
DDA 2010, lecture 7:
Local news

• Some recent work in
our research group

• algorithm for vertex covers

• application of
Cole–Vishkin technique
in port-numbering model

2789

13783

2

Research problem

2

• Goal: finding a 2-approximation
of minimum vertex cover

• fast: time independent of n

• port-numbering model

• From lecture 4:
• even if we had unique identifiers, it’s not

possible to find (2 − ε)-approximation in constant time

• hence approximation factor 2 is the best possible

DDA 2010, lecture 7a:
Vertex covers and edge packings

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

3

Vertex cover
in the port-numbering model

• Convenient to study a more general problem:
minimum-weight vertex cover

• More general problems
are sometimes
easier to solve?

4

Notation:
w(v) = weight of v

51

3

9 6 6
9

6

Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: y[v] ≤ w(v) for each node v,

where y[v] = total weight of edges incident to v

5

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: y[v] ≤ w(v) for each node v,

where y[v] = total weight of edges incident to v

6

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

y[u] = 2
w(u) = 6

u

Edge packings and vertex covers

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: y[v] ≤ w(v) for each node v,

where y[v] = total weight of edges incident to v

7

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

y[v] = 3 + 0 + 4 + 0 + 0 + 2
w(v) = 9

v

Edge packings and vertex covers

• Node v is saturated if y[v] = w(v)
• Total weight of edges incident to v is equal to w(v),

i.e., the packing constraint holds with equality

8

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

y[v] = w(v)

y[v] < w(v)

Edge packings and vertex covers

• Edge e is saturated if
at least one endpoint of e is saturated

• Equivalently: edge weight y(e) can’t be increased

9

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

2 + ε would violate
a packing constraint

Edge packings and vertex covers

• Maximal edge packing: all edges saturated
⇐⇒ none of the edge weights y(e) can be increased
⇐⇒ saturated nodes form a vertex cover!

10

51

3

9 6 6
9

6

0

2

3 0

0 0

04
6

Edge packings and vertex covers

• Minimum-weight vertex cover C* difficult to find:
• Centralised setting: NP-hard

• Distributed setting: integer problem (choose 0 or 1),
symmetry-breaking issues

• Maximal edge packing y easy to find:
• Centralised setting: trivial greedy algorithm

• Distributed setting: linear problem,
no symmetry-breaking issues (?)

11

Edge packings and vertex covers

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• Textbook proof: LP-duality,

relaxed complementary slackness

• Minimum-weight fractional vertex cover and
maximum-weight edge packing are dual problems

• But there’s a simple and more elementary proof...

12

Edge packings and vertex covers

13

∑v∈C(y) w(v) Total weight of saturated nodes

= ∑v∈C(y) y[v] Saturated nodes have y[v] = w(v)

= ∑e∈E y(e) |e ∩ C(y)| Interchange the order of summation

≤ 2 ∑e∈E y(e) |e ∩ C*| Each edge is covered at least once
by C* and at most twice by C(y)

= 2 ∑v∈C* y[v] Interchange the order of summation

≤ 2 ∑v∈C* w(v) All nodes have y[v] ≤ w(v)

Edge packings and vertex covers

14

∑v∈C(y) w(v) Total weight of saturated nodes

= ∑v∈C(y) y[v] Saturated nodes have y[v] = w(v)

= ∑e∈E y(e) |e ∩ C(y)| Interchange the order of summation

≤ 2 ∑e∈E y(e) |e ∩ C*| Each edge is covered at least once
by C* and at most twice by C(y)

= 2 ∑v∈C* y[v] Interchange the order of summation

≤ 2 ∑v∈C* w(v) All nodes have y[v] ≤ w(v)

∑v∈C(y) ∑e∈E: v∈e y(e)

∑e∈E ∑v∈C(y): v∈e y(e)

Summary

• Goal:
• Find a 2-approximation of minimum-weight vertex cover

• Deterministic algorithm in the port-numbering model

• Idea:
• Find a maximal edge packing, take saturated nodes

• Coming up next:
• Begin with a “greedy but safe” algorithm

• We will see later how the Cole–Vishkin technique helps

15

DDA 2010, lecture 7b:
Finding a maximal edge packing

16

51

3

9 6 6
9

6

?

?

? ?

? ?

??
?

Finding a maximal edge packing:
phase I

• y[v] = total weight of edges incident to node v

• Residual capacity of node v: r(v) = w(v) − y[v]

• Saturated node:
r(v) = 0

17

51

3

9 6 6

9

6

0

2

3 0

0 0

04
6

1

6

4 3

0 0

1

0

w(v):
r(v):

Finding a maximal edge packing:
phase I

Start with a trivial
edge packing y(e) = 0

18

51

3

9 6 6

6

0

0

0 0

0 0

00
0

1

6 3

6 6

5

9

9
9

w(v):
r(v):

Finding a maximal edge packing:
phase I

Each node v offers
r(v)/deg(v) units to
each incident edge

19

51

3

9 6 6

6

0

0

0 0

0 0

00
0

1

6 3

6 6

5

9

9
9

w(v):
r(v):

9offer:

1 5/2

3/2 6

3/2

3/2

6

Finding a maximal edge packing:
basic idea

Each edge accepts
the smallest of the
2 offers it received

Increase y(e)
by this amount

• Safe, can’t violate
packing constraints

20

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

1

6 3

6 6

5

9

9
9
9

1 5/2

3/2 6

3/2

3/2

6

Finding a maximal edge packing:
phase I

Update residuals...

21

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2

Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges...

22

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2

Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

23

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2
15/2

2

1/6

9/2

–

Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

24

51

3

9 6 6

6

1

5/3

5/3 3/2

3/2 3/2

3/2

3/2

0

9/2 0

0 3/2

2

1/2

9
15/2
15/2

2

1/6

9/2

–

5/3

Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals...

25

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Finding a maximal edge packing:
phase I

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals
and graph, etc.

26

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Finding a maximal edge packing:
phase I

This is a simple
deterministic
distributed
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but...

27

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2

3/2

0

13/3 0

0 3/2

10/3

0

9
22/3

5/3

5/3

5/3

Finding a maximal edge packing:
phase I

This is a simple
deterministic
distributed
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but
this is too slow!

28

1 2 4 8 16 32 64 128

1 2 4 8 16 32 64 128
1 1 2 4 8 16 32 64

1 1 2 4 8 16 32 64

0 0 1 2 4 8 16 32
1 1 2 4 8 16

1 1 2 4 8 16

0 0 1 2 4 8
1 1 2 4

1 1 2 4

0 0 1 2

Finding a maximal edge packing:
colouring trick

29

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• And all edges incident to it
will be saturated as well

2

2 2

2

Residual capacity
was 8, will be 0

Finding a maximal edge packing:
colouring trick

30

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• Otherwise there is a neighbour
with a different offer:

• Interpret the offer
sequences as “colours”

• Nodes u and v have
different colours:
{u, v} is multicoloured

1 2

2

2

2

Finding a maximal edge packing:
colouring trick

31

4 3

2

2

5

• Some progress guaranteed:
• On each iteration, for each node,

at least one incident edge becomes
saturated or multicoloured

• Such edges are be discarded in
phase I: node degrees decrease
by at least one on each iteration

• Hence in ∆ iterations all edges
are saturated or multicoloured

1 2

2

2

2∆ = maximum degree

Finding a maximal edge packing:
colouring trick

32

• Phase I: in ∆ rounds all edges
are saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

Finding a maximal edge packing:
colouring trick

33

• Phase I: in ∆ rounds all edges
are saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

• Let’s focus on unsaturated
nodes and edges

Finding a maximal edge packing:
colouring trick

34

• Colours are sequences of ∆ offers,
which are rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Let’s analyse the offers more
carefully in that case...

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)

Finding a maximal edge packing:
colouring trick

35

• Offers are rationals of the form q/(∆!)∆

• Proof idea: multiply weights by (∆!)∆

• Then r(v) is a multiple of (∆!)∆ before iteration 1

• Offer r(v)/deg(v) is a multiple of (∆!)∆−1 on iteration 1

• r(v) is a multiple of (∆!)∆−1 after iteration 1

 ... (more formally: proof by induction)

• r(v) is a multiple of ∆! before iteration ∆

• Offers are integers on iteration ∆

Finding a maximal edge packing:
colouring trick

36

• Offers are rationals of the form q/(∆!)∆

• Proof idea: if we multiplied weights by (∆!)∆, then
the offers would integers throughout the algorithm

• Without scaling, we get in the worst case q/(∆!)∆

• If node weights are integers 1, 2, ..., W, then
offers are rationals between 0 and W

• Offer of v is at most r(v) ≤ w(v) ≤ W

• There are at most W(∆!)∆ possible offers!

Finding a maximal edge packing:
colouring trick

37

• Colours are sequences of ∆ offers,
which are rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then there are at most
W(∆!)∆ possible offers

• And hence only
k = (W(∆!)∆)∆
possible colours (2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)

Finding a maximal edge packing:
colouring trick

38

• Only k = (W(∆!)∆)∆ possible colours

• Replace “inconvenient” colours
(sequences of rationals)
with “convenient” colours
(integers 1, 2, ..., k)

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)1378

2789

Finding a maximal edge packing:
phase II

39

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher
colour (acyclic directed graph)

2789

1378

Finding a maximal edge packing:
phase II

40

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher
colour (acyclic directed graph)

• Partition in ∆ forests
• Each node assigns its outgoing

edges to different forests

2789

1378

Finding a maximal edge packing:
phase II

41

• For each forest in parallel...

2789

1378

Finding a maximal edge packing:
phase II

42

• For each forest in parallel:
• Use Cole–Vishkin style

colour reduction algorithm

• Given a k-colouring,
finds a 3-colouring
in time O(log* k)

2789

13783

2

Finding a maximal edge packing:
phase II

43

• For each forest and each
colour j = 1, 2, 3 in sequence:

• Consider all outgoing edges
of colour-j nodes

Finding a maximal edge packing:
phase II

44

• For each forest and each
colour j = 1, 2, 3 in sequence:

• Consider all outgoing edges
of colour-j nodes

• Node-disjoint stars: easy to
saturate all such edges in parallel

• Two simple cases:

• saturate centre

• saturate all leaves

Finding a maximal edge packing:
phase II

45

• This way we can saturate
all multicoloured edges:

• Each edge belongs to one forest,
and its tail has colour 1, 2, or 3

• We simply go through all forests
and all colours and therefore
saturate everything

Finding a maximal edge packing:
algorithm overview

46

• Phase I:
• All edges become saturated

or multicoloured

• Phase II:
• Multicoloured edges are

partitioned in ∆ forests

• Forests are 3-coloured

• 3-coloured forests are saturated

2789

13783

2

Finding a maximal edge packing:
running time analysis

47

• Total running time:
• All edges become saturated or

multicoloured: O(∆)

• Multicoloured forests
are 3-coloured: O(log* k)

• 3-coloured forests
are saturated: O(∆)

• O(∆ + log* k) = O(∆ + log* W)
• k is huge, but log* grows slowly

2789

13783

2

Finding a maximal edge packing:
summary

48

• Maximal edge packing and
2-approximation of vertex cover
in time O(∆ + log* W)

• W = maximum node weight

• Unweighted graphs:
running time simply O(∆),
independent of n

• Everything can be implemented
in the port-numbering model

2789

13783

2

Finding a maximal edge packing:
recap

Phase I:

• Residuals
r(v) = w(v) − y[v]

• Offer r(v)/deg(v)

• Accept minimum,
increase weights

• Progress: edges
become saturated
or multicoloured
(different offers)

49

51

3

9 6 6

6

1

3/2

3/2 3/2

3/2 3/2

3/23/2

3/2

1

6 3

6 6

5

9

9
9
9

1 5/2

3/2 6

3/2

3/2

6

Finding a maximal edge packing:
recap

50

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)1378

2789

Phase II:

• Saturated edges are already ok,
we focus on multicoloured edges

• Colours are sequences of offers,
re-colour with integers 1, 2, ..., k

• Partition in ∆ forests

• Cole–Vishkin:
3-colouring

• Use colours to
saturate all edges

Finding a maximal edge packing:
some intuition

• Regular graph with uniform weights:
• Symmetry-breaking (e.g., graph colouring) is

not possible in the port-numbering model

• But it is trivial to find a maximal edge packing directly

• “Irregular” graph:
• We have symmetry-breaking information,

which can be used to find a graph colouring,
which can be used to find a maximal edge packing

• Handling these two cases turns out to be enough!

51

Take-home messages

• Non-trivial problems can be solved in very
restrictive models of distributed computing

• Generalise!
• More difficult problems may be easier to solve: vertex

cover → weighted vertex cover → weighted set cover...

• Cole–Vishkin technique is a powerful tool

• Wide range of applications far beyond the textbook
examples of colouring cycles with numerical IDs

• log* of almost everything is something reasonable

52

