Deterministic
Distributed
Algorithms

www.1ki.fi/suo/dda

Jukka Suomela

University of Helsinki,
March—April 2012

http://www.iki.fi/suo/dda
http://www.iki.fi/suo/dda

Introduction

DDA Course

Lecture 1.1
13 March 2012

Practicalities

« Read the course web page:
www.1ki.f1/suo/dda
« Pay attention to:
» course content — theory, not practice
e course format — not a typical lecture course
e course tracking system — use it!

« online support — two online forums

http://www.iki.fi/suo/dda
http://www.iki.fi/suo/dda

Course Content

« Fundamental questions:

« what can be computed?

« what can be computed fast?

» Model of computation:

o distributed systems

Traditional Perspective

Programmer: M constructs
a machine

Adversary: p chooses any
Y M valid input

Machine: @ M @ does computation,

prints a valid output

Distributed Algorithms

Programmer: M constructs
a machine

(T [
Adversary: - \ / constructs
"l Py a network
T [o
Network: S 7 does communication,

v prints a valid output

You Will Learn...

» A new mindset: how to reason about
distributed and parallel systems

e not a bad skill in the multi-core era

« Combinatorial optimisation

« Some math that has plenty of
applications in computer science

 graph theory, Ramsey theory, ...

Plan: Two Models

» Week 1: some graph theory

e Weeks 2—4: “port-numbering model”

« weeks 2 and 4: positive results,
week 3: negative results

» Weeks 5—-6: “unique identifiers”

» week 5: positive results,
week 6: negative results

adjacent nodes

neighbours

adjacent edges

Graphs

node with 3 neighbours
adjacent to 3 nodes
incident to 3 edges

degree 1s 3

Graphs

subgraph

Graphs

subgraph induced
by the red nodes

all red nodes

all edges that join

a pair of red nodes \\'

Graphs

subgraph induced
by the red edges

all red edges

all nodes that are

incident to red edges [\%\O

Graphs

not a node-induced
subgraph

not an edge-induced
subgraph

not a spanning

subgraph %%\O

a shortest path
fromutov

length 6

(six edges, seven nodes)
dist(u, v) = 6

diameter > 6

Graphs

connected graph

one connected
component

Graphs

not a connected graph

three connected
components

one i1solated node

o

tree
connected

no cycles

Graphs

forest

four connected

components 03),0
no cycles

Graphs

cycle graph
connected

2-regular

Graphs

path graph
ree
connected

maximum degree 2

Graphs

two 1somorphic graphs

)

Graphs

two isomorphic graphs

bijection that preserves the structure

L=

Graphs

three isomorphic graphs

g K

Graph Problems

e Recall the definitions:

 independent set — vertex cover — dominating set
« matching — edge cover — edge dominating set
» vertex colouring — domatic partition

 edge colouring — edge domatic partition

» Examples in the course material...

Optimisation

» Maximisation problems:

« maximal = cannot add anything
« maximum = largest possible size

« a-approximation = at least 1/a times maximum

« Example: independent set

« maximal is trivial to find greedily,
maximum may be very difficult to find

Optimisation

« Minimisation problems:

« minimal = cannot remove anything
o minimum = smallest possible size

o a-approximation = at most a times minimum

« Example: vertex cover

« minimal is trivial to find greedily,
minimum may be very difficult to find

Optimisation

Terminology:

“a-approximation of minimum vertex cover”
implies two properties:

1. vertex cover

2. at most a times as large as minimum vertex cover

Approximations are always feasible solutions!

Exercises

« Warm-up puzzles

» Exercises of Chapter 1

Discussion &
Exercises

DDA Course

Lecture 1.2
15 March 2012

Course Tracker

» 24 students registered for the course
» 7 reports in the course tracker
 Exercise 1.8: most popular, solved by 4/7

« Exercise 1.1: most difficult, 3/7 need help

Feedback

o Difficult: “approximation”

Plan

» Today we will:

» review the concept of “approximation”
» solve Exercise 1.1 together

e discuss other exercises

e No new theory!

» just make sure you are comfortable with
the concepts of Chapter 1 by the end of the week...

Approximation

e LetG=(V, E)

« Assume that a minimum vertex cover
of G has 3 nodes

« Assume that C C Vis a vertex cover,
and there are 3, 4, 5, or 6 nodes in C

» Then “C1is a 2-approximation ot
a minimum vertex cover”

Approximation

e LetG=(V, E)

« Assume that a minimum vertex cover
of G has at least 100 nodes

« Assume that C C Vis a vertex cover,
and there are at most 105 nodes in C

e Then “C1s a 1.05-approximation of
a minimum vertex cover”

Approximation

e LetG=(V, E)

» Assume that a maximum matching
of G has 8 edges

» Assume that M C E is a matching,
and there are 4, 5, 6, 7, or 8 edges in M

« Then “M 1s a 2-approximation of
a maximum matching”

Approximation

e LetG=(V, E)

» Assume that a maximum matching
of G has at most 105 edges

» Assume that M C E is a matching,
and there are at least 100 edges in M

e Then “M 1s a 1.05-approximation of
a maximum matching”

Approximation

O/\f'\f'\

O
O
O
O

(}—)
(G . " O

minimum dominating set:

O—@—FC—"70C—"8—0OC0—"C—=~8@ 070

O

1.5-approximation of minimum dominating set:

O—@—71C—"08—0C—7"08 —(C—7™0 0O

Q

Exercise 1.1a

e LetICVand C=V\I

e Claim: I1s an independent set
iff C'is a vertex cover

I:@ C;®

Exercise 1.1a

e LetICVand C=V\I

e Claim: I1s an independent set
iff C'is a vertex cover

o Idea: verity each edge

I:@ C;®

Exercise 1.1a

» Assume that I 1s an independent set:
e letec E
o definition of independent set: |eNI| <1

» edges have two endpoints: |eN V]| =2

e theretore eN(V\I) +#+ &

« Theretore V'\ I is a vertex cover

Exercise 1.1a

o Assume that C 1is a vertex cover:
e leteE E
o definition of vertex cover: e N C = &

» edges have two endpoints: |eN V]| =2

o therefore leN(V\O)| <1

» Theretore V'\ C i1s an independent set

Exercise 1.1a

e LetICVand C=V\I

e Claim: I1s an independent set
iff C'1s a vertex cover

» Proof: verity each edge

I:c@ C;®

Exercise 1.1b

e LetICVand C=V\I

e Claim: I is a maximal independent set
iff C'1s a minimal vertex cover

I:@ C;®

Exercise 1.1b

e LetICVand C=V\I

e Claim: I is a maximal independent set
iff C'1s a minimal vertex cover

e Jdea: use 1.1a

I:@ C;®

e Assume: I 1s a maximal independent set

Exercise 1.1b

define C=V\1I
then C 1is a vertex cover

assume that C’C C 1is also a vertex cover

then I'=V'\ C’ is an independent set

we have I’ D1

therefore I was not maximal, contradiction

Exercise 1.1b

« Assume: C 1s a minimal vertex cover
e defineI=V\C

o similar: we already know
that I is an independent set,
only need to show maximality

o assume that I is not maximal,

then C cannot be minimal,
contradiction

Exercise 1.1c

e LetICVand C=V\I

e Claim: I1s a maximum independent set
iff C'1s a minimum vertex cover

I:@ C;®

Exercise 1.1c

e LetICVand C=V\I

e Claim: I1s a maximum independent set
iff C'1s a minimum vertex cover

e Jdea: use 1.1a

I:@ C;®

Exercise 1.1c

« Assume: I is a maximum independent set
e defineC=V\1I
e then C is a vertex cover
« assume that C’ is also a vertex cover, |C’| < |C]
e thenI’=V'\ C’ is an independent set
e we have |[I’| = |V| - |C’| > |V]| - |C| = [

» therefore I was not of a maximum size, contradiction

Exercise 1.1c

» Assume: C 1s a minimum vertex cover
e defineI=V\C
 again we already know that I is an independent set

o similar: assume that there is a larger independent set,
then C cannot be a minimum vertex cover,
contradiction

Exercise 1.1d

» Show that the following is possible:

« C is a 2-approximation of
minimum vertex cover

« I =V \ C isnot a 2-approximation of
maximum independent set

Exercise 1.1d

» Show that the following is possible:

« C is a 2-approximation of
minimum vertex cover

« I =V \ C isnot a 2-approximation of
maximum independent set

I: o—o0 C. o—o

I*: o0—e C*: @&—O

Exercise 1.1e

» Show that the following is possible:

e I is a 2-approximation of
maximum independent set

« C=V\I is not a 2-approximation of
minimum vertex cover

Exercise 1.1e

» Show that the following is possible:

e I is a 2-approximation of
maximum independent set

« C=V\I is not a 2-approximation of
minimum vertex cover

I: @ O C: 0 @

I*: @& @ C* o O

Schedule

» Today:
e questions? comments?

e TOomorrow:

» last chance to discuss exercises of Chapter 1

e Next week:

« Chapter 2 — remember to read it before the lectures

Port-Numbering
Model

DDA Course

Lecture 2.1
20 March 2012

Distributed Systems

e Intuition:

e distributed system
~ communication network
~ network equipment + communication links

o distributed algorithm
~ computer program

 Precisely how are we going to model this?

Port Numbering

Port Numbering

» Network device = state machine with
communication ports

o Ports are numbered: 1, 2, 3, ...

1 2 3 4

Port-Numbered Network

» Network = several devices,
connections between ports

. we will formalise it as a triple N = (V, P, p)

1 2 3 4 1 2 3

L~

Port-Numbered Network

e nodes V={uv, ...}

 ports P =1{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...}

e connections p(u, 4) = (v, 1), p(v,1) =(u, 4), ...

ul12 34 vl123

L~

Port-Numbered Network

e nodes V={uv, ...}

 ports P =1{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...}

e connections p(u, 4) = (v, 1), p(v,1) =(u, 4), ...

u, 1

v, 1
u, 2

v, 2
- /
1, 4 b3 not a complete example,

some ports not connected!

Port-Numbered Network

« nodes V={a,b, c, d}
e ports P =1(a,1), (a,2), (a,3), (b,1), (b,2), (c,1), (c,2), (d,1)}

« connections p(a,1) = (b,1), p(b,1) = (a,1), ...

b, 1

b, 2
[C,l
c, 2

—~_
/

a, 1

a, 2

a, 3

/

all ports connected

Port-Numbered Network

« nodes V = a finite set
 ports P = a finite set of (node, number) pairs

« connections p = an involution P — P

b, 1
b, 2 <\> a1
a, 2 d, 1 involution:
[p / " / o
’ P =D
c, 2

p(p(x)) =x

Port-Numbered Network

« We may have multiple connections or loops

ol e
b, 3 \ a, 2 / d, 1
[a, 3 d,2 ()
¢1 <— sl424
¢2 p(c, 3) =(c, 4)
C ki p(c, 4) = (c, 3)
o4 p(d, 2) = (d, 2)

Port-Numbered Network

« Simple port-numbered network:
no multiple connections, no loops

b, 1

b,2<\>a’1
: d,
[C’l e

c, 2

Port-Numbered Network

« Underlying graph ot
a simple port-numbered network

b, 1

b,2<\>a,1 b
, d, | O—Od
[C,l /Z,z/ ! . a

c, 2

Distributed
Algorithms

Distributed Algorithm

» State machine, x = current state:
« x < Init(z): initial state for local input z
« send(x): construct outgoing messages
 send(x) = vector, one element per port
« X < receive(x, m): process incoming messages

« m = vector, one element per port

Execution

» “Execution of algorithm A in network N”

 All nodes of N are identical copies
of the same state machine A

o functions init, send, and receive may
depend on node degree (number of ports)

« in all other aspects the nodes are identical

Execution

o All nodes are initialised

e Time step (communication round):

o all nodes construct outgoing messages
e messages are propagated

» all nodes process incoming messages

» Continue until all nodes have stopped

Communication Round

B2

C2

b, 1

b, 2

c, 1

c, 2

B1

C1

A

A

|

2

S
/

a, 1

a, 2

a, 3

» Construct outgoing messages

D1

o

Communication Round

« Construct outgoing messages

« Exchange messages along communication links

B1
b, 1

—a
B2 — N
b,2 a1
ﬁa,zwd,l
¢ 1 |3 a3

c, 2

C2

Communication Round

« Construct outgoing messages

« Exchange messages along communication links

A1
b, 1

Co— w
b,2 al
(ﬂ’aﬂyd,l
155 < a3

c, 2

B2

Communication Round

« Construct outgoing messages
« Exchange messages along communication links

» Process incoming messages

A1
b, 1
N
C2 a. 1
b, 2)
A3
a, 2 d, 1
ﬂ (M)
c,1
~ A2 a, 3
a5 &2

Communication Round

Construct outgoing messages
Exchange messages along communication links

Process incoming messages

Communication rounds are synchronous
Each step happens synchronously in parallel for all nodes

Everything is deterministic

Distributed Algorithm

o Algorithm designed chooses:

« how to initialise nodes
« how to construct outgoing messages

« how to process incoming messages

 Network structure determines:

« how messages are propagated between ports

Distributed Algorithm

e “Algorithm A solves graph problem II
on graph family F”:

o for any graph G € F,

o for any simple port-numbered network N
that has G as underlying graph,

 execution of A on N stops and produces
a valid solution of I1

Distributed Algorithm

» “Algorithm A finds a minimum vertex cover
in any regular graph”:

o for any simple port-numbered network N
that has a regular graph as underlying graph,

 execution of A on N stops,
» the stopping states of the nodes are “0” and “1”,

e nodes 1n state “1” form a minimum vertex cover

Example

» Design a distributed algorithm that
finds a minimum vertex cover 1n
F = {0000, 00000}

Example

» Design a distributed algorithm that
finds a minimum vertex cover 1n
F = {0000, 00000}

1 1 1 1 1
1 [7 1 1 [7
2 2 2 2 2
1 1 1 1 1
14/7 \1 14/7 \
9 |le> 2 9 l«e> 2)

Example

» Nodes of degree 1: R
e Init; = ?, sendi(?) = (A)
* receives(?, A) = 0, receivei(?,B) =0

» Nodes of degree 2:
e init, = ?, send.(?) = (B, B)

e receivea(?, A, A) =1, receivex(?, A, B) =1,
receives(?, B, A) =1, receivex(?,B,B) =0

Example

» Design a distributed algorithm that
finds a minimum vertex cover 1n
F = {0000, 00000}

e Solved!

» Running time: 1 communication round

General
Principles

General Principles

« Synchronous execution

e “worst case”

 synchronisers exist

General Principles

« Synchronous execution

e Deterministic algorithms

o cf. the name of this course

» nodes do not have any source of randomness

General Principles

« Synchronous execution
» Deterministic algorithms

« Anonymous networks

» identical nodes (except for their degree)

« Chapters 5—6: what happens if each node
has a unique name

General Principles

» Synchronous execution
e Deterministic algorithms
« Anonymous networks

« Time = number of communication rounds

 focus on communication, not computation...

Examples

Maximal Matching

« We will design distributed algorithm BMM
that finds a maximal matching in
any 2-coloured graph

« we assume that we are given a proper 2-colouring
of the underlying graph as input

o algorithm will output a maximal matching

Glven Find

encoding of 2-colouring encoding of maximal

matching
L 2
A BN A BN
@ @ N N
1 1‘/ 1 1‘/
ey N W N\
) o

o I

Maximal Matching

o Algorithm idea:

« white nodes send proposals to their ports, one by one

 black nodes accept the first proposal that they get

2

¢

1

2

\
o

1

Maximal Matching

o Algorithm idea:
« white nodes send proposals to their ports, one by one
 black nodes accept the first proposal that they get

« proposal—accept pair =
edge in matching 1 —I8

2

« Running time: O(A)
« A = maximum degree \;

Maximal Matching

e We can find a maximal matching
if we are given a 2-colouring

« some auxiliary information is necessary,
as we will see in Chapter 3

» Application: vertex cover T —I
approximation 2

» works correctly in any network,)
no need to have 2-colouring! \3

Vertex Cover

« We will design distributed algorithm VC3
that finds a 3-approximation of
minimum vertex cover in any graph

€ C_»

 each node stops and outputs “0” or “1

» nodes that output “1” form a 3-approximation of
a minimum vertex cover for the underlying graph

Vertex Cover

 Given: a port-numbered network

« drawing here just the underlying graph...

-

Vertex Cover

» Construct the bipartite double cover:
two copies of each node, edges across

Vertex Cover

» Simulate algorithm BMM,
outputs a maximal matching M’

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

o— —»o
O~ N0

« Why vertex cover?

 assume that there
is an uncovered edge

e conclude that M’
1s not maximal

O Ol _

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

« Why vertex cover? Q) (P
o

« Why 3-approximation?

O®
O

Vertex Cover

 Idea: matching in bipartite double cover
— paths and/or cycles in original graph

CK

o

/._8

N A
l

~

/C.\\-O
)
®

. O

~

4

O

)

Vertex Cover

» Any vertex cover contains at least
1/3 of nodes of any path or cycle

e 3-approximation if we take all of these

KiARgste

Summary

« We can solve non-trivial problems
with distributed algorithms

e e.g., 3-approximation of minimum vertex cover

« What next?

« week 3: problems that cannot be solved at all
« week 4: more positive results

« weeks 5—6: what changes if the nodes have names?

Discussion &
Exercises

DDA Course
Lecture 2.2
22 March 2012

Counting

» Design a distributed algorithm that counts
the number of nodes in any path graph

e given a simple port-numbered network N = (V, P, p)
that has a path graph as the underlying graph,
all nodes stop and output | V|

YT w Y Yy o ¥

Counting

» Design a distributed algorithm that counts
the number of nodes in any path graph

o Algorithm idea:

—1—>m—2—>m—3—>m—4—>
O))) O
“—Yy— —J— —2— <—]1—

S

Counting

 Algorithm for path graphs

e “arithmetic circuit” 1 —b+1—

2 a+1—»

—a—» 1 —b—+>| 2

Counting

 Design a distributed algorithm that counts
the number of nodes in any tree

e given a simple port-numbered network N = (V, P, p)
that has a tree as the underlying graph,
all nodes stop and output | V|

Counting

 Design a distributed algorithm that counts
the number of nodes in any tree

O O

AT | AT
8|1 8|1
[|V
o — —4—> —5—> —8—>
a M a O
)))
<5 4—4—* <+ 1—
1
|

O

1—>
O
<+—§8 <

7

|
3
O v

b+1—>»

—a—>

—a+1—>

—Cc—>

1_
b+c+1—>

—a—>

2 —
a+c+1—»

—Cc—>

—a—>

3 —a+b+1—>

115

—a—» 1

—a—» 1

—b—+>| 2

a+b+c+1

Counting

o Distributed algorithm that counts
the number of nodes in any tree

« same idea: compute any property of the tree!

e time: O(diam(G)) *Q A
8|1 38
| |V |

2 — —4—> —5—>

O

1—>
M\ M\
)))
<+—§ <

Impossibility

DDA Course
Lecture 3.1
27 March 2012

Proof Techniques

« Covering maps
 problems that cannot solved at all

 Isomorphic local neighbourhoods

« problems that cannot be solved quickly

Covering Map

e Networks N=(V,P,p)and N’= (V’, P’, p’)

e Surjection @: V— V’ that preserves
inputs, degrees, connections, and
port numbers

N’

Degrees agree

123

SIW N

N’

Neighbours in port 1 agree

N’ [:

Neighbours in port 2 agree (V)

N’

Holds for any pair of nodes

wWinNn | = |C

N’

Holds for any pair of nodes

-y
W [N [=|C

N’

Holds for any pair of nodes

S wWN -

N’

Holds for any pair of nodes

Z
C | =
SLIW N |-

N’

Holds for any pair of nodes

Covering Map

e Networks N=(V,P,p)and N’= (V’, P’, p’)

 Surjection @: V— V’ that preserves
inputs, degrees, connections, and
port numbers

e Theorem: If we run an algorithm A
in N and N’, then nodes v and @(v)
are always in the same state

Covering Map

» Theorem: If we run an algorithm A
in N and N’, then nodes v and @(v)
are always in the same state

» Proof: By induction
 before round i: map ¢ preserves local states
o during round i: map ¢ preserves messages

o after round i: map ¢ preserves local states

3
¥

X4 X1
® X3 X3
x2
1 \
> 1
N T e
1
3 Xy
2 X,

Initially, local states agree X3

D
A
1/2E E
N: (1] |2k
° N m
1
X, 3
<
X, 215 G
@ 8
E
N
G

Thus outgoing messages agree

X3

A
D
N: (1< [2]<
) N m
1
X, 3
<
X, 2 E E
@ 8
G
N
E

Thus incoming messages agree

X3

Y, Y

0 Ys Y,
Y-
AR

N’: [/ 2 1
e

4

> Y,

Thus new local states agree Ys

Yo Yo

Y, Y
0 Ys Y,
Y-
AR
N’: [/ 2 1
e
4
> Y,

By induction, local outputs agree Ys

Covering Map

» Application: symmetry breaking
in a path graph

N: 1 fe— 1 N: C

Covering Map

» Application: symmetry breaking
in a path graph

%

N: C:

1 <> 1
L Same output! —I
O—0O

G

Covering Map

» Application: symmetry breaking
in a path graph

N: 1 > 1

u Same output!

€ O—O

Covering Map

 Application: symmetry breaking in a cycle

I\

.
.
&

Local Neighbourhoods

 Local neighbourhoods of nodes u and v
“look 1identical” up to distance r

 iIsomorphism between radius-r neighbourhood of u
and radius-r neighbourhood of v

» preserves inputs, degrees, connections, and
port numbers

Local Neighbourhoods

 Local neighbourhoods of nodes u and v
“look 1identical” up to distance r

~—O0—0O—C
{' 0:{' "'

Local Neighbourhoods

 Local neighbourhoods of nodes u and v
“look 1identical” up to distance r

« Theorem: In any algorithm, up to time r,
the local states of u and v are identical

 Informal proof: time = distance

» Formal proof. by induction on time

Local Neighbourhoods

e Time 0: 1dentical local states 1in
radius-r neighbourhoods

5 5

Local Neighbourhoods

» Time 1: 1dentical outgoing messages in
radius-r neighbourhoods

5 5

Local Neighbourhoods

» Time 1: 1dentical incoming messages in
radius-(r—1) neighbourhoods

3 3
o o

Local Neighbourhoods

e Time 1: identical local states in
radius-(r-1) neighbourhoods

3 3
o o

Local Neighbourhoods

e Time t: identical local states in
radius-(r-t) neighbourhoods

Local Neighbourhoods

e Time r: 1dentical local states in
radius-0 neighbourhoods

Local Neighbourhoods

 Application: finding midpoint of a path
requires 2(n) rounds

Local Neighbourhoods

 Application: counting the number of nodes
requires 2(n) rounds

Proof Techniques

« Covering maps
 problems that cannot solved at all

 Isomorphic local neighbourhoods

« problems that cannot be solved quickly

 Plenty of exercises...

Vertex Covers &
Edge Packings

0\1/5 /p

1 /\O

Y
O

DDA Course 5

N
Lecture 4.1 2
o1

1
3 April 2012 />

Vertex Cover

» Finding a minimum
vertex cover is hard

« How to find good
approximations?

e General 1dea: find
something else first,
show that it 1s useful...

Chapter 1

maximal matching

L]

Exercise 1.3:

e find any maximal
matching

e take all matched nodes

« 2-approximation of
minimum vertex cover

Chapter 1

maximal matching

L]

2-approx.

no distributed
algorithm

Corollary 3.3:

e there is no distributed
algorithm that finds
a maximal matching

Chapter1 Chapter 2

maximal matching paths & cycles

BN

2-approx. 3-approx.

no distributed fast distributed
algorithm algorithm VC3

Chapter1 Chapter2 Chapter 4

maximal matching paths & cycles edge packing
1. /5
Ve
1//\(\ —O
o %
o9 O
Yo Yo
®-4-©
2-appProx. 3-approx. 2-appProx.

no distributed fast distributed fast distributed
algorithm algorithm algorithm

Edge Packing

 Function f: E — [0, 1]

e f[v] = sum of f(e) over
all edges e incident to v

» Constraints: f[v] <1

oo b
%) %)

®-4-©

flol=1/5
fle] =1

Edge Packing
P

e Function f: E—|o0,1] 0\1/5 s
1
e f[v] = sum of f(e) over 0/1/5 A /E =0
all edges e incident to v g
o9

 Constraints: flv] <1 v, 1

®-4-©

« edge e = {u, v} is saturated if u or v 1s saturated

e vissaturatedif flv] =1

« edge packing is maximal if all edges are saturated

Edge Packing

e Function f: E—|o0,1]

e f[v] = sum of f(e) over
all edges e incident to v

» Constraints: f[v] <1

» “Fractional” matching

o
o o "o
e b
0 0
o-1-0

Edge Packing

. . F
 Find any maximal 0\1/5 s
edge packing .7)ﬁl/s\o
e Set of saturated nodes:) 5
oo b
vertex cover 1, 1
®-4-©

e Proof: maximal
= each edge saturated
= each edge has a saturated endpoint
= saturated nodes form a vertex cover

Edge Packing

» Find any maximal
edge packing

e Set of saturated nodes:
2-approximation of
minimum vertex cover

oo b
%) %)

®-4-©

C%

Edge Packing

Each node v € C*
has 1 unit of money

Give f(e) units
to each edge e

Double all money

Give f[v] = 1 units to each
saturated nodev € C

C] < 2|CF|

§

1l .11].0

_

O- .1j—>o

p

21 .871.0
J

O J O

C

Edge Packing

« How to find maximal edge packings?

fg_f
.
|

o & @

e Basic idea:

o bipartite
double covers C<
e maximal

matching

e recursively!

One edge: 1/2
Two edges: 1

% Ao .
W\\\V@ oohw ®0-<00

Edge Packing

 In general only “half-saturating”

o -0 0 @ o

8\8\0 O~ 0O~ 0O % O
u U

o-1,—@-1»,—0-00-1@-1,L0-0@1-@-0-O0

{3

unsaturated edge e = {u, v}

flul=flvl=1/2

Half-saturating edge packing:

O-%@-%»0-00-1,.@~0-00 1@ 00

Unsaturated subgraph (lower degrees):

Oo——0O

Recursively, find a maximal edge packing:

e 1-@

Combine solutions — maximal edge packing:

1
+ %

X
X

O-14-@4-0-0-0-/—@1—0-0-@ 1@ 0-O
e 1-@

-0 0101 L@ ~0-00 1@ 00

Edge Packing

» Recursion by maximum degree A
» Case A =1 trivial

« Assuming that case A — 1 has been solved:

o find a half-saturating edge packing f

« recursively, find a maximal edge packing g for
unsaturated subgraph (maximum degree A — 1)

 return maximal edge packing h=f+ g/2

Summary

L . ;)
o Distributed algorithms that 0\1/5 s
finds a maximal edge packing .)ﬁl/s\o
e In any graph of maximum : \
degree A in time O(A?) ;_ /2_1’ b
» Saturated nodes: ®- -0

2-approximation of
minimum vertex cover

Unique
Identifiers

DDA Course
Lecture 5.1
17 April 2012

Unique Identifiers

» Networks with globally unique identifiers

o IPv4 address, IPv6 address, MAC address,
IMEI number, ...

« “Everything” can be discovered

« in a connected graph G, all nodes can discover
full information about G in time O(diam(G))

round 1:

round 2:

round 5:

©O—®
99@@@6

16,7 15,8} 15,8}

{2,3}

{2,3}
{2,7}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

{2,3}
{2,7}

\

{2,7}
16,7}

16,8}
{6,9}
)

{2,3}
{2,7}
16,7}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

.

{2,3}
{2,7}
16,7}
16,8}
16,9}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

{2,7}
{4,9}
15,8}
16,7}
16,8}
16,9}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

16,8}

15,8}
16,7}
16,8}
{6,9}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

15,8}
16,8}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

{4,9}
16,9}

{4,9}
16,7}
{6,8}
{6,9}

{2,3}
{2,7}
14,9}
15,8}
16,7}
{6,8}
{6,9}

{4,9}

{4,9}
{6,9}

{2,3}
{2,7}
14,9}
15,8}
16,7}
16,8}
{6,9}

Unique Identifiers

« “Everything” can be discovered

e in a connected graph G, all nodes can discover
full information about G in time O(diam(G))

 “Everything” can be solved

« once all nodes know G, solving a graph problem
is just a local state transition

» Key question: what can be solved fast?

Graph Colouring

 Glven unique identifiers,
can we find a graph colouring fast?

 unique identifiers from {1, 2, ..., x} can be interpreted
as a graph colouring with x colours

» problem: huge number of colours

« we only need to solve a colour reduction problem:
given an x-colouring, find a y-colouring
for asmall y < x

Greedy Graph Colouring

 All nodes of colour x pick the smallest
free colour in their neighbourhood

« there is always a free colour
in the set {1, 2, ..., A + 1}

» reduces the number of colours from x to x — 1,
assuming that x> A + 1

» Very slow...

Fast Graph Colouring

’ o @ , @
o Let’s first study & ? 63 Q &
a special case... “” ©

e Directed 5@ ?D
pseudoforest & @/?
 edges oriented @»
63)
e outdegree < 1

Fast Graph Colouring

o Idea: colour = binary string

« Reduce colours:

: |

» k bits — (0001110101000011)
1+ 10g2 k bits T

. ok colours — (0000110001000011) —— &

2k colours T
(0011110101000011) 10001

16 bits T 1+ 4 bits T

Fast Graph Colouring

« Compare bit string with the successor,
find the first bit that differs

|
(0000110001000011)
/4 A A

(oo11110101000011) bit 8, value1 —— 10001 (10001)
/N /N

k bits 1+ log k bits

Fast Graph Colouring

» Correct, no matter what the successor does

| bit 6, value 1

(0000110001000011) bit 7, value 0
A 5 . ;

/ 01t 8, value O

(oo11110101000011) bit 8, value 1

/N
k bits

01101
01110
10000

10001

-

(10001)

/ N\
1+ log k bits

Fast Graph Colouring

» Correct, no matter what the successor does

« For each directed edge (u, v):

e the new colour of node u i1s different from
the new colour of i1ts successor v

» Proper graph colouring

Fast Graph Colouring

e NO successor?
Pretend that there i1s one...

(0000000000000000) C)
A

A

(oo11110101000011) — (0011110101000011) — (00001)

/N /N / N\
k bits 1+ log k bits

Fast Graph Colouring

 Very fast colour reduction:
2128 colours — 2 - 128 = 28 colours
23 colours — 2 - 8 = 24 colours
e 24 colours — 2 - 4 = 23 colours

e 23 colours — 2 - 3 = 6 colours

» But now we are stuck — how to get below 6?

Fast Graph Colouring

 Directed pseudotree with 6 colours:
how to reduce the number of colours?

@

o
i
O ©

Fast Graph Colouring

o Shift colours “down”:
all predecessors have the same colour

@ O—

make up something
é) if no successor

:
A e
506 b4

Fast Graph Colouring

« Now greedy works very well:
there is always a free colour in set {1, 2, 3}

@ ® ®

; ! !
Wy Ry W
576 &8 48

Fast Graph Colouring

e Colour reduction in
directed pseudotrees
 bit comparisons: very quickly gb
from x to 6 colours
e 2128 -28 - 16 -8 =6 G o ?
O

o shift + greedy: slowly ‘

from 6 to 3 colours (14)

e6—>5—>4—>3

Fast Graph Colouring

e Colour reduction in
directed pseudotrees
 next lecture: gb
fast graph colouring
for arbitrary graphs o ?
O~@

Graph
Colouring

DDA Course
Lecture 5.2
19 April 2012

Fast Graph Colouring

» Previous lecture: @ ‘_* /‘/‘

O
e colour reduction in
directed pseudoforests gb\‘ ?D
00
» Today: &) @/
» colour reduction in GO~ ?
general graphs of @
maximum degree A

Colours — orientation:

Dy DD e SaraDag©
?/@‘\,

©
éiéié

Colours — orientation:

OGP0
00
Lo

Port numbers — partition
in A directed pseudoforests

Find a 3-colouring
for each pseudoforest

Computed in parallel,
simulate A instances of
the algorithm

Each node has A colours,

one for each forest

©
@@@Mv
A ge
©
e ©

©
@@@

e &

G,: (A+1)-coloured
— trivial, no edges

S¥eye
@
© 1O
@@@

Qe

@@@
O

combination of colours

union of edges,
a+b— (a,b)

197

4

G,: 3(A+1)-coloured,
reduce to A+1 greedily

®

®

&

2ONGH
G,: (A+1)-coloured

G,: 3-coloured

@@@ SYoR©
/ey Q@@
A ge

G;: (A+1)-coloured

G.: (A+1)-coloured

G.: (A+1)-coloured
G,: 3-coloured
G.: 3(A+1)-coloured

OO~ PO
@% B8~
@@g

(A+1)-colouring of
the original graph

Fast Graph Colouring

 Colour reduction from x to A+1
e orientation: 1 round
o partition: 0 rounds
e 3-colouring: O(log* x) rounds — see Exercise 5.4
« A phases:

« merge & reduce 3(A+1) — A+1: 2(A+1) rounds

o total: O(A2 + log* x) rounds

Fast Graph Colouring

e Colour reduction from x to A+1
e O(A? + log* x) rounds

 Plenty of applications — see exercises

 Similar techniques can be used
to solve other problems

Fast Graph Colouring

e Colour reduction from x to A+1
e O(A? + log* x) rounds

 Fast, but running time depends on x

e Next week:

« dependence on x is necessary

» even if A = 2, we cannot reduce the number of colours
from x to 3 in constant time, independently of x

Ramsey
Theory

DDA Course
Lecture 6.1

24 April 2012

ON A PROBLEM OF FORMAL LOGIC

By F. P. RAMSEY.

[Received 28 November, 1928.—Read 13 December, 1928.]

This paper is primarily concerned with a special case of one of the
leading problems of mathematical logic, the problem of finding a regular
procedure to determine the truth or falsity of any given logical formula*.
But in the course of this investigation it is necessary to use certain
theorems on combinations which have an independent interest and are
most conveniently set out by themselves beforehand.

“..certain theorems on combinations
which have an independent interest...”

Pigeonhole Principle

N = 4 items, colour each of them red or blue

Possible: only 2 red an¢d only 2 blue

HOOO
HOOO

HOOO

HOOO
HOOO

Pigeonhole Principle

N = 5 items, colour each of them red or blue

Always: atleast3red or atleast 3 blue

® ©®© ©®© ® o o
® 0 o 6 6 O
® 6 O 6 6
® ® O 60 O o
® 6 66 66 6 6

Pigeonhole Principle

e Letn =3
» N items, colour each of them red or blue

o If N is large enough, there are always

o at least n red items or

o at least n blue items

« Here N = 5 1s sufficient, N < 5 1s not

Pigeonhole Principle

» Let n be anything
» N items, colour each of them red or blue

o If N is large enough, there are always

o at least n red items or

o at least n blue items

e Here N > 2n — 1 1s sufficient

Ramsey Theory

» Generalisation of pigeonhole principle
« Again, we have N items

« However, we will not colour items,
we will colour sets of items

« example: we colour all 2-subsets of items

o “k-subset” = subset of size k

Ramsey Theory

 Y: set with NV items
s N=4: Y=1{1,2,3,4}
e f: colouring of k-subsets of Y
e k=2: f({1,2}) =red, f({1,3}) = blue, ...

e XCY i1s monochromatic it
all k-subsets of X have the same colour

N=4, Y={1,2,...N}, k=2

Colour each 2-subset of Y

(1,2](1,3)(1,4)(2,3])(2, 4](3, 4]

{1, 2, 3} 1s not monochromatic:

1.2) (1, 3]

{1, 2, 4} 1s monochromatic:

N=4, Y={1,2,...N}, k=2

Colour each 2-subset of Y

(1,2])(1,3](1,4])(2,3](2,4])(3, 4]

{1, 2, 3} 1s not monochromatic:

(1.2) (1, 3]

{1, 2, 4} 1s monochromatic:

(—)
\/
X1

N

S
L/

Ramsey Theory

e letn=3, k=2
» N items, colour each k-subset red or blue

« Claim: if N is sufficiently large, there is
always a monochromatic subset of size n

N=5 Y={1,2,..,.N}, k=2
Colour each 2-subset of Y-

'1,2)(1,3)(1,4)(1,5)(2, 3
2,4)(2,5)(3,4)(3,5)(4,5

{1, 2, 3} 1s not monochromatic: @&)
1, 2] (1,3]

Check all possibilities:
there 1s no monochromatic subset of size 3

N=6, Y={1,2,...N}, k=2

Colour each 2-subset of Y

1, 2]

1,3

1,4

L5

1,6

2,3

2,4

2,5

2,6

3,4

3,5

3,6

4,5

4,6

S, 6

222

N=6, Y={1,2,...N}, k=2

Colour each 2-subset of Y

(1,3] (1, 4] 69
(4

{1, 3, 4} 1s monochromatic

N=6, Y={1,2,...N}, k=2

Colour each 2-subset of Y

1, 2]

1,3

1,4

L5

1,6

2,3

2,4

2,5

2,6

3,4

3,5

3,6

4,5

4,6

S, 6

224

N=6, Y={1,2,...N}, k=2

Colour each 2-subset of Y

{1, 3, 5} 1s monochromatic

Ramsey Theory

e letn=3, k=2
» N items, colour each k-subset red or blue

« Claim: if N is sufficiently large, there is
always a monochromatic subset of size n

« N = 51s not enough

e it is possible to show that N = 6 is enough

Ramsey Theory

 Let n and k be any positive integers
» N items, colour each k-subset red or blue

« Claim: if N is sufficiently large, there is
always a monochromatic subset of size n

Ramsey Theory

 Let ¢, n, and k be any positive integers

» N items, colour each k-subset with
a colour from {1, 2, ..., c}

e Claim: if N is sufficiently large, there is
always a monochromatic subset of size n

Ramsey’s Theorem

« Theorem: For all ¢, n, and k, there is
a number R.(n; k) such that if you take
N > Rq(n; k) items, and colour each
k-subset with one of ¢ colours, there is
always a monochromatic n-subset

Ramsey’s Theorem

« Theorem: For all ¢, n, and k, there is
a number R.(n; k) such that if you take
N > Rq(n; k) items, and colour each
k-subset with one of ¢ colours, there is
always a monochromatic n-subset

 proof: see the course material
e numbers R.(n; k) are called Ramsey numbers

« examples: R.(3;2) =6, Rx(4;2) =18

Ramsey’s Theorem

« No matter how you colour subsets,
if the base set is large enough, we can
always find a monochromatic subset

» Our application: no constant-time
algorithm for 3-colouring directed cycles

« no matter how you design your algorithm,
if the set of possible identifiers is large enough,
we can always find a “bad input”

Colouring in
Constant Time?

DDA Course
Lecture 6.2
26 April 2012

Colouring in Cycles

» Problem: 3-colouring in directed cycles

 unique identifiers from {1, 2, ... n}

« outdegree = indegree = 1

04O\ OLON
& Pod b
o, O D, O

0RO

Colouring in Cycles

» Problem: 3-colouring in directed cycles
 unique identifiers from {1, 2, ... n}

« outdegree = indegree = 1

« We know how to solve this O-GL
problem in time O(log* n) GY Q
@E

directed pseudoforests

» special case of é@
®

Colouring in Cycles

» Problem: 3-colouring in directed cycles
 unique identifiers from {1, 2, ... n}

« outdegree = indegree = 1

« We know how to solve this O-GL
problem in time O(log* n) GY Q

« Can we do 1t in time O(1)? é&) &
RORO,

Ramsey Says No

» Assume that algorithm A:

» in any directed cycle,
stops in time T for some constant T

e produces local outputs from 11, 2, 3}

» We will use Ramsey’s theorem to show that
there is a directed cycle in which A fails
to produce a proper vertex colouring

Ramsey Says No

« Example: algorithm runs in time 7' = 2

e Output of a node only depends
on k = 2T + 1 = 5 nodes around it

e choosec=3, n=k+1=6

e choose N = R¢(n; k) e’@\@?
P

o c-colour k-subsets of {1, 2, ..., N}: é
there is a monochromatic n-subset @\@

/@

Ramsey Says No

o Set of identifiers: Y = {1, 2, ... N}
« We use algorithm A to colour k-subsets of Y

« for each set B = {xi, xo, ..., xx} C Y,
X1 < Xo <...<Xk

(B) ()~
« construct a cycle where nodes / (x, § &
X1, X2, ..., Xk are placed in this order é @
 f(B) = output of the middle node @ /@

-

Colour each k-subset of Y
— what is the colour of {1, 2, 3, 4, 5}?

% %
3 omg 9
o o

— middle node 3 outputs “blue”
— set f({la 2,34, 5}) — “blue”

(1,2,3,4,5)

Colour each k-subset of Y:
— what is the colour of {3, 6, 8, 9, 10}?

— middle node 8 outputs “green”
— set f({3, 6, 8,9, 10}) = “green”

(1,2,3,4,5] (3,6,8,9,10)]

Colour each k-subset of Y:
— what is the colour of {3, 6, 8, 9, 10}?

— middle node 8 outputs “green”
— set f({3, 6, 8,9, 10}) = “green”

(1,2,3,4,5] (3,6,8,9,10)]

Ramsey Says No

« We have assigned a colour f(B) € {1, 2, 3}
to each k-subset Bof Y

'1,2,3,4,5) (1,2,3,4,10) (1,2,3,5,10
'1,2,3,4,6) (1,2,3,5,6] (1,2,3,6,7
'1,2,3,4,7) (1,2,3,57] (1,2,3,6,8
'1,2,3,4,8) (1,2,3,5,8

'1,2,3,49) (1,2,3,59] (6,7,8,9,10]

242

Ramsey Says No

« We have assigned a colour f(B) € {1, 2, 3}
to each k-subset Bof Y

« Ramsey: set Y was large enough, there
1s a monochromatic subset of size n

« example: {2, 3, 5, 7, 8, 9} 1s monochromatic

' 2,3,5,7,8] (2,3,58,9) (23,7,89
' 2,3,5,7,9) (2,57,89) (3,5,7,89

Ramsey Says No

What happens here?
Qa0
g

' 2,3,5,7,8] (2,3,58,9) (23,7,89
' 2,3,5,7,9) (2,57,89) (3,5,7,89

QuON O~C,

& o}
{ bmq b
- o-0
f;gi?;l IlJ(())CuC;lhood, @@@? g@
same output @5 @ 24:> (5

2,3,57,8) (2,3,589] (23,7,89

(2,3,5,7,9) 12,57,89] (3,5,7,89

OnON
O o
& bms b
D ® 9
&

W-©

same local
neighbourhood,

same output @5

O-@ O~

o
&
>q
o

' 2,3,5,7,8) (23,589 (2,3,7,8,9 |

' 2,3,57,9) (2,57,89) [3,578,9

Ramsey Says No

Bad output!
O-@, O-@
@ 9 Q
@5@ O [é@ Q
o oo

(2,3,5,89) (2,3,7,8,9]
(2,3,5,7,9) (257,809

Ramsey Says No

» There i1s no algorithm that
finds a 3-colouring in time T

o the proof holds for any constant T

o larger T'— need a (much) larger identifiers space Y

Summary

Distributed Algorithms

e Two models

» Port-numbering model

» key question: what is computable?

e Unique identifiers

 key question: what can be computed fast?

Algorithm Design

» Colouring i1s a powertful
symmetry-breaking tool

» Port-numbering model

» bipartite double covers — 2-colouring...

e Unique identifiers

o identifiers — colouring — colour reduction...

[.ower Bounds

» Port-numbering model
e covering maps
» local neighbourhoods

e Unique identifiers

« Ramsey’s theorem

e local neighbourhoods

That’s all.

e Exam: 4 May 2012

o check the learning objectives!

« What next?

e course feedback
e Sseminar course, autumn 2012

« Master’s thesis topics available

/

/
N

