large independent sets

« Numbered directed n-cycle:
e directed n-cycle, each node has outdegree = indegree = 1

e node identifiers are a permutation of {1, 2, ..., n}
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Lower-bound result for
finding large independent sets

 We will show that the problem is difficult even if
we have a numbered directed cycle

o general case of cycles with unique IDs at least as hard
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Lower-bound result for
finding large independent sets

e Fix any € > 0 and running time T (constants)

» Algorithm A finds a feasible independent set
in any numbered directed cycle in time T

« Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs an independent set with < €n nodes

e can’t find an independent set with > 0.001n nodes

e not even if the running time is 1000000 rounds
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Lower-bound result for
finding large independent sets

e Let T be the running time of A, let k = 2T + 1

e The output of a node is a function f’ of
a sequence of k integers (unique IDs)

T=2, k=5 [ outpu=r11,9,527) |

--»@a@a@a@aéa@a@ .

[ output = (3, 11, 9, 5, 2) )
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Lower-bound result for
finding large independent sets

e Lets focus on increasing sequences of IDs

e Then the output of a node is a function f of
a set of k integers

k=5: " output - 16, 7, 11, 13, 21) |

--»@a@eéa@a@ .

[ output = f({3, 6, 7, 11, 13}) )
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Lower-bound result for
finding large independent sets

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

k=5: " output - 16, 7, 11, 13, 21) |

--»@a@a@v@a@a@ .

[ output = f({3, 6, 7, 11, 13}) )
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Lower-bound result for
finding large independent sets

« Hence we have assigned a colour f(X) € {0, 1}
to each k-subset X c {1, 2, ..., n}

e Fix a large m (depends on k and ¢€)

« Ramsey: If n is sufficiently large,
we can find an m-subset A c {1, 2, ..., n}

s.t. all k-subset X ¢ A have the same colour
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Lower-bound result for
finding large independent sets

e That is, if the ID space is sufficiently large...
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Lower-bound result for
finding large independent sets

e That is, if the ID space is sufficiently large,

we can find a monochromatic subset of m IDs...

f{2, 3,6, 7,11}) = f{2, 3,6, 7, 13}) =
f{2, 3, 6,7, 21}) = f{2, 3, 6, 11, 13}) =
... =f({6,7, 11, 13, 21})

01 1: 1001 < 17 100D
1O IOIDIOIVIOIDID
21 IIDIDIDIDIDIDIDIE)
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Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes




Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

f({z) 3) 6) 7; 11}) =
f({3) 6) 7; 11, 13}) = eee




Lower-bound result for
finding large independent sets

e Construct a numbered directed cycle:
monochromatic subset as consecutive nodes

Same output

...and it must be 0




Lower-bound result for
finding large independent sets

e Hence there is an n-cycle with a chain of
m - 2T nodes that output O

/\ /\
[ output O ) [ output 0 or 1 )
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Lower-bound result for
finding large independent sets

e Hence there is an n-cycle with a chain of
m - 2T nodes that output O

 We can choose as large m as we want

e Good, more “black” nodes that output O

« However, n increases rapidly if we increase m

e Bad, more “grey” nodes that might output 1

e Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result for
finding large independent sets

 Huge ID space...
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Lower-bound result for
finding large independent sets

e Find a monochromatic subset of size m...
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Lower-bound result for
finding large independent sets

e Delete these IDs...
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Lower-bound result for
finding large independent sets

o Still sufficiently many IDs to apply Ramsey...
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Lower-bound result for
finding large independent sets

e Repeat...
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Lower-bound result for
finding large independent sets

» Repeat until stuck
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Lower-bound result for
finding large independent sets

e Several monochromatic subsets + some leftovers
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Lower-bound result for
finding large independent sets

0O 0 O 0 0 O

2 215218 227 233 244 245 2 4 217 223 232 2 39 246

©@ . - .
@ Large enough n: Large enough m: 35
at most €n/2 nodes at most en/2 nodes

@ <K in the grey area B near the boundaries 36 6

Ge
D) 1) C) e

31




Lower-bound result for
finding large independent sets

e Thus A outputs an independent set with < gn nodes

18 227 2 33 23 232 2 39
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DDA 2010, lecture 4c:
Corollaries

e Finding “anything” non-trivial in cycles
is not possible in constant time
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A strong negative result

« We have used Ramsey’s theorem to show
that constant-time algorithms can’t find
large independent sets in cycles

e moreover, we can get a Q(log* n) lower bound
on the running time of any algorithm
that finds a large independent set

e trick: use a power tower upper bound for Rz2(n; k)

« What implications do we have?
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A strong negative result

o If we could find a graph colouring...
e we could find a maximal independent set...
e which is an independent set with at least n/3 nodes

e contradiction

e Corollary: graph colouring can’t be solved
in constant time in cycles

o we got Linial’s result as a simple corollary...
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A strong negative result

e If we could find a (2 - €)-approximation of
vertex cover...

o we would have a vertex cover with
at most n - en/2 nodes in an n-cycle (even n)

e its complement is an independent set with
at least en/2 nodes

e contradiction

e This is tight: it is possible to find
a 2-approximation in time independent of n
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A strong negative result

e Using Ramsey’s theorem, we are able to show
that these problems can’t be solved in O(1) time:

e vertex colouring, edge colouring, ...
 maximal independent set, maximal matching, ...
e (2 - €)-approximation of vertex cover

e (A+1-c¢)-approximation of dominating set...

« Next lecture: something positive with
O(1) running time...
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