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Practicalities
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• Read the course web page:
www.iki.fi/suo/dda

• Pay attention to:
• course content — theory, not practice

• course format — not a typical lecture course

• course tracking system — use it!

• online support — two online forums

http://www.iki.fi/suo/dda
http://www.iki.fi/suo/dda


Course Content
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• Fundamental questions:
• what can be computed?

• what can be computed fast?

• Model of computation:
• distributed systems



Traditional Perspective
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Programmer:

Adversary:

Machine:

M constructs
a machine

chooses any
valid inputMx

does computation,
prints a valid output

Mx y



Distributed Algorithms
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Programmer:

Adversary:

Network:

M constructs
a machine

constructs
a network

does communication,
prints a valid output

M

M

M

M

M

M

M

M



You Will Learn…

• A new mindset: how to reason about
distributed and parallel systems

• not a bad skill in the multi-core era

• Combinatorial optimisation

• Some math that has plenty of
applications in computer science

• graph theory, Ramsey theory, …
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Plan: Two Models

• Week 1: some graph theory

• Weeks 2–4: “port-numbering model”
• weeks 2 and 4: positive results,

week 3: negative results

• Weeks 5–6: “unique identifiers”
• week 5: positive results,

week 6: negative results
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Graphs
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Graphs
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node

edge



Graphs
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adjacent nodes

neighbours



Graphs
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adjacent edges



Graphs
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node with 3 neighbours

adjacent to 3 nodes

incident to 3 edges

degree is 3



Graphs

14

subgraph



Graphs

15

subgraph induced
by the red nodes

all red nodes

all edges that join
a pair of red nodes



Graphs
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subgraph induced
by the red edges

all red edges

all nodes that are
incident to red edges



Graphs
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not a node-induced
subgraph

not an edge-induced
subgraph

not a spanning
subgraph



Graphs
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a shortest path
from u to v

length 6
(six edges, seven nodes)

dist(u, v) = 6

diameter ≥ 6 u

v



Graphs
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connected graph

one connected
component



Graphs
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not a connected graph

three connected
components

one isolated node



Graphs
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tree

connected

no cycles



Graphs
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forest

four connected
components

no cycles



Graphs
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cycle graph

connected

2-regular



Graphs
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path graph

tree

connected

maximum degree 2



Graphs
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two isomorphic graphs



Graphs
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two isomorphic graphs

bijection that preserves the structure



Graphs
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three isomorphic graphs



Graph Problems
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• Recall the definitions:
• independent set — vertex cover — dominating set

• matching — edge cover — edge dominating set

• vertex colouring — domatic partition

• edge colouring — edge domatic partition

• Examples in the course material…



Optimisation
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• Maximisation problems:
• maximal = cannot add anything

• maximum = largest possible size

• α-approximation = at least 1/α times maximum

• Example: independent set
• maximal is trivial to find greedily,

maximum may be very difficult to find



Optimisation
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• Minimisation problems:
• minimal = cannot remove anything

• minimum = smallest possible size

• α-approximation = at most α times minimum

• Example: vertex cover
• minimal is trivial to find greedily,

minimum may be very difficult to find



Optimisation
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Terminology:
“α-approximation of minimum vertex cover”

implies two properties:
1. vertex cover

2. at most α times as large as minimum vertex cover

Approximations are always feasible solutions!



Exercises

• Warm-up puzzles

• Exercises of Chapter 1
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Discussion &
Exercises

33

DDA Course
Lecture 1.2
15 March 2012



Course Tracker

• 24 students registered for the course

• 7 reports in the course tracker

• Exercise 1.8: most popular, solved by 4/7

• Exercise 1.1: most difficult, 3/7 need help
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Feedback

• Difficult: “approximation”
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Plan

• Today we will:
• review the concept of “approximation”

• solve Exercise 1.1 together

• discuss other exercises

• No new theory!
• just make sure you are comfortable with

the concepts of Chapter 1 by the end of the week…
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Approximation

• Let G = (V, E)

• Assume that a minimum vertex cover
of G has 3 nodes

• Assume that C ⊆ V is a vertex cover,
and there are 3, 4, 5, or 6 nodes in C

• Then “C is a 2-approximation of
a minimum vertex cover”

37



Approximation

• Let G = (V, E)

• Assume that a minimum vertex cover
of G has at least 100 nodes

• Assume that C ⊆ V is a vertex cover,
and there are at most 105 nodes in C

• Then “C is a 1.05-approximation of
a minimum vertex cover”
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Approximation

• Let G = (V, E)

• Assume that a maximum matching
of G has 8 edges

• Assume that M ⊆ E is a matching,
and there are 4, 5, 6, 7, or 8 edges in M

• Then “M is a 2-approximation of
a maximum matching”
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Approximation

• Let G = (V, E)

• Assume that a maximum matching
of G has at most 105 edges

• Assume that M ⊆ E is a matching,
and there are at least 100 edges in M

• Then “M is a 1.05-approximation of
a maximum matching”
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Approximation
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graph:

minimum dominating set:

1.5-approximation of minimum dominating set:



Exercise 1.1a

• Let I ⊆ V and C = V \ I

• Claim: I is an independent set 
iff C is a vertex cover

42

I: C:



Exercise 1.1a

• Let I ⊆ V and C = V \ I

• Claim: I is an independent set 
iff C is a vertex cover

• Idea: verify each edge

43

I: C:



Exercise 1.1a

• Assume that I  is an independent set:
• let e ∈ E

• definition of independent set:  |e ∩ I| ≤ 1

• edges have two endpoints:  |e ∩ V| = 2

• therefore  e ∩ (V \ I) ≠ ∅

• Therefore V \ I  is a vertex cover
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Exercise 1.1a

• Assume that C  is a vertex cover:
• let e ∈ E

• definition of vertex cover:  e ∩ C ≠ ∅

• edges have two endpoints:  |e ∩ V| = 2

• therefore  |e ∩ (V \ C)| ≤ 1

• Therefore V \ C  is an independent set
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Exercise 1.1a

• Let I ⊆ V and C = V \ I

• Claim: I is an independent set 
iff C is a vertex cover

• Proof: verify each edge
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I: C:



Exercise 1.1b

• Let I ⊆ V and C = V \ I

• Claim: I is a maximal independent set 
iff C is a minimal vertex cover
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I: C:



Exercise 1.1b

• Let I ⊆ V and C = V \ I

• Claim: I is a maximal independent set 
iff C is a minimal vertex cover

• Idea: use 1.1a
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I: C:



Exercise 1.1b

• Assume: I  is a maximal independent set
• define C = V \ I

• then C  is a vertex cover

• assume that C’ ⊂ C  is also a vertex cover

• then I’ = V \ C’  is an independent set

• we have I’ ⊃ I

• therefore I  was not maximal, contradiction
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I

C

I'

C'

V



Exercise 1.1b

• Assume: C  is a minimal vertex cover
• define I = V \ C

• similar: we already know
that I  is an independent set,
only need to show maximality

• assume that I  is not maximal,
then C  cannot be minimal,
contradiction
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I

C

I'

C'

V



Exercise 1.1c

• Let I ⊆ V and C = V \ I

• Claim: I is a maximum independent set 
iff C is a minimum vertex cover
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I: C:



Exercise 1.1c

• Let I ⊆ V and C = V \ I

• Claim: I is a maximum independent set 
iff C is a minimum vertex cover

• Idea: use 1.1a
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I: C:



Exercise 1.1c

• Assume: I  is a maximum independent set
• define C = V \ I

• then C  is a vertex cover

• assume that C’  is also a vertex cover, |C’| < |C|

• then I’ = V \ C’  is an independent set

• we have |I’| = |V| − |C’| > |V| − |C| = |I|

• therefore I  was not of a maximum size, contradiction
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Exercise 1.1c

• Assume: C  is a minimum vertex cover
• define I = V \ C

• again we already know that I  is an independent set

• similar: assume that there is a larger independent set,
then C  cannot be a minimum vertex cover,
contradiction
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Exercise 1.1d

• Show that the following is possible:
• C  is a 2-approximation of

minimum vertex cover

• I = V \ C  is not a 2-approximation of
maximum independent set
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Exercise 1.1d

• Show that the following is possible:
• C  is a 2-approximation of

minimum vertex cover

• I = V \ C  is not a 2-approximation of
maximum independent set

56

I*: C*:

I: C:



Exercise 1.1e

• Show that the following is possible:
• I  is a 2-approximation of

maximum independent set

• C = V \ I  is not a 2-approximation of
minimum vertex cover
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Exercise 1.1e

• Show that the following is possible:
• I  is a 2-approximation of

maximum independent set

• C = V \ I  is not a 2-approximation of
minimum vertex cover

58

I*: C*:

I: C:



Schedule

• Today:
• questions? comments?

• Tomorrow:
• last chance to discuss exercises of Chapter 1

• Next week:
• Chapter 2 — remember to read it before the lectures

59



Port-Numbering 
Model

60

DDA Course
Lecture 2.1
20 March 2012



Distributed Systems

• Intuition:
• distributed system
≈ communication network
≈ network equipment + communication links

• distributed algorithm
≈ computer program

• Precisely how are we going to model this?

61



Port Numbering
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Port Numbering

• Network device = state machine with
communication ports

• Ports are numbered: 1, 2, 3, …

63

431 2



Port-Numbered Network

• Network = several devices,
connections between ports

• we will formalise it as a triple N = (V, P, p)

64

431 2 1 2 3



Port-Numbered Network
• nodes V = {u, v, …}

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …}

• connections p(u, 4) = (v, 1),  p(v, 1) = (u, 4),  …

65

431 2 1 32u v



Port-Numbered Network
• nodes V = {u, v, …}

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …}

• connections p(u, 4) = (v, 1),  p(v, 1) = (u, 4),  …

66

u, 4
u, 3
u, 2
u, 1

v, 3
v, 2
v, 1

not a complete example,
some ports not connected!



Port-Numbered Network
• nodes V = {a, b, c, d}

• ports P = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (d, 1)}

• connections p(a, 1) = (b, 1),  p(b, 1) = (a, 1),  …
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

all ports connected



Port-Numbered Network
• nodes V = a finite set

• ports P = a finite set of (node, number) pairs

• connections p = an involution P → P
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1 involution:
p−1 = p
p( p(x)) = x



Port-Numbered Network

• We may have multiple connections or loops

69

b, 1
b, 2
b, 3

a, 1

a, 4
a, 3
a, 2

c, 4
c, 3

c, 1
c, 2

d, 2
d, 1

p(c, 3) = (c, 4)
p(c, 4) = (c, 3)
p(d, 2) = (d, 2)



Port-Numbered Network

• Simple port-numbered network:
no multiple connections, no loops
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1



Port-Numbered Network

• Underlying graph of
a simple port-numbered network
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1 d
a

c

b



Distributed
Algorithms

72



Distributed Algorithm

• State machine, x = current state:
• x ← init(z): initial state for local input z

• send(x): construct outgoing messages

• send(x) = vector, one element per port

• x ← receive(x, m): process incoming messages

• m = vector, one element per port
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Execution

• “Execution of algorithm A in network N ”

• All nodes of N are identical copies
of the same state machine A

• functions init, send, and receive may
depend on node degree (number of ports)

• in all other aspects the nodes are identical
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Execution

• All nodes are initialised

• Time step (communication round):
• all nodes construct outgoing messages

• messages are propagated

• all nodes process incoming messages

• Continue until all nodes have stopped
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Communication Round
• Construct outgoing messages
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

B1
A1

A3

D1
A2

C1

C2

B2



Communication Round
• Construct outgoing messages

• Exchange messages along communication links
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

B1
A1

A3

D1
A2

C1

C2

B2



Communication Round
• Construct outgoing messages

• Exchange messages along communication links

78

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

A1
B1

D1

A3
C1

A2

B2

C2



Communication Round
• Construct outgoing messages

• Exchange messages along communication links

• Process incoming messages
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b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

A1
B1

D1

A3
C1

A2

B2

C2



Communication Round
• Construct outgoing messages

• Exchange messages along communication links

• Process incoming messages

• Communication rounds are synchronous

• Each step happens synchronously in parallel for all nodes

• Everything is deterministic

80



Distributed Algorithm

• Algorithm designed chooses:
• how to initialise nodes

• how to construct outgoing messages

• how to process incoming messages

• Network structure determines:
• how messages are propagated between ports

81



Distributed Algorithm

• “Algorithm A solves graph problem Π
on graph family F ”:

• for any graph G ∈ F,

• for any simple port-numbered network N
that has G as underlying graph,

• execution of A on N stops and produces
a valid solution of Π

82



Distributed Algorithm

• “Algorithm A finds a minimum vertex cover
in any regular graph”:

• for any simple port-numbered network N
that has a regular graph as underlying graph,

• execution of A on N stops,

• the stopping states of the nodes are “0” and “1”,

• nodes in state “1” form a minimum vertex cover

83



Example

• Design a distributed algorithm that
finds a minimum vertex cover in 

84

F = { , }



Example

• Design a distributed algorithm that
finds a minimum vertex cover in 

85

F = { , }

1
1

2

1

2
1 1

1

2

1

2
1

1

2

1
1

2

1

2
1 1

1

2

1

2
1

1

2 …



Example

• Nodes of degree 1:
• init1 = ?,  send1(?) = (A)

• receive1(?, A) = 0,   receive1(?, B) = 0

• Nodes of degree 2:
• init2 = ?,  send2(?) = (B, B)

• receive2(?, A, A) = 1,    receive2(?, A, B) = 1,
receive2(?, B, A) = 1,    receive2(?, B, B) = 0

86

0 1

?



Example

• Design a distributed algorithm that
finds a minimum vertex cover in 

• Solved!

• Running time: 1 communication round

87

F = { , }



General
Principles

88



General Principles

• Synchronous execution
• “worst case”

• synchronisers exist

89



General Principles

• Synchronous execution

• Deterministic algorithms
• cf. the name of this course

• nodes do not have any source of randomness

90



General Principles

• Synchronous execution

• Deterministic algorithms

• Anonymous networks
• identical nodes (except for their degree)

• Chapters 5–6: what happens if each node
has a unique name
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General Principles

• Synchronous execution

• Deterministic algorithms

• Anonymous networks

• Time = number of communication rounds
• focus on communication, not computation…
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Examples

93



Maximal Matching

94

• We will design distributed algorithm BMM
that finds a maximal matching in
any 2-coloured graph

• we assume that we are given a proper 2-colouring
of the underlying graph as input

• algorithm will output a maximal matching



95

1

2 2

1

1

2 2

1

1 2

2 1

Given

1

2 2

1

1

2 2

1

01 01

01 10

Find
encoding of 2-colouring encoding of maximal 

matching



Maximal Matching
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• Algorithm idea:
• white nodes send proposals to their ports, one by one

• black nodes accept the first proposal that they get

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1



Maximal Matching

97

• Algorithm idea:
• white nodes send proposals to their ports, one by one

• black nodes accept the first proposal that they get

• proposal–accept pair =
edge in matching

• Running time: O(∆)
• ∆ = maximum degree

1
2 2

1

1
2 2

1



Maximal Matching

98

• We can find a maximal matching
if we are given a 2-colouring

• some auxiliary information is necessary,
as we will see in Chapter 3

• Application: vertex cover
approximation

• works correctly in any network,
no need to have 2-colouring!

1
2 2

1

1
2 2

1



Vertex Cover

• We will design distributed algorithm VC3
that finds a 3-approximation of
minimum vertex cover in any graph

• each node stops and outputs “0” or “1”

• nodes that output “1” form a 3-approximation of
a minimum vertex cover for the underlying graph

99



Vertex Cover

• Given: a port-numbered network
• drawing here just the underlying graph…
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Vertex Cover

• Construct the bipartite double cover:
two copies of each node, edges across

101



Vertex Cover

• Simulate algorithm BMM,
outputs a maximal matching M’
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Vertex Cover

• C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!
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Vertex Cover

• C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

• Why vertex cover?
• assume that there

is an uncovered edge

• conclude that M’
is not maximal

104



Vertex Cover

• C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

• Why vertex cover?

• Why 3-approximation?

105



Vertex Cover

• Idea: matching in bipartite double cover
→ paths and/or cycles in original graph

106

→→



Vertex Cover

• Any vertex cover contains at least
1/3 of nodes of any path or cycle

• 3-approximation if we take all of these

107



Summary

• We can solve non-trivial problems
with distributed algorithms

• e.g., 3-approximation of minimum vertex cover

• What next?
• week 3: problems that cannot be solved at all

• week 4: more positive results

• weeks 5–6: what changes if the nodes have names?

108



Discussion &
Exercises

109

DDA Course
Lecture 2.2
22 March 2012



Counting

• Design a distributed algorithm that counts
the number of nodes in any path graph

• given a simple port-numbered network N = (V, P, p)
that has a path graph as the underlying graph,
all nodes stop and output |V |

110

5
5 5 5

5
1

1

2

1

2
1 1

1

2

1

2
1

1

2
4

4 4
4



Counting

• Design a distributed algorithm that counts
the number of nodes in any path graph

• Algorithm idea:

111

5 5 5 5 5

1 2 3 4

4 3 2 1



Counting

• Algorithm for path graphs
• “arithmetic circuit”
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a
a+1

1

b+1

b

a+1

a

a

b
a+b+1

1

1

1

2

1

2

1

2



Counting

• Design a distributed algorithm that counts
the number of nodes in any tree

• given a simple port-numbered network N = (V, P, p)
that has a tree as the underlying graph,
all nodes stop and output |V |
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Counting

• Design a distributed algorithm that counts
the number of nodes in any tree

114

1 2 4 5

8 7 5 4

1 1

1

1

8

8

88
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a
a+11

b+1

b

a+1

a

a

b
a+b+1

a

b

a+b+c+1
c

b

c

b+c+1

a

c

a+c+1

a

b

a+b+1

1

1

1

2

1

2

1

2

3

1

2

3

1

2

3

1

2

3

1

2



9

1

2

4

4

1 1 11round 1

round 2

round 3
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Counting

• Distributed algorithm that counts
the number of nodes in any tree

• same idea: compute any property of the tree!

• time: O(diam(G))

117

1 2 4 5

8 7 5 4

1 1

1
1

8

8

88



Impossibility
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Proof Techniques

• Covering maps
• problems that cannot solved at all

• Isomorphic local neighbourhoods
• problems that cannot be solved quickly

119



Covering Map

• Networks N = (V, P, p) and N’ = (V ’, P ’, p’ )

• Surjection φ: V → V ’  that preserves
inputs, degrees, connections, and
port numbers

120
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N:

N’:

1

2

1

2

1

1

2

1

2

1

1

2

1

2

1

3

2

1

3

2

1

3

2
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

122



N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Degrees agree

v

φ(v)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Neighbours in port 1 agree

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3
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1

1
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1

Neighbours in port 2 agree

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2
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1
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3
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1

1

2
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3

2

1

1
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Holds for any pair of nodes

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Holds for any pair of nodes

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Holds for any pair of nodes

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Holds for any pair of nodes

v

φ(v)

u

φ(u)
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

Holds for any pair of nodes

v

φ(v)

u

φ(u)
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Covering Map

• Networks N = (V, P, p) and N’ = (V ’, P ’, p’ )

• Surjection φ: V → V ’  that preserves
inputs, degrees, connections, and
port numbers

• Theorem: If we run an algorithm A
in N and N’, then nodes v and φ(v)
are always in the same state
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Covering Map

• Theorem: If we run an algorithm A
in N and N’, then nodes v and φ(v)
are always in the same state

• Proof: By induction
• before round i: map φ preserves local states

• during round i: map φ preserves messages

• after round i: map φ preserves local states
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

x1
x3 x3

x1

x4x4

x2 x2

x3

x1

x4

x2

Initially, local states agree
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

x1
x3 x3

x1

x4x4

x2 x2

x3

x1

x4

x2

Thus outgoing messages agree

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

E

G

D

F

A

B

C

H
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

x1
x3 x3

x1

x4x4

x2 x2

x3

x1

x4

x2

Thus incoming messages agree

D

F

H

A

G

B

E

C
G

E

A

B

D

F

H

C

D

F

H

A

G

B

E

C
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

y1
y3 y3

y1

y4y4

y2 y2

y3

y1

y4

y2

Thus new local states agree
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N:

N’:

φ

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

1

2

3

2

1

1

2

1

y1
y3 y3

y1

y4y4

y2 y2

y3

y1

y4

y2

By induction, local outputs agree

137



138

Covering Map

• Application: symmetry breaking
in a path graph

N: N’: 111

G:
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Covering Map

• Application: symmetry breaking
in a path graph

N: N’: 111

G:
Same output!



140

Covering Map

• Application: symmetry breaking
in a path graph

N: N’: 111

G:
Same output!



141

Covering Map

• Application: symmetry breaking in a cycle

N: N’: 1

2

1

2

1

2

1

2

1

2

G:



Local Neighbourhoods

• Local neighbourhoods of nodes u and v
“look identical” up to distance r

• isomorphism between radius-r neighbourhood of u
and radius-r neighbourhood of v

• preserves inputs, degrees, connections, and
port numbers
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Local Neighbourhoods

• Local neighbourhoods of nodes u and v
“look identical” up to distance r

143

3

2

1

0

3

2

1

0



Local Neighbourhoods

• Local neighbourhoods of nodes u and v
“look identical” up to distance r

• Theorem: In any algorithm, up to time r,
the local states of u and v are identical

• Informal proof:  time ≈ distance

• Formal proof:  by induction on time

144



Local Neighbourhoods

• Time 0: identical local states in
radius-r neighbourhoods

145

33



Local Neighbourhoods

• Time 1: identical outgoing messages in
radius-r neighbourhoods

146

33



Local Neighbourhoods

• Time 1: identical incoming messages in
radius-(r−1) neighbourhoods

147

3

2

3

2



Local Neighbourhoods

• Time 1: identical local states in
radius-(r−1) neighbourhoods

148

3

2

3

2



Local Neighbourhoods

• Time t: identical local states in
radius-(r−t) neighbourhoods

149

3

2

1

3

2

1



Local Neighbourhoods

• Time r: identical local states in
radius-0 neighbourhoods

150

3

2

1

0

3

2

1

0



Local Neighbourhoods

• Application: finding midpoint of a path
requires Ω(n) rounds

151

3 2 1 0

3 2 1 0



Local Neighbourhoods

• Application: counting the number of nodes
requires Ω(n) rounds

152

3 2 1 0

3 2 1 0



Proof Techniques

• Covering maps
• problems that cannot solved at all

• Isomorphic local neighbourhoods
• problems that cannot be solved quickly

• Plenty of exercises…
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Vertex Covers &
Edge Packings

154

DDA Course
Lecture 4.1
3 April 2012

⅕
⅕⅕

⅕⅕½
½½

½



Vertex Cover

• Finding a minimum
vertex cover is hard

• How to find good
approximations?

• General idea: find
something else first,
show that it is useful…

155



Chapter 1
maximal matching

156

Exercise 1.3:
• find any maximal

matching

• take all matched nodes

• 2-approximation of
minimum vertex cover



Chapter 1
maximal matching

2-approx.

no distributed
algorithm

157

Corollary 3.3:
• there is no distributed

algorithm that finds
a maximal matching



158

Chapter 1
maximal matching

2-approx.

no distributed
algorithm

Chapter 2
paths & cycles

3-approx.

fast distributed
algorithm VC3
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Chapter 1
maximal matching

2-approx.

no distributed
algorithm

Chapter 2 Chapter 4
paths & cycles

3-approx. 2-approx.

edge packing

fast distributed
algorithm

fast distributed
algorithm

159
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Edge Packing

• Function  f: E → [0, 1]

• f [v] = sum of  f (e) over
all edges e incident to v

• Constraints: f [v] ≤ 1

⅕
⅕⅕

⅕⅕
½
½½

½

f [  ] = 1/5
f [  ] = 1
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Edge Packing

• Function  f: E → [0, 1]

• f [v] = sum of  f (e) over
all edges e incident to v

• Constraints: f [v] ≤ 1
• v is saturated if f [v] = 1

• edge e = {u, v} is saturated if u or v is saturated

• edge packing is maximal if all edges are saturated

⅕
⅕⅕

⅕⅕
½
½½

½
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Edge Packing

• Function  f: E → [0, 1]

• f [v] = sum of  f (e) over
all edges e incident to v

• Constraints: f [v] ≤ 1

• “Fractional” matching

0
01

00
1
00

1
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Edge Packing

• Find any maximal
edge packing

• Set of saturated nodes:
vertex cover

• Proof: maximal
= each edge saturated
= each edge has a saturated endpoint
= saturated nodes form a vertex cover

⅕
⅕⅕

⅕⅕
½
½½

½
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Edge Packing

• Find any maximal
edge packing

• Set of saturated nodes:
2-approximation of
minimum vertex cover

⅕
⅕⅕

⅕⅕
½
½½

½
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Edge Packing
Each node v ∈ C*
has 1 unit of money

Give f (e) units
to each edge e

Double all money

Give f [v] = 1 units to each 
saturated node v ∈ C

|C| ≤ 2 |C*|

.1

.1
.0

.8 .0.2

.1

.1

.8 .1

.1

.1
.0

.8 .0.2

.1

.1

.8 .1

C* C



Edge Packing

• How to find maximal edge packings?

• Basic idea:
• bipartite

double covers

• maximal
matching

• recursively!

166
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½
½
½

0 ½

½
½0

1

1
00

One edge: 1/2

Two edges: 1
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Edge Packing

• In general only “half-saturating”

½½ ½½ 1 000

unsaturated edge  e = {u, v}
f [u] = f [v] = 1/2

u v
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½½ ½½ 1 000
Half-saturating edge packing:

Unsaturated subgraph (lower degrees):

1
Recursively, find a maximal edge packing:

Combine solutions — maximal edge packing:

½½ ½½ 1 000
1

½½ ½½ 1 00½

1 ×
+ ½ ×

=
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Edge Packing

• Recursion by maximum degree ∆

• Case ∆ = 1 trivial

• Assuming that case ∆ − 1 has been solved:
• find a half-saturating edge packing  f

• recursively, find a maximal edge packing  g  for
unsaturated subgraph (maximum degree ∆ − 1)

• return maximal edge packing  h = f + g/2



Summary

• Distributed algorithms that
finds a maximal edge packing

• in any graph of maximum
degree ∆ in time O(∆2)

• Saturated nodes:
2-approximation of
minimum vertex cover

171
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Unique
Identifiers

172
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Unique Identifiers

• Networks with globally unique identifiers
• IPv4 address, IPv6 address, MAC address,

IMEI number, …

• “Everything” can be discovered
• in a connected graph G, all nodes can discover

full information about G in time O(diam(G))
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9 4
6

58
3 72

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

round 5: {2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

…

{2,3}
{2,7}
{6,7}
{6,8}
{6,9}

{2,3}
{2,7}

{5,8}
{6,8}

{2,3}
{2,7}
{6,7}

{4,9}
{6,9}

{5,8}
{6,7}
{6,8}
{6,9}

{4,9}
{6,7}
{6,8}
{6,9}

{2,7}
{4,9}
{5,8}
{6,7}
{6,8}
{6,9}

round 2:

{2,7}
{6,7}

{2,3} {5,8}{2,3}
{2,7}

{4,9}{5,8}
{6,8}

{4,9}
{6,9}

{6,7}
{6,8}
{6,9}

round 1:

9
4

6

5

8

3

7

2

9
4

6

8

7

9
4

6



Unique Identifiers

• “Everything” can be discovered
• in a connected graph G, all nodes can discover

full information about G in time O(diam(G))

• “Everything” can be solved
• once all nodes know G, solving a graph problem

is just a local state transition

• Key question: what can be solved  fast?

175



Graph Colouring

• Given unique identifiers,
can we find a graph colouring fast?

• unique identifiers from {1, 2, …, x} can be interpreted
as a graph colouring with x colours

• problem: huge number of colours

• we only need to solve a colour reduction problem:
given an x-colouring, find a y-colouring
for a small y < x

176



Greedy Graph Colouring

• All nodes of colour x pick the smallest
free colour in their neighbourhood

• there is always a free colour
in the set {1, 2, …, ∆ + 1}

• reduces the number of colours from x to x − 1,
assuming that x > ∆ + 1

• Very slow…

177



Fast Graph Colouring

• Let’s first study
a special case…

• Directed
pseudoforest

• edges oriented

• outdegree ≤ 1

178

64

11

27
16

3

81
68

87
63

19

89

59

8

45

14

52

31

5
98

97

90

95
94



Fast Graph Colouring

• Idea: colour = binary string

• Reduce colours:
• k  bits →

1 + log2 k  bits

• 2k colours →
2k colours

179

0011110101000011

0000110001000011

0001110101000011

10001

10000

10111

16 bits 1 + 4 bits



Fast Graph Colouring

• Compare bit string with the successor,
find the first bit that differs

180

0011110101000011

0000110001000011

10001

k bits 1 + log k bits

bit 8, 10001value 1



Fast Graph Colouring

• Correct, no matter what the successor does

181

…

0011110101000011

0000110001000011

10001

k bits 1 + log k bits

bit 8,

bit 8,

bit 6,
bit 7,

10001

01110
01101

10000

value 1

value 0

value 1
value 0

…

…

…



Fast Graph Colouring

• Correct, no matter what the successor does

• For each directed edge (u, v):
• the new colour of node u is different from

the new colour of its successor v

• Proper graph colouring

182



Fast Graph Colouring

• No successor?
Pretend that there is one…

183

0011110101000011 00001

k bits 1 + log k bits

0011110101000011

0000000000000000



Fast Graph Colouring

• Very fast colour reduction:
• 2128 colours → 2 · 128 = 28 colours

• 28 colours → 2 · 8 = 24 colours

• 24 colours → 2 · 4 = 23 colours

• 23 colours → 2 · 3 = 6 colours

• But now we are stuck – how to get below 6?

184



Fast Graph Colouring

• Directed pseudotree with 6 colours:
how to reduce the number of colours?

185

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3

1

6 3

1

2

6

5

5

3



Fast Graph Colouring

• Shift colours “down”:
all predecessors have the same colour

186

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

make up something
if no successor

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

make up something
if no successor



Fast Graph Colouring

• Now greedy works very well:
there is always a free colour in set {1, 2, 3}

187

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3



Fast Graph Colouring

• Colour reduction in
directed pseudotrees

• bit comparisons: very quickly
from x to 6 colours

• 2128 → 28 → 16 → 8 → 6

• shift + greedy: slowly
from 6 to 3 colours

• 6 → 5 → 4 → 3

188

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3
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3
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8
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5
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Fast Graph Colouring

• Colour reduction in
directed pseudotrees

• next lecture:
fast graph colouring
for arbitrary graphs

189

1

6 3

1

2

6

5

5

3

6

1 1

6

1

2

6

3

1

6

1 1

6

1

2

6

3

1

1

2

3

64

11

27
16

3

81
68

63

8

45

14

5
98
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Graph
Colouring

190
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Fast Graph Colouring

• Previous lecture:
• colour reduction in

directed pseudoforests

• Today:
• colour reduction in

general graphs of
maximum degree ∆

191

64

11

27
16

3

81
68

87
63

19

89

59

8

45

14

52

31

5
98

97

90

95
94
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27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

Input:



27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

Colours → orientation: 

Input:
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27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

27

163

81

68

87 63

19

89

59

8

45

14
5231

5 97
90

9594

Colours → orientation: 

Port numbers → partition
in ∆ directed pseudoforests

Input:
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1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31

Find a 3-colouring
for each pseudoforest

Computed in parallel,
simulate ∆ instances of
the algorithm

Each node has ∆ colours,
one for each forest
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1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31
G’0: (∆+1)-coloured
– trivial, no edges

A

AA

A

A

A A

A

A

A

A

A

A
AA

A A
A

AA

G’0
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1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31
union of edges,
combination of colours

a + b → (a, b)

A

AA

A

A

A A

A

A

A

A

A

A
AA

A A
A

AA

A1

A3A3

A2

A1

A3 A1

A3

A1

A2

A3

A3

A2
A3A3

A3 A1
A1

A3A2

G’0 G1

G’1
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1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31
G’0: (∆+1)-coloured
G1: 3-coloured
G’1: 3(∆+1)-coloured

A

AA

A

A

A A

A

A

A

A

A

A
AA

A A
A

AA

A1

A3A3

A2

A1

A3 A1

A3

A1

A2

A3

A3

A2
A3A3

A3 A1
A1

A3A2

G’0 G1

G’1
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1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31
G’0: (∆+1)-coloured
G1: 3-coloured
G’1: 3(∆+1)-coloured,
reduce to ∆+1 greedily

A

AA

A

A

A A

A

A

A

A

A

A
AA

A A
A

AA

B

AC

C

B

C A

C

A

C

A

C

A
CA

A B
B

AC

G’0 G1

G’1
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G’1: (∆+1)-coloured

G’1
1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31

B

AC

C

B

C A

C

A

C

A

C

A
CA

A B
B

AC
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G’1: (∆+1)-coloured
G2: 3-coloured
G’2: 3(∆+1)-coloured

G’1

G2G’2

1

33

2

1

3 1

3

1

2

3

3

2
33

3 1
1

32

3

31

1

2

1 1

3

1

1

1

1

3
32

3 1
1

11

1

11

1

3

2 2

3

1

1

1

1

3
23

3 1
1

31

B

AC

C

B

C A

C

A

C

A

C

A
CA

A B
B

AC

B3

A3C1

C1

B2

C1 A1

C3

A1

C1
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G’1: (∆+1)-coloured
G2: 3-coloured
G’2: 3(∆+1)-coloured,
reduce to ∆+1 greedily
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G’2: (∆+1)-coloured
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G’2: (∆+1)-coloured
G3: 3-coloured
G’3: 3(∆+1)-coloured

G3
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G’2: (∆+1)-coloured
G3: 3-coloured
G’3: 3(∆+1)-coloured,
reduce to ∆+1 greedily G3
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’(∆+1)-colouring of
the original graph
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Fast Graph Colouring

• Colour reduction from x to ∆+1
• orientation:  1 round

• partition:  0 rounds

• 3-colouring:  O(log* x) rounds    — see Exercise 5.4

• ∆ phases:

• merge & reduce 3(∆+1) → ∆+1:  2(∆+1) rounds

• total:  O(∆2 + log* x) rounds
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Fast Graph Colouring

• Colour reduction from x to ∆+1
• O(∆2 + log* x) rounds

• Plenty of applications — see exercises

• Similar techniques can be used
to solve other problems
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Fast Graph Colouring

• Colour reduction from x to ∆+1
• O(∆2 + log* x) rounds

• Fast, but running time depends on x

• Next week:
• dependence on x is necessary

• even if ∆ = 2, we cannot reduce the number of colours
from x to 3 in constant time, independently of x



Ramsey
Theory
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DDA Course
Lecture 6.1
24 April 2012

1
2

3
46

5

1
2

3
46

5
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“… certain theorems on combinations
which have an independent interest…”



Pigeonhole Principle

N = 4 items, colour each of them red or blue

212

only 2 red and only 2 blue

1 1
2
3
4

2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Possible:



Pigeonhole Principle

N = 5 items, colour each of them red or blue
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1 1
2
3
4
5

2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

at least 3 red at least 3 blueorAlways:



Pigeonhole Principle

• Let n = 3

• N items, colour each of them red or blue

• If N is large enough, there are always
• at least n red items or

• at least n blue items

• Here N ≥ 5 is sufficient, N < 5 is not
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Pigeonhole Principle

• Let n be anything

• N items, colour each of them red or blue

• If N is large enough, there are always
• at least n red items or

• at least n blue items

• Here N ≥ 2n − 1 is sufficient
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Ramsey Theory

• Generalisation of pigeonhole principle

• Again, we have N items

• However, we will not colour items,
we will colour sets of items

• example: we colour all 2-subsets of items

• “k-subset” = subset of size k

216



Ramsey Theory

• Y: set with N items
• N = 4:   Y = {1, 2, 3, 4}

• f: colouring of k-subsets of Y
• k = 2:   f ({1, 2}) = red,  f ({1, 3}) = blue, …

• X ⊆ Y  is monochromatic if
all k-subsets of X have the same colour
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1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

N = 4,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

1, 2 1, 3 2, 3
{1, 2, 3} is not monochromatic:

1, 2 1, 4 2, 4
{1, 2, 4} is monochromatic:



1

2

3

41, 2 1, 3 1, 4 2, 3 2, 4 3, 4

N = 4,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

1, 2 1, 3 2, 3
{1, 2, 3} is not monochromatic:

1, 2 1, 4 2, 4
{1, 2, 4} is monochromatic:

1

2

3

1

2 4

219



Ramsey Theory

• Let n = 3,  k = 2

• N items, colour each k-subset red or blue

• Claim: if N is sufficiently large, there is
always a monochromatic subset of size n
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1, 2 1, 3 1, 4 1, 5 2, 3
2, 4

N = 5,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

{1, 2, 3} is not monochromatic:

2, 5 3, 4 3, 5 4, 5
1

2
3

45

1
2

31, 2 1, 3 2, 3

Check all possibilities:
there is no monochromatic subset of size 3
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
{1, 3, 4} is monochromatic
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
{1, 3, 5} is monochromatic
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Ramsey Theory

• Let n = 3,  k = 2

• N items, colour each k-subset red or blue

• Claim: if N is sufficiently large, there is
always a monochromatic subset of size n

• N = 5 is not enough

• it is possible to show that N = 6 is enough
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Ramsey Theory

• Let n and k be any positive integers

• N items, colour each k-subset red or blue

• Claim: if N is sufficiently large, there is
always a monochromatic subset of size n
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Ramsey Theory

• Let c, n, and k be any positive integers

• N items, colour each k-subset with
a colour from {1, 2, …, c}

• Claim: if N is sufficiently large, there is
always a monochromatic subset of size n
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Ramsey’s Theorem

• Theorem: For all c, n, and k, there is
a number Rc(n; k) such that if you take
N ≥ Rc(n; k) items, and colour each
k-subset with one of c colours, there is
always a monochromatic n-subset

229

R2(3; 2) = 6

1
2

3

46
5

1
2

3

46
5



Ramsey’s Theorem

• Theorem: For all c, n, and k, there is
a number Rc(n; k) such that if you take
N ≥ Rc(n; k) items, and colour each
k-subset with one of c colours, there is
always a monochromatic n-subset

• proof: see the course material

• numbers Rc(n; k) are called Ramsey numbers

• examples:  R2(3; 2) = 6,  R2(4; 2) = 18
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Ramsey’s Theorem

• No matter how you colour subsets,
if the base set is large enough, we can
always find a monochromatic subset

• Our application: no constant-time
algorithm for 3-colouring directed cycles

• no matter how you design your algorithm,
if the set of possible identifiers is large enough,
we can always find a “bad input”
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Colouring in
Constant Time?

232

DDA Course
Lecture 6.2
26 April 2012



Colouring in Cycles

• Problem: 3-colouring in directed cycles
• unique identifiers from {1, 2, … n}

• outdegree = indegree = 1

233

3

6

1

9
2

10

7

4
8 5

1

2

1

3
1

2

2

3
1 2



Colouring in Cycles

• Problem: 3-colouring in directed cycles
• unique identifiers from {1, 2, … n}

• outdegree = indegree = 1

• We know how to solve this
problem in time O(log* n)

• special case of
directed pseudoforests

234

1

2

1

3
1

2

2

3
1 2



Colouring in Cycles

• Problem: 3-colouring in directed cycles
• unique identifiers from {1, 2, … n}

• outdegree = indegree = 1

• We know how to solve this
problem in time O(log* n)

• Can we do it in time O(1)?
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2

1

3
1

2

2

3
1 2



Ramsey Says No

• Assume that algorithm A:
• in any directed cycle,

stops in time T for some constant T

• produces local outputs from {1, 2, 3}

• We will use Ramsey’s theorem to show that 
there is a directed cycle in which A fails
to produce a proper vertex colouring
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Ramsey Says No

• Example: algorithm runs in time T = 2

• Output of a node only depends
on k = 2T + 1 = 5 nodes around it

• choose c = 3,  n = k + 1 = 6

• choose N ≥ Rc(n; k)

• c-colour k-subsets of {1, 2, …, N}:
there is a monochromatic n-subset
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Ramsey Says No

• Set of identifiers: Y = {1, 2, … N}

• We use algorithm A to colour k-subsets of Y
• for each set B = {x1, x2, …, xk} ⊆ Y,

x1 < x2 < … < xk

• construct a cycle where nodes
x1, x2, …, xk are placed in this order

• f (B) = output of the middle node

238

…

…

…

…
x1

…

x2

x3
x4 x5f(B)
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8

7

6

10
1

9

2

3
4 5

1

2

1

3
1

2

2

1
3 2

A

Colour each k-subset of Y:
— what is the colour of {1, 2, 3, 4, 5}?

— middle node 3 outputs “blue”
— set f({1, 2, 3, 4, 5}) = “blue”

1, 2, 3, 4, 5



4

2

1

7
3

5

6

8
9 10

1

2

3

3
2

2

1

3
2 1

A

Colour each k-subset of Y:
— what is the colour of {3, 6, 8, 9, 10}?

— middle node 8 outputs “green”
— set f({3, 6, 8, 9, 10}) = “green”

1, 2, 3, 4, 5 3, 6, 8, 9, 10
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4

2

1

7
3

5

6

8
9 10

1

2

3

3
2

2

1

3
2 1

A

Colour each k-subset of Y:
— what is the colour of {3, 6, 8, 9, 10}?

— middle node 8 outputs “green”
— set f({3, 6, 8, 9, 10}) = “green”

1, 2, 3, 4, 5 3, 6, 8, 9, 10
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Ramsey Says No

• We have assigned a colour f (B) ∈ {1, 2, 3}
to each k-subset B of Y

1, 2, 3, 4, 5
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 4, 8
1, 2, 3, 4, 9

1, 2, 3, 4, 10
1, 2, 3, 5, 6
1, 2, 3, 5, 7
1, 2, 3, 5, 8
1, 2, 3, 5, 9

1, 2, 3, 5, 10
1, 2, 3, 6, 7
1, 2, 3, 6, 8

6, 7, 8, 9, 10
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Ramsey Says No

• We have assigned a colour f (B) ∈ {1, 2, 3}
to each k-subset B of Y

• Ramsey: set Y was large enough, there
is a monochromatic subset of size n

• example: {2, 3, 5, 7, 8, 9} is monochromatic

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9
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Ramsey Says No

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9

4

1

9

10
2

6

3

5
7 8

What happens here?
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2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9

4

1

9

10
2

6

3

5
7 8

?

?

?

?
?

?

?

1
? ?

A

6

4

1

10
2

9

3

5
7 8

?

?

?

?
?

?

?

1
? ?

A

same local
neighbourhood,
same output



2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9

4

1

9

10
2

6

3

5
7 8

?

?

?

?
?

?

?

?
1 ?

A

4

2

1

10
3

6

5

7
8 9

?

?

?

?
?

?

?

1
? ?

A

same local
neighbourhood,
same output
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Ramsey Says No

Bad output!

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9

4

1

9

10
2

6

3

5
7 8

?

?

?

?
?

?

?

1
1 ?

A



Ramsey Says No

• There is no algorithm that
finds a 3-colouring in time T

• the proof holds for any constant T

• larger T → need a (much) larger identifiers space Y
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Summary
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Distributed Algorithms

• Two models

• Port-numbering model
• key question: what is computable?

• Unique identifiers
• key question: what can be computed fast?
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Algorithm Design

• Colouring is a powerful
symmetry-breaking tool

• Port-numbering model
• bipartite double covers → 2-colouring…

• Unique identifiers
• identifiers → colouring → colour reduction…
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Lower Bounds

• Port-numbering model
• covering maps

• local neighbourhoods

• Unique identifiers
• Ramsey’s theorem

• local neighbourhoods
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• Exam: 4 May 2012
• check the learning objectives!

• What next?
• course feedback

• seminar course, autumn 2012

• Master’s thesis topics available

That’s all.
3

2

1

3

2

1

3

2

1

3

2

1

3

2

1
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