## Deterministic Distributed Algorithms

www.iki.fi/suo/dda

#### Jukka Suomela

University of Helsinki, March–April 2012





## Introduction

DDA Course Lecture 1.1 13 March 2012

#### Practicalities

- Read the course web page: www.iki.fi/suo/dda
- Pay attention to:
  - *course content* theory, not practice
  - *course format* not a typical lecture course
  - *course tracking system* use it!
  - *online support* two online forums

#### Course Content

- Fundamental questions:
  - what can be computed?
  - what can be computed fast?
- Model of computation:
  - distributed systems

#### **Traditional Perspective**

Programmer:



constructs a machine

Adversary:



chooses any valid input

Machine:

 $|x\rangle$  $|y\rangle$ 

does computation, prints a valid output

#### Distributed Algorithms



#### You Will Learn...

- A new mindset: how to reason about distributed and parallel systems
  - not a bad skill in the multi-core era
- Combinatorial optimisation
- Some math that has plenty of applications in computer science
  - graph theory, Ramsey theory, ...

#### Plan: Two Models

- Week 1: some graph theory
- Weeks 2–4: "port-numbering model"
  - weeks 2 and 4: positive results, week 3: negative results
- Weeks 5–6: *"unique identifiers"* 
  - week 5: positive results, week 6: negative results





#### adjacent nodes neighbours



#### adjacent edges



node with 3 neighbours adjacent to 3 nodes incident to 3 edges degree is 3







#### subgraph induced by the red nodes

all red nodes

all edges that join a pair of red nodes



subgraph induced by the red edges

all red edges

all nodes that are incident to red edges



*not* a node-induced subgraph

*not* an edge-induced subgraph

*not* a spanning subgraph



a shortest path from u to vlength 6 (six edges, seven nodes) dist(u, v) = 6 diameter  $\ge$  6



connected graph one connected component



*not* a connected graph three connected components one isolated node



tree connected no cycles



forest four connected components no cycles



cycle graph connected 2-regular



path graph tree connected maximum degree 2



#### two isomorphic graphs





two isomorphic graphs

bijection that preserves the structure



#### three isomorphic graphs







## Graph Problems

- Recall the definitions:
  - independent set vertex cover dominating set
  - matching edge cover edge dominating set
  - vertex colouring domatic partition
  - edge colouring edge domatic partition
- Examples in the course material...

## Optimisation

- Maximisation problems:
  - *maximal* = cannot add anything
  - *maximum* = largest possible size
  - $\alpha$ -approximation = at least  $1/\alpha$  times maximum
- Example: independent set
  - maximal is trivial to find greedily, maximum may be very difficult to find

## Optimisation

- Minimisation problems:
  - *minimal* = cannot remove anything
  - *minimum* = smallest possible size
  - $\alpha$ -approximation = at most  $\alpha$  times minimum
- Example: vertex cover
  - minimal is trivial to find greedily, minimum may be very difficult to find

## Optimisation

Terminology:

" $\alpha$ -approximation of minimum vertex cover"

implies two properties:

1. vertex cover

2. at most  $\alpha$  times as large as minimum vertex cover

Approximations are always feasible solutions!

#### Exercises

- Warm-up puzzles
- Exercises of Chapter 1

# Discussion & Exercises

DDA Course Lecture 1.2 15 March 2012

#### Course Tracker

- **24** students registered for the course
- 7 reports in the course tracker
- Exercise 1.8: most popular, solved by 4/7
- Exercise 1.1: most difficult, 3/7 need help

#### Feedback

• Difficult: "approximation"

#### Plan

- Today we will:
  - review the concept of "approximation"
  - solve Exercise 1.1 together
  - discuss other exercises
- No new theory!
  - just make sure you are comfortable with the concepts of Chapter 1 by the end of the week...

- Let G = (V, E)
- Assume that a minimum vertex cover of *G* has **3** nodes
- Assume that  $C \subseteq V$  is a vertex cover, and there are 3, 4, 5, or 6 nodes in C
- Then "*C* is a *2-approximation* of a minimum vertex cover"

- Let G = (V, E)
- Assume that a minimum vertex cover of *G* has at least *100* nodes
- Assume that  $C \subseteq V$  is a vertex cover, and there are at most **105** nodes in *C*
- Then "*C* is a *1.05-approximation* of a minimum vertex cover"

- Let G = (V, E)
- Assume that a maximum matching of *G* has 8 edges
- Assume that  $M \subseteq E$  is a matching, and there are 4, 5, 6, 7, or 8 edges in M
- Then "*M* is a *2-approximation* of a maximum matching"

- Let G = (V, E)
- Assume that a maximum matching of *G* has at most 105 edges
- Assume that  $M \subseteq E$  is a matching, and there are at least **100** edges in M
- Then "*M* is a 1.05-approximation of a maximum matching"

graph:



minimum dominating set:



1.5-approximation of minimum dominating set:

- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is an independent set iff *C* is a vertex cover



- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is an independent set iff *C* is a vertex cover
- *Idea*: verify each edge





- Assume that *I* is an independent set:
  - let  $e \in E$
  - definition of independent set:  $|e \cap I| \le 1$
  - edges have two endpoints:  $|e \cap V| = 2$
  - therefore  $e \cap (V \setminus I) \neq \emptyset$
- Therefore  $V \setminus I$  is a vertex cover

• Assume that *C* is a vertex cover:

• let  $e \in E$ 

- definition of vertex cover:  $e \cap C \neq \emptyset$
- edges have two endpoints:  $|e \cap V| = 2$
- therefore  $|e \cap (V \setminus C)| \le 1$
- Therefore  $V \setminus C$  is an independent set

- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is an independent set iff *C* is a vertex cover
- *Proof*: verify each edge





- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is a maximal independent set iff *C* is a minimal vertex cover



- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is a maximal independent set iff *C* is a minimal vertex cover
- *Idea*: use 1.1a





- Assume: I is a maximal independent set
  - define  $C = V \setminus I$
  - then *C* is a vertex cover
  - assume that  $C' \subset C$  is also a vertex cover
  - then  $I' = V \setminus C'$  is an independent set
  - we have  $I' \supset I$



• therefore *I* was not maximal, contradiction

- Assume: *C* is a minimal vertex cover
  - define  $I = V \setminus C$
  - similar: we already know that *I* is an independent set, only need to show maximality
  - assume that *I* is not maximal, then *C* cannot be minimal, contradiction

| V | Ι | Ι'         |
|---|---|------------|
|   | С | <i>C</i> ′ |

- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is a maximum independent set iff *C* is a minimum vertex cover



- Let  $I \subseteq V$  and  $C = V \setminus I$
- *Claim*: *I* is a maximum independent set iff *C* is a minimum vertex cover
- *Idea*: use 1.1a





- Assume: *I* is a maximum independent set
  - define  $C = V \setminus I$
  - then *C* is a vertex cover
  - assume that *C*' is also a vertex cover, |C'| < |C|
  - then  $I' = V \setminus C'$  is an independent set
  - we have |I'| = |V| |C'| > |V| |C| = |I|
  - therefore *I* was not of a maximum size, contradiction

- Assume: *C* is a minimum vertex cover
  - define  $I = V \setminus C$
  - again we already know that *I* is an independent set
  - similar: assume that there is a larger independent set, then *C* cannot be a minimum vertex cover, contradiction

- Show that the following is possible:
  - *C* is a 2-approximation of minimum vertex cover
  - $I = V \setminus C$  is not a 2-approximation of maximum independent set

- Show that the following is possible:
  - *C* is a 2-approximation of minimum vertex cover
  - $I = V \setminus C$  is not a 2-approximation of maximum independent set



- Show that the following is possible:
  - *I* is a 2-approximation of maximum independent set
  - $C = V \setminus I$  is not a 2-approximation of minimum vertex cover

- Show that the following is possible:
  - *I* is a 2-approximation of maximum independent set
  - $C = V \setminus I$  is not a 2-approximation of minimum vertex cover



## Schedule

- Today:
  - questions? comments?
- Tomorrow:
  - last chance to discuss exercises of Chapter 1
- Next week:
  - Chapter 2 remember to read it *before* the lectures

## **Port-Numbering Model**

DDA Course Lecture 2.1 20 March 2012



## Distributed Systems

#### • Intuition:

- distributed system
   ≈ communication network
   ≈ network equipment + communication links
- distributed algorithm
   ≈ computer program
- Precisely how are we going to model this?

## Port Numbering



## Port Numbering

- Network device = state machine with communication ports
- Ports are *numbered*: 1, 2, 3, ...



- Network = several devices,
   *connections* between ports
  - we will formalise it as a triple N = (V, P, p)



- nodes  $V = \{u, v, ...\}$
- ports  $P = \{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...\}$
- connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), ...



- nodes  $V = \{u, v, ...\}$
- ports  $P = \{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...\}$
- connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), ...



not a complete example, some ports not connected!

- nodes  $V = \{a, b, c, d\}$
- ports  $P = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (d, 1)\}$
- connections p(a, 1) = (b, 1), p(b, 1) = (a, 1), ...



all ports connected

- nodes *V* = a finite set
- ports *P* = a finite set of (node, number) pairs
- connections p = an involution  $P \rightarrow P$



involution:  $p^{-1} = p$ p(p(x)) = x

• We may have *multiple connections* or *loops* 



• *Simple* port-numbered network: no multiple connections, no loops



• *Underlying graph* of a simple port-numbered network



# Distributed Algorithms

- State machine, *x* = current state:
  - $x \leftarrow init(z)$ : initial state for local input z
  - send(x): construct *outgoing messages*
    - send(x) = vector, one element per port
  - *x* ← **receive**(*x*, *m*): process *incoming messages* 
    - *m* = vector, one element per port

#### Execution

- "Execution of algorithm A in network N"
- All nodes of *N* are *identical copies* of the same state machine *A* 
  - functions init, send, and receive may depend on node degree (number of ports)
  - in all other aspects the nodes are identical

#### Execution

- All nodes are initialised
- Time step (*communication round*):
  - all nodes construct outgoing messages
  - messages are propagated
  - all nodes process incoming messages
- Continue until all nodes have stopped

Construct *outgoing messages*



- Construct outgoing messages
- Exchange messages along communication links



- Construct outgoing messages
- Exchange messages along communication links



- Construct outgoing messages
- Exchange messages along communication links
- Process *incoming messages*



- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages

- Communication rounds are *synchronous*
- Each step happens synchronously in parallel for all nodes
- Everything is *deterministic*

- Algorithm designed chooses:
  - how to initialise nodes
  - how to construct outgoing messages
  - how to process incoming messages
- Network structure determines:
  - how messages are propagated between ports

- "Algorithm A solves graph problem П on graph family *F*":
  - for any graph  $G \in \mathcal{F}$ ,
  - for *any simple port-numbered network N* that has *G* as underlying graph,
  - execution of A on N stops and produces a valid solution of  $\Pi$

- "Algorithm *A* finds a minimum vertex cover in any regular graph":
  - for *any simple port-numbered network N* that has a regular graph as underlying graph,
  - execution of *A* on *N* stops,
  - the stopping states of the nodes are "**0**" and "**1**",
  - nodes in state "1" form a minimum vertex cover

 Design a distributed algorithm that finds a *minimum vertex cover* in
 *F* = {0-0-0-0, 0-0-0-0}

• Design a distributed algorithm that finds a *minimum vertex cover* in  $\mathcal{F} = \{ \bigcirc - \bigcirc - \bigcirc , \bigcirc - \bigcirc - \bigcirc - \bigcirc \}$ 



- Nodes of degree 1:
  - $init_1 = ?$ ,  $send_1(?) = (A)$
  - receive<sub>1</sub>(?, A) = 0, receive<sub>1</sub>(?, B) = 0
- Nodes of degree 2:
  - $init_2 = ?$ ,  $send_2(?) = (B, B)$
  - receive<sub>2</sub>(?, A, A) = 1, receive<sub>2</sub>(?, A, B) = 1, receive<sub>2</sub>(?, B, A) = 1, receive<sub>2</sub>(?, B, B) = 0



• Design a distributed algorithm that finds a *minimum vertex cover* in  $\mathcal{F} = \{0-0-0-0, 0-0-0-0-0\}$ 

- Solved!
- Running time: 1 communication round

#### Synchronous execution

- "worst case"
- synchronisers exist

- Synchronous execution
- Deterministic algorithms
  - cf. the name of this course
  - nodes do not have any source of randomness

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
  - identical nodes (except for their degree)
  - Chapters 5–6: what happens if each node has a unique name

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- Time = number of communication rounds
  - focus on communication, not computation...

- We will design distributed algorithm BMM that finds a *maximal matching* in any *2-coloured graph*
  - we assume that we are given a proper 2-colouring of the underlying graph as input
  - algorithm will output a maximal matching

Given encoding of 2-colouring





Find encoding of maximal matching



- Algorithm idea:
  - white nodes send *proposals* to their ports, one by one
  - black nodes *accept* the first proposal that they get



- Algorithm idea:
  - white nodes send *proposals* to their ports, one by one
  - black nodes *accept* the first proposal that they get
  - proposal-accept pair = edge in matching
- Running time:  $O(\Delta)$ 
  - $\Delta$  = maximum degree



- We can find a maximal matching if we are given a 2-colouring
  - some auxiliary information is necessary, as we will see in Chapter 3
- Application: vertex cover approximation
  - works correctly in any network, no need to have 2-colouring!



- We will design distributed algorithm VC3 that finds a *3-approximation of minimum vertex cover* in any graph
  - each node stops and outputs "0" or "1"
  - nodes that output "1" form a 3-approximation of a minimum vertex cover for the underlying graph

- Given: a port-numbered network
  - drawing here just the underlying graph...



• Construct the *bipartite double cover*: two copies of each node, edges across



• Simulate algorithm BMM, outputs a *maximal matching M*'



*C* = nodes with at least one copy matched:
3-approximation of minimum vertex cover!



- *C* = nodes with at least one copy matched:
  3-approximation of minimum vertex cover!
- Why vertex cover?
  - assume that there is an uncovered edge
  - conclude that *M*' is not maximal



- *C* = nodes with at least one copy matched:
  3-approximation of minimum vertex cover!
- Why vertex cover?
- Why 3-approximation?



Idea: matching in bipartite double cover
 → paths and/or cycles in original graph



- Any vertex cover contains at least 1/3 of nodes of any path or cycle
- 3-approximation if we take all of these



#### Summary

- We can solve non-trivial problems with distributed algorithms
  - e.g., 3-approximation of minimum vertex cover
- What next?
  - week 3: problems that cannot be solved at all
  - week 4: more positive results
  - weeks 5–6: what changes if the nodes have names?

## Discussion & Exercises

DDA Course Lecture 2.2 22 March 2012

- Design a distributed algorithm that counts the number of nodes in any *path graph* 
  - given a simple port-numbered network N = (V, P, p) that has a path graph as the underlying graph, all nodes stop and output |V|



• Design a distributed algorithm that counts the number of nodes in any *path graph* 

• Algorithm idea:



- Algorithm for path graphs
  - "arithmetic circuit"



1

1

*a*+1

-a

- Design a distributed algorithm that counts the number of nodes in any *tree* 
  - given a simple port-numbered network N = (V, P, p) that has a tree as the underlying graph, all nodes stop and output |V|

• Design a distributed algorithm that counts the number of nodes in any *tree* 









- Distributed algorithm that counts the number of nodes in any tree
  - same idea: compute *any* property of the tree!



## Impossibility

DDA Course Lecture 3.1 27 March 2012

## **Proof Techniques**

- Covering maps
  - problems that cannot solved at all
- Isomorphic local neighbourhoods
  - problems that cannot be solved quickly

- Networks N = (V, P, p) and N' = (V', P', p')
- Surjection  $\varphi: V \rightarrow V'$  that *preserves* inputs, degrees, connections, and port numbers











φ

N:

Degrees agree



#### Neighbours in port 1 agree





#### Neighbours in port 2 agree





 $\boldsymbol{\varphi}$ 

N:





*N*':

# $\varphi(v)$ 1 2 1 2 1 2 3 $\varphi(u)$





 $\boldsymbol{\varphi}$ 

N:





φ

N:



- Networks *N* = (*V*, *P*, *p*) and *N*' = (*V*', *P*', *p*')
- Surjection  $\varphi: V \rightarrow V'$  that preserves inputs, degrees, connections, and port numbers
- Theorem: If we run an algorithm A in N and N', then nodes v and φ(v) are always in the same state

- Theorem: If we run an algorithm A in N and N', then nodes v and φ(v) are always in the same state
- **Proof:** By induction
  - before round *i*: map  $\varphi$  preserves local states
  - during round *i*: map  $\varphi$  preserves messages
  - after round *i*: map  $\varphi$  preserves local states



#### Initially, *local states* agree







Thus *outgoing messages* agree



 $X_2$ 1 D G 1 2 F 2 1 В 1 Н  $x_4$ 3 2  $X_1$ Ε  $x_3$ 

Thus *incoming messages* agree



N':

#### Thus *new local states* agree







By induction, *local outputs* agree

N':

137

• Application: symmetry breaking in a path graph



• Application: symmetry breaking in a path graph



• Application: symmetry breaking in a path graph



• Application: symmetry breaking in a cycle



## Local Neighbourhoods

- Local neighbourhoods of nodes *u* and *v* "look identical" up to distance *r* 
  - isomorphism between radius-r neighbourhood of u and radius-r neighbourhood of v
  - preserves inputs, degrees, connections, and port numbers

## Local Neighbourhoods

• Local neighbourhoods of nodes u and v"look identical" up to distance r





## Local Neighbourhoods

- Local neighbourhoods of nodes *u* and *v* "look identical" up to distance *r*
- **Theorem**: In any algorithm, up to time *r*, the local states of *u* and *v* are identical
- *Informal proof*: time ≈ distance
- *Formal proof*: by induction on time

Time o: identical *local states* in radius-*r* neighbourhoods





• Time 1: identical *outgoing messages* in radius-*r* neighbourhoods





Time 1: identical *incoming messages* in radius-(*r*-1) neighbourhoods





Time 1: identical *local states* in radius-(*r*-1) neighbourhoods





Time *t*: identical *local states* in radius-(*r*-*t*) neighbourhoods





• Time *r*: identical *local states* in radius-0 neighbourhoods





 Application: finding midpoint of a path requires Ω(n) rounds





 Application: counting the number of nodes requires Ω(n) rounds





### Proof Techniques

- Covering maps
  - problems that cannot solved at all
- Isomorphic local neighbourhoods
  - problems that cannot be solved quickly
- Plenty of exercises...

# Vertex Covers & Edge Packings

DDA Course Lecture 4.1 3 April 2012



#### Vertex Cover

- Finding a minimum vertex cover is hard
- How to find good approximations?
- General idea: find something else first, show that it is useful...



#### **Chapter 1**

#### maximal matching



#### Exercise 1.3:

- find any maximal matching
- take all matched nodes
- 2-approximation of minimum vertex cover

#### **Chapter 1**

#### maximal matching



2-approx.

no distributed algorithm

#### Corollary 3.3:

 there is no distributed algorithm that finds a maximal matching



VC3



- Function  $f: E \rightarrow [0, 1]$ 
  - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints:  $f[v] \le 1$



f[0] = 1/5 $f[\bullet] = 1$ 

- Function  $f: E \rightarrow [0, 1]$ 
  - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints:  $f[v] \le 1$ 
  - v is *saturated* if f[v] = 1



- edge  $e = \{u, v\}$  is *saturated* if u or v is saturated
- edge packing is *maximal* if all edges are saturated

- Function  $f: E \rightarrow [0, 1]$ 
  - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints:  $f[v] \le 1$



• "Fractional" matching

- Find any maximal edge packing
- Set of saturated nodes:
   *vertex cover*
  - *Proof*: maximal
    - = each edge saturated
    - = each edge has a saturated endpoint
    - = saturated nodes form a vertex cover



- Find any maximal edge packing
- Set of saturated nodes: *2-approximation of minimum vertex cover*





Each node  $v \in C^*$ has 1 unit of money

Give *f*(*e*) units to each edge *e* 

Double all money

Give f[v] = 1 units to each saturated node  $v \in C$ 

 $C^*$ 

 $|C| \le 2 |C^*|$ 



- How to find maximal edge packings?
- Basic idea:
  - bipartite double covers
  - maximal matching
  - recursively!







One edge: 1/2 Two edges: 1

• In general only "half-saturating"



*Half-saturating* edge packing:

#### 

Unsaturated subgraph (*lower degrees*):

#### Recursively, find a *maximal* edge packing:

#### **●**-1-**●**

Combine solutions — *maximal* edge packing:



 $= \mathbf{0} - \frac{1}{2} - \mathbf{0} - \mathbf{0}$ 

- Recursion by maximum degree  $\Delta$
- Case  $\Delta = 1$  trivial
- Assuming that case  $\Delta 1$  has been solved:
  - find a *half-saturating* edge packing f
  - recursively, find a *maximal* edge packing g for unsaturated subgraph (maximum degree  $\Delta 1$ )
  - return *maximal* edge packing h = f + g/2

#### Summary

- Distributed algorithms that finds a *maximal edge packing* 
  - in any graph of maximum degree  $\Delta$  in time  $O(\Delta^2)$
- Saturated nodes:
   2-approximation of minimum vertex cover



# Unique Identifiers



DDA Course Lecture 5.1 17 April 2012

## Unique Identifiers

- Networks with *globally unique identifiers* 
  - IPv4 address, IPv6 address, MAC address, IMEI number, ...
- "Everything" can be discovered
  - in a connected graph *G*, all nodes can discover full information about *G* in time *O*(diam(*G*))





## Unique Identifiers

- "Everything" can be discovered
  - in a connected graph *G*, all nodes can discover full information about *G* in time *O*(diam(*G*))
- "Everything" can be solved
  - once all nodes know *G*, solving a graph problem is just a local state transition
- Key question: what can be solved *fast*?

## Graph Colouring

- Given unique identifiers, can we find a graph colouring fast?
  - unique identifiers from {1, 2, ..., *x*} can be interpreted as a graph colouring with *x* colours
  - problem: huge number of colours
  - we only need to solve a *colour reduction* problem: given an *x*-colouring, find a *y*-colouring for a small *y* < *x*

## Greedy Graph Colouring

- All nodes of colour *x* pick the smallest free colour in their neighbourhood
  - there is always a free colour in the set  $\{1, 2, ..., \Delta + 1\}$
  - reduces the number of colours from *x* to *x* 1, assuming that  $x > \Delta + 1$
- Very slow...

### Fast Graph Colouring

- Let's first study a special case...
- Directed pseudoforest
  - edges oriented
  - outdegree  $\leq 1$



#### Fast Graph Colouring

- Idea: colour = *binary string*
- Reduce colours:
  - $k \text{ bits} \rightarrow$ 1 +  $\log_2 k \text{ bits}$
  - $2^k$  colours  $\rightarrow$  2k colours



#### Fast Graph Colouring

 Compare bit string with the successor, find the *first bit that differs*



• Correct, no matter what the successor does



- Correct, no matter what the successor does
- For each directed edge (*u*, *v*):
  - the new colour of node *u* is different from the new colour of its successor *v*
- Proper graph colouring

• No successor? Pretend that there is one...



- Very fast colour reduction:
  - $2^{128}$  colours  $\rightarrow 2 \cdot 128 = 2^{8}$  colours
  - $2^8$  colours  $\rightarrow 2 \cdot 8 = 2^4$  colours
  - $2^4$  colours  $\rightarrow 2 \cdot 4 = 2^3$  colours
  - $2^3$  colours  $\rightarrow 2 \cdot 3 = 6$  colours
- But now we are stuck how to get below 6?

• Directed pseudotree with 6 colours: how to reduce the number of colours?



• Shift colours "down": all predecessors have the same colour



• Now greedy works very well: there is always a free colour in set {1, 2, 3}



- Colour reduction in directed pseudotrees
  - bit comparisons: very quickly from *x* to 6 colours
  - $2^{128} \rightarrow 2^8 \rightarrow 16 \rightarrow 8 \rightarrow 6$
  - shift + greedy: slowly from 6 to 3 colours
  - $6 \rightarrow 5 \rightarrow 4 \rightarrow 3$



- Colour reduction in directed pseudotrees
  - next lecture: fast graph colouring for arbitrary graphs



# Graph Colouring

DDA Course Lecture 5.2 19 April 2012

- Previous lecture:
  - colour reduction in directed pseudoforests
- Today:
  - colour reduction in general graphs of maximum degree  $\Delta$



#### Input:



#### Input:



#### Colours $\rightarrow$ orientation:





Port numbers  $\rightarrow$  partition in  $\Delta$  directed pseudoforests

90







Find a 3-colouring for each pseudoforest

Computed in parallel, simulate  $\Delta$  instances of the algorithm

Each node has  $\Delta$  colours, one for each forest







(A) A A Α A Â A (A)Α A (A) (A) A  $G'_0$ (A)A A





 $G'_{0}$ : ( $\Delta$ +1)-coloured – trivial, no edges





union of edges, combination of colours

 $a + b \rightarrow (a, b)$ 





 $G'_{0}$ : ( $\Delta$ +1)-coloured  $G_{1}$ : 3-coloured  $G'_{1}$ : 3( $\Delta$ +1)-coloured





 $G'_{0}$ : ( $\Delta$ +1)-coloured  $G_{1}$ : 3-coloured  $G'_{1}$ : 3( $\Delta$ +1)-coloured, reduce to  $\Delta$ +1 greedily









 $G'_1$ : ( $\Delta$ +1)-coloured





 $G'_1$ : ( $\Delta$ +1)-coloured  $G_2$ : 3-coloured  $G'_2$ : 3( $\Delta$ +1)-coloured





 $G'_1$ : ( $\Delta$ +1)-coloured  $G_2$ : 3-coloured  $G'_2$ : 3( $\Delta$ +1)-coloured, reduce to  $\Delta$ +1 greedily









#### $G'_2$ : ( $\Delta$ +1)-coloured







 $G'_2$ : ( $\Delta$ +1)-coloured  $G_3$ : 3-coloured  $G'_3$ : 3( $\Delta$ +1)-coloured







3

1

3

3

1

(1)

(1)

 $\left(1\right)$ 

 $G'_2$ : ( $\Delta$ +1)-coloured  $G_3$ : 3-coloured  $G'_3$ : 3( $\Delta$ +1)-coloured, reduce to  $\Delta$ +1 greedily

 $G_3$ 







 $(\Delta+1)$ -colouring of the original graph



- Colour reduction from *x* to  $\Delta$ +1
  - orientation: 1 round
  - partition: **o** rounds
  - 3-colouring:  $O(\log^* x)$  rounds see Exercise 5.4
  - $\Delta$  phases:
    - merge & reduce  $3(\Delta+1) \rightarrow \Delta+1$ :  $2(\Delta+1)$  rounds
  - total:  $O(\Delta^2 + \log^* x)$  rounds

- Colour reduction from *x* to  $\Delta$ +1
  - $O(\Delta^2 + \log^* x)$  rounds
- Plenty of applications see exercises
- Similar techniques can be used to solve other problems

- Colour reduction from *x* to  $\Delta$ +1
  - $O(\Delta^2 + \log^* x)$  rounds
- Fast, but running time depends on *x*
- Next week:
  - dependence on *x* is necessary
  - even if  $\Delta = 2$ , we cannot reduce the number of colours from *x* to 3 in constant time, independently of *x*

# Ramsey Theory

DDA Course Lecture 6.1 24 April 2012



#### ON A PROBLEM OF FORMAL LOGIC

By F. P. RAMSEY.

[Received 28 November, 1928.—Read 13 December, 1928.]

This paper is primarily concerned with a special case of one of the leading problems of mathematical logic, the problem of finding a regular procedure to determine the truth or falsity of any given logical formula<sup>\*</sup>. But in the course of this investigation it is necessary to use certain theorems on combinations which have an independent interest and are most conveniently set out by themselves beforehand.

*"... certain theorems on combinations which have an independent interest..."* 

N = 4 items, colour each of them red or blue

only 2 red and only 2 blue Possible: (1)(1) $\left(1\right)$ (1)1 2 2 , (2) , 2 2 3 3 3 3 3 (4)(4)(4)4 4

N = 5 items, colour each of them red or blue



- Let *n* = 3
- *N* items, colour each of them red or blue
- If *N* is large enough, there are always
  - at least *n* red items or
  - at least *n* blue items
- Here  $N \ge 5$  is sufficient, N < 5 is not

- Let *n* be anything
- *N* items, colour each of them red or blue
- If *N* is large enough, there are always
  - at least *n* red items or
  - at least *n* blue items
- Here  $N \ge 2n 1$  is sufficient

# Ramsey Theory

- Generalisation of pigeonhole principle
- Again, we have N items
- However, we will not colour items, we will colour *sets* of items
  - example: we colour all 2-subsets of items
  - "*k*-subset" = subset of size *k*

• *Y*: set with *N* items

• N = 4:  $Y = \{1, 2, 3, 4\}$ 

• *f*: colouring of *k*-subsets of *Y* 

• k = 2:  $f(\{1, 2\}) = \text{red}, f(\{1, 3\}) = \text{blue}, ...$ 

•  $X \subseteq Y$  is **monochromatic** if all *k*-subsets of *X* have the same colour

$$N = 4, Y = \{1, 2, ..., N\}, k = 2$$

Colour each 2-subset of *Y*: 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

{1, 2, 3} is not monochromatic:
1, 2
1, 3
2, 3

{1, 2, 4} is monochromatic:
1, 2
1, 4
2, 4

 $N = 4, Y = \{1, 2, ..., N\}, k = 2$ 

Colour each 2-subset of *Y*: 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

{1, 2, 3} is not monochromatic:
1, 2
1, 3
2, 3





{1, 2, 4} is monochromatic:
1, 2
1, 4
2, 4



- Let n = 3, k = 2
- *N* items, colour each *k*-subset red or blue
- **Claim**: if *N* is sufficiently large, there is always a monochromatic subset of size *n*

$$N = 5, Y = \{1, 2, ..., N\}, k = 2$$





Check all possibilities: there is no monochromatic subset of size 3

$$N = 6, Y = \{1, 2, ..., N\}, k = 2$$





#### $N = 6, Y = \{1, 2, ..., N\}, k = 2$





{1, 3, 4} is monochromatic

$$N = 6, Y = \{1, 2, ..., N\}, k = 2$$





#### $N = 6, Y = \{1, 2, ..., N\}, k = 2$





 $\{1, 3, 5\}$  is monochromatic

- Let n = 3, k = 2
- *N* items, colour each *k*-subset red or blue
- **Claim**: if *N* is sufficiently large, there is always a monochromatic subset of size *n* 
  - N = 5 is not enough
  - it is possible to show that N = 6 is enough

- Let *n* and *k* be any positive integers
- *N* items, colour each *k*-subset red or blue
- **Claim**: if *N* is sufficiently large, there is always a monochromatic subset of size *n*

- Let *c*, *n*, and *k* be any positive integers
- *N* items, colour each *k*-subset with a colour from  $\{1, 2, ..., c\}$
- **Claim**: if *N* is sufficiently large, there is always a monochromatic subset of size *n*

#### Ramsey's Theorem

• **Theorem**: For all c, n, and k, there is a number  $R_c(n; k)$  such that if you take  $N \ge R_c(n; k)$  items, and colour each k-subset with one of c colours, there is always a monochromatic n-subset



#### Ramsey's Theorem

- **Theorem**: For all c, n, and k, there is a number  $R_c(n; k)$  such that if you take  $N \ge R_c(n; k)$  items, and colour each k-subset with one of c colours, there is always a monochromatic n-subset
  - proof: see the course material
  - numbers  $R_c(n; k)$  are called *Ramsey numbers*
  - examples:  $R_2(3; 2) = 6$ ,  $R_2(4; 2) = 18$

#### Ramsey's Theorem

- No matter how you colour subsets, if the base set is large enough, we can always find a monochromatic subset
- Our application: *no constant-time algorithm for* <u>**3-colouring directed cycles**</u>
  - no matter how you design your algorithm, if the set of possible identifiers is large enough, we can always find a "bad input"

# **Colouring in Constant Time?**

DDA Course Lecture 6.2 26 April 2012

#### Colouring in Cycles

- Problem: 3-colouring in *directed cycles* 
  - unique identifiers from  $\{1, 2, \dots n\}$
  - outdegree = indegree = 1



## Colouring in Cycles

- Problem: 3-colouring in *directed cycles* 
  - unique identifiers from  $\{1, 2, \dots n\}$
  - outdegree = indegree = 1
- We know how to solve this problem in time O(log\* n)
  - special case of directed pseudoforests



## Colouring in Cycles

- Problem: 3-colouring in *directed cycles* 
  - unique identifiers from  $\{1, 2, \dots n\}$
  - outdegree = indegree = 1
- We know how to solve this problem in time *O*(log\* *n*)
- Can we do it in time O(1)?



- Assume that algorithm *A*:
  - in any directed cycle, stops in time *T* for some constant *T*
  - produces local outputs from {1, 2, 3}
- We will use Ramsey's theorem to show that there is a directed cycle in which *A* fails to produce a proper vertex colouring

- Example: algorithm runs in time T = 2
- Output of a node only depends on k = 2T + 1 = 5 nodes around it
  - choose c = 3, n = k + 1 = 6
  - choose  $N \ge R_c(n; k)$
  - *c*-colour *k*-subsets of {1, 2, ..., N}:
     there is a monochromatic *n*-subset



- Set of identifiers:  $Y = \{1, 2, ..., N\}$
- We use algorithm *A* to colour *k*-subsets of *Y* 
  - for each set  $B = \{x_1, x_2, ..., x_k\} \subseteq Y$ ,  $x_1 < x_2 < ... < x_k$
  - construct a cycle where nodes
     *x*<sub>1</sub>, *x*<sub>2</sub>, ..., *x<sub>k</sub>* are placed in this order
  - f(B) = output of the middle node



Colour each *k*-subset of *Y*: — what is the colour of  $\{1, 2, 3, 4, 5\}$ ?



middle node 3 outputs "blue"
set *f*({1, 2, 3, 4, 5}) = "blue"

#### (1, 2, 3, 4, 5)

Colour each *k*-subset of *Y*: — what is the colour of {3, 6, 8, 9, 10}?



— middle node 8 outputs "green"
— set *f*({3, 6, 8, 9, 10}) = "green"

1, 2, 3, 4, 5 3, 6, 8, 9, 10

Colour each *k*-subset of *Y*: — what is the colour of {3, 6, 8, 9, 10}?



— middle node 8 outputs "green"
— set *f*({3, 6, 8, 9, 10}) = "green"

1, 2, 3, 4, 5 3, 6, 8, 9, 10

We have assigned a colour *f*(*B*) ∈ {1, 2, 3}
 to each *k*-subset *B* of *Y*



- We have assigned a colour  $f(B) \in \{1, 2, 3\}$  to each *k*-subset *B* of *Y*
- Ramsey: set Y was large enough, there is a monochromatic subset of size *n* 
  - example: {2, 3, 5, 7, 8, 9} is monochromatic

What happens here?







Bad output!



- There is no algorithm that finds a 3-colouring in time *T* 
  - the proof holds for any constant  ${\cal T}$
  - larger  $T \rightarrow$  need a (much) larger identifiers space Y

## Summary

#### Distributed Algorithms

- Two models
- Port-numbering model
  - key question: what is computable?
- Unique identifiers
  - key question: what can be computed fast?

## Algorithm Design

- *Colouring* is a powerful symmetry-breaking tool
- Port-numbering model
  - bipartite double covers  $\rightarrow$  2-colouring...
- Unique identifiers
  - identifiers  $\rightarrow$  colouring  $\rightarrow$  colour reduction...

#### Lower Bounds

#### • Port-numbering model

- covering maps
- local neighbourhoods
- Unique identifiers
  - Ramsey's theorem
  - local neighbourhoods

#### That's all.

- Exam: 4 May 2012
  - check the learning objectives!
- What next?
  - course feedback
  - seminar course, autumn 2012
  - Master's thesis topics available



