Deterministic Distributed Algorithms
 www.iki.fi/suo/dda

Jukka Suomela
University of Helsinki, March-April 2012

Introduction

DDA Course
Lecture 1.1
13 March 2012

Practicalities

- Read the course web page: www.iki.fi/suo/dda
- Pay attention to:
- course content - theory, not practice
- course format - not a typical lecture course
- course tracking system - use it!
- online support - two online forums

Course Content

- Fundamental questions:
- what can be computed?
- what can be computed fast?
- Model of computation:
- distributed systems

Traditional Perspective

Programmer:

Adversary:

chooses any
valid input

Machine: $\quad x>M \square \begin{aligned} & \text { does computation, } \\ & \text { prints a valid output }\end{aligned}$

M
constructs a machine

Distributed Algorithms

Programmer:

constructs
a machine

Adversary:

constructs
a network

Network:

does communication, prints a valid output

You Will Learn...

- A new mindset: how to reason about distributed and parallel systems
- not a bad skill in the multi-core era
- Combinatorial optimisation
- Some math that has plenty of applications in computer science
- graph theory, Ramsey theory, ...

Plan: Two Models

- Week 1: some graph theory
- Weeks 2-4: "port-numbering model"
- weeks 2 and 4: positive results, week 3: negative results
- Weeks 5-6: "unique identifiers"
- week 5: positive results, week 6: negative results

Graphs

Graphs

Graphs

adjacent nodes neighbours

Graphs

adjacent edges

Graphs

node with 3 neighbours adjacent to 3 nodes incident to 3 edges degree is 3

Graphs

subgraph

Graphs

subgraph induced by the red nodes

all red nodes

all edges that join a pair of red nodes

Graphs

subgraph induced by the red edges

all red edges
all nodes that are
incident to red edges

Graphs

not a node-induced subgraph
not an edge-induced subgraph
not a spanning subgraph

Graphs

a shortest path from u to v
length 6
(six edges, seven nodes)
$\operatorname{dist}(u, v)=6$
diameter ≥ 6

Graphs

connected graph one connected component

Graphs

not a connected graph three connected components one isolated node

Graphs

tree

connected
no cycles

Graphs

forest
four connected components no cycles

Graphs

cycle graph

connected
2-regular

Graphs

path graph
tree
connected
maximum degree 2

Graphs

two isomorphic graphs

Graphs

two isomorphic graphs

bijection that preserves the structure

Graphs

three isomorphic graphs

Graph Problems

- Recall the definitions:
- independent set - vertex cover - dominating set
- matching - edge cover - edge dominating set
- vertex colouring - domatic partition
- edge colouring - edge domatic partition
- Examples in the course material...

Optimisation

- Maximisation problems:
- maximal $=$ cannot add anything
- maximum = largest possible size
- α-approximation $=$ at least $1 / \alpha$ times maximum
- Example: independent set
- maximal is trivial to find greedily, maximum may be very difficult to find

Optimisation

- Minimisation problems:
- minimal = cannot remove anything
- minimum = smallest possible size
- α-approximation $=$ at most α times minimum
- Example: vertex cover
- minimal is trivial to find greedily, minimum may be very difficult to find

Optimisation

Terminology:

" α-approximation of minimum vertex cover"
implies two properties:

1. vertex cover
2. at most α times as large as minimum vertex cover

Approximations are always feasible solutions!

Exercises

- Warm-up puzzles
- Exercises of Chapter 1

Discussion \& Exercises

DDA Course
Lecture 1.2
15 March 2012

Course Tracker

- 24 students registered for the course
- 7 reports in the course tracker
- Exercise 1.8: most popular, solved by 4/7
- Exercise 1.1: most difficult, $3 / 7$ need help

Feedback

- Difficult: "approximation"

Plan

- Today we will:
- review the concept of "approximation"
- solve Exercise 1.1 together
- discuss other exercises
- No new theory!
- just make sure you are comfortable with the concepts of Chapter 1 by the end of the week...

Approximation

- Let $G=(V, E)$
- Assume that a minimum vertex cover of G has 3 nodes
- Assume that $C \subseteq V$ is a vertex cover, and there are $3,4,5$, or 6 nodes in C
- Then "C is a 2-approximation of a minimum vertex cover"

Approximation

- Let $G=(V, E)$
- Assume that a minimum vertex cover of G has at least 100 nodes
- Assume that $C \subseteq V$ is a vertex cover, and there are at most 105 nodes in C
- Then " C is a 1.05-approximation of a minimum vertex cover"

Approximation

- Let $G=(V, E)$
- Assume that a maximum matching of G has 8 edges
- Assume that $M \subseteq E$ is a matching, and there are $4,5,6,7$, or 8 edges in M
- Then " M is a 2-approximation of a maximum matching"

Approximation

- Let $G=(V, E)$
- Assume that a maximum matching of G has at most 105 edges
- Assume that $M \subseteq E$ is a matching, and there are at least 100 edges in M
- Then " M is a 1.05-approximation of a maximum matching"

Approximation

graph:

minimum dominating set:

1.5-approximation of minimum dominating set:

Exercise 1.1a

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is an independent set iff C is a vertex cover

Exercise 1.1a

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is an independent set iff C is a vertex cover
- Idea: verify each edge

Exercise 1.1a

- Assume that I is an independent set:
- let $e \in E$
- definition of independent set: $|e \cap I| \leq 1$
- edges have two endpoints: $|e \cap V|=2$
- therefore $e \cap(V \backslash I) \neq \varnothing$
- Therefore $V \backslash I$ is a vertex cover

Exercise 1.1a

- Assume that C is a vertex cover:
- let $e \in E$
- definition of vertex cover: $e \cap C \neq \varnothing$
- edges have two endpoints: $|e \cap V|=2$
- therefore $|e \cap(V \backslash C)| \leq 1$
- Therefore $V \backslash C$ is an independent set

Exercise 1.1a

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is an independent set iff C is a vertex cover
- Proof: verify each edge

Exercise 1.1b

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is a maximal independent set iff C is a minimal vertex cover

Exercise 1.1b

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is a maximal independent set iff C is a minimal vertex cover
- Idea: use 1.1a

Exercise 1.1b

- Assume: I is a maximal independent set
- define $C=V \backslash I$
- then C is a vertex cover
- assume that $C ’ \subset C$ is also a vertex cover
- then $I^{\prime}=V \backslash C^{\prime}$ is an independent set

- we have $I ’ \supset I$
- therefore I was not maximal, contradiction

Exercise 1.1b

- Assume: C is a minimal vertex cover
- define $I=V \backslash C$
- similar: we already know that I is an independent set, only need to show maximality
- assume that I is not maximal, then C cannot be minimal,
 contradiction

Exercise 1.1c

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is a maximum independent set iff C is a minimum vertex cover

Exercise 1.1c

- Let $I \subseteq V$ and $C=V \backslash I$
- Claim: I is a maximum independent set iff C is a minimum vertex cover
- Idea: use 1.1a

Exercise 1.1c

- Assume: I is a maximum independent set
- define $C=V \backslash I$
- then C is a vertex cover
- assume that C^{\prime} is also a vertex cover, $\left|C^{\prime}\right|<|C|$
- then $I^{\prime}=V \backslash C^{\prime}$ is an independent set
- we have $\left|I^{\prime}\right|=|V|-\left|C^{\prime}\right|>|V|-|C|=|I|$
- therefore I was not of a maximum size, contradiction

Exercise 1.1c

- Assume: C is a minimum vertex cover
- define $I=V \backslash C$
- again we already know that I is an independent set
- similar: assume that there is a larger independent set, then C cannot be a minimum vertex cover, contradiction

Exercise 1.1d

- Show that the following is possible:
- C is a 2-approximation of minimum vertex cover
- $I=V \backslash C$ is not a 2-approximation of maximum independent set

Exercise 1.1d

- Show that the following is possible:
- C is a 2-approximation of minimum vertex cover
- $I=V \backslash C$ is not a 2-approximation of maximum independent set

Exercise 1.1e

- Show that the following is possible:
- I is a 2-approximation of maximum independent set
- $C=V \backslash I$ is not a 2-approximation of minimum vertex cover

Exercise 1.1e

- Show that the following is possible:
- I is a 2-approximation of maximum independent set
- $C=V \backslash I$ is not a 2-approximation of minimum vertex cover

Schedule

- Today:
- questions? comments?
- Tomorrow:
- last chance to discuss exercises of Chapter 1
- Next week:
- Chapter 2 - remember to read it before the lectures

Port-Numbering Model

DDA Course
Lecture 2.1
20 March 2012

Distributed Systems

- Intuition:
- distributed system
\approx communication network
\approx network equipment + communication links
- distributed algorithm
\approx computer program
- Precisely how are we going to model this?

Port Numbering

Port Numbering

- Network device = state machine with communication ports
- Ports are numbered: 1, 2, 3, ...

$$
\begin{array}{ll}
\mathbf{1} 2 \mathbf{2} \\
\square \\
\square
\end{array}
$$

Port-Numbered Network

- Network = several devices, connections between ports
- we will formalise it as a triple $N=(V, P, p)$

Port-Numbered Network

- nodes $V=\{u, v, \ldots\}$
- ports $P=\{(u, 1),(u, 2),(u, 3),(u, 4),(v, 1),(v, 2),(v, 3), \ldots\}$
- connections $p(u, 4)=(v, 1), p(v, 1)=(u, 4), \ldots$

Port-Numbered Network

- nodes $V=\{u, v, \ldots\}$
- ports $P=\{(u, 1),(u, 2),(u, 3),(u, 4),(v, 1),(v, 2),(v, 3), \ldots\}$
- connections $p(u, 4)=(v, 1), p(v, 1)=(u, 4), \ldots$

$u, 1$
$u, 2$
$u, 3$
$u, 4$
$v, 2$
$v, 3$

not a complete example, some ports not connected!

Port-Numbered Network

- nodes $V=\{a, b, c, d\}$
- ports $P=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(c, 1),(c, 2),(d, 1)\}$
- connections $p(a, 1)=(b, 1), p(b, 1)=(a, 1), \ldots$

all ports connected

Port-Numbered Network

- nodes $V=$ a finite set
- ports $P=$ a finite set of (node, number) pairs
- connections $p=$ an involution $P \rightarrow P$

involution:
$p^{-1}=p$
$p(p(x))=x$

Port-Numbered Network

- We may have multiple connections or loops

$$
\begin{aligned}
& p(c, 3)=(c, 4) \\
& p(c, 4)=(c, 3) \\
& p(d, 2)=(d, 2)
\end{aligned}
$$

Port-Numbered Network

- Simple port-numbered network: no multiple connections, no loops

Port-Numbered Network

- Underlying graph of a simple port-numbered network

Distributed Algorithms

Distributed Algorithm

- State machine, $x=$ current state:
- $x \leftarrow \operatorname{init}(z)$: initial state for local input z
- $\boldsymbol{\operatorname { s e n }}(x)$: construct outgoing messages
- $\operatorname{send}(x)=$ vector, one element per port
- $x \leftarrow \operatorname{receive}(x, m)$: process incoming messages
- $m=$ vector, one element per port

Execution

- "Execution of algorithm A in network N "
- All nodes of N are identical copies of the same state machine A
- functions init, send, and receive may depend on node degree (number of ports)
- in all other aspects the nodes are identical

Execution

- All nodes are initialised
- Time step (communication round):
- all nodes construct outgoing messages
- messages are propagated
- all nodes process incoming messages
- Continue until all nodes have stopped

Communication Round

- Construct outgoing messages

Communication Round

- Construct outgoing messages
- Exchange messages along communication links

Communication Round

- Construct outgoing messages
- Exchange messages along communication links

Communication Round

- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages

Communication Round

- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages
- Communication rounds are synchronous
- Each step happens synchronously in parallel for all nodes
- Everything is deterministic

Distributed Algorithm

- Algorithm designed chooses:
- how to initialise nodes
- how to construct outgoing messages
- how to process incoming messages
- Network structure determines:
- how messages are propagated between ports

Distributed Algorithm

- "Algorithm A solves graph problem Π on graph family \mathcal{F} ":
- for any graph $G \in \mathcal{F}$,
- for any simple port-numbered network N that has G as underlying graph,
- execution of A on N stops and produces a valid solution of Π

Distributed Algorithm

- "Algorithm A finds a minimum vertex cover in any regular graph":
- for any simple port-numbered network N that has a regular graph as underlying graph,
- execution of A on N stops,
- the stopping states of the nodes are " $\mathbf{0}$ " and " $\mathbf{1}$ ",
- nodes in state " 1 " form a minimum vertex cover

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

Example

- Nodes of degree 1:
- init $_{1}=$?, $\operatorname{send}_{1}(?)=(\mathrm{A})$

- $\operatorname{receive}_{1}(?, A)=0, \operatorname{receive}_{1}(?, B)=0$
- Nodes of degree 2:
- $\operatorname{init}_{2}=$?, $\operatorname{send}_{2}(?)=(B, B)$
- $\operatorname{receive}_{2}($?, $A, A)=1, \quad \operatorname{receive}_{2}(?, A, B)=1$, $\operatorname{receive}_{2}(?, B, A)=1, \quad \operatorname{receive}_{2}(?, B, B)=0$

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

- Solved!
- Running time: 1 communication round

General Principles

General Principles

- Synchronous execution
- "worst case"
- synchronisers exist

General Principles

- Synchronous execution
- Deterministic algorithms
- cf. the name of this course
- nodes do not have any source of randomness

General Principles

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- identical nodes (except for their degree)
- Chapters 5-6: what happens if each node has a unique name

General Principles

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- Time $=$ number of communication rounds
- focus on communication, not computation...

Examples

Maximal Matching

- We will design distributed algorithm BMM that finds a maximal matching in any 2-coloured graph
- we assume that we are given a proper 2-colouring of the underlying graph as input
- algorithm will output a maximal matching

Given

encoding of 2-colouring

Find

encoding of maximal matching

Maximal Matching

- Algorithm idea:
- white nodes send proposals to their ports, one by one
- black nodes accept the first proposal that they get

Maximal Matching

- Algorithm idea:
- white nodes send proposals to their ports, one by one
- black nodes accept the first proposal that they get
- proposal-accept pair = edge in matching
- Running time: $O(\Delta)$
- $\Delta=$ maximum degree

Maximal Matching

- We can find a maximal matching if we are given a 2 -colouring
- some auxiliary information is necessary, as we will see in Chapter 3
- Application: vertex cover approximation
- works correctly in any network, no need to have 2-colouring!

Vertex Cover

- We will design distributed algorithm VC3 that finds a 3 -approximation of minimum vertex cover in any graph
- each node stops and outputs "o" or " 1 "
- nodes that output " 1 " form a 3 -approximation of a minimum vertex cover for the underlying graph

Vertex Cover

- Given: a port-numbered network
- drawing here just the underlying graph...

Vertex Cover

- Construct the bipartite double cover: two copies of each node, edges across

Vertex Cover

- Simulate algorithm BMM, outputs a maximal matching M^{\prime}

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!
- Why vertex cover?
- assume that there is an uncovered edge
- conclude that M^{\prime} is not maximal

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!
-Why vertex cover?
- Why 3-approximation?

Vertex Cover

- Idea: matching in bipartite double cover \rightarrow paths and/or cycles in original graph

Vertex Cover

- Any vertex cover contains at least $1 / 3$ of nodes of any path or cycle
- 3-approximation if we take all of these

Summary

- We can solve non-trivial problems with distributed algorithms
- e.g., 3-approximation of minimum vertex cover
- What next?
- week 3: problems that cannot be solved at all
- week 4: more positive results
- weeks 5-6: what changes if the nodes have names?

Discussion \& Exercises

DDA Course
Lecture 2.2
22 March 2012

Counting

- Design a distributed algorithm that counts the number of nodes in any path graph
- given a simple port-numbered network $N=(V, P, p)$ that has a path graph as the underlying graph, all nodes stop and output $|V|$

Counting

- Design a distributed algorithm that counts the number of nodes in any path graph
- Algorithm idea:

Counting

- Algorithm for path graphs
- "arithmetic circuit"

$-b \rightarrow$| 1 |
| :---: |
| 2 |

$-a \rightarrow$| 1 |
| :---: |
| 2 |$-a+1 \rightarrow$

$$
\begin{aligned}
& \boxed{1}-1 \rightarrow \\
& -a \rightarrow \frac{1}{a+1}
\end{aligned}
$$

$$
\begin{array}{r}
-a \rightarrow 1 \\
-b \rightarrow 2 \\
a+b+1
\end{array}
$$

Counting

- Design a distributed algorithm that counts the number of nodes in any tree
- given a simple port-numbered network $N=(V, P, p)$ that has a tree as the underlying graph, all nodes stop and output $|V|$

Counting

- Design a distributed algorithm that counts the number of nodes in any tree

Counting

- Distributed algorithm that counts the number of nodes in any tree
- same idea: compute any property of the tree!
- time: $O(\operatorname{diam}(G))$

Impossibility

DDA Course
Lecture 3.1
27 March 2012

Proof Techniques

- Covering maps
- problems that cannot solved at all
- Isomorphic local neighbourhoods
- problems that cannot be solved quickly

Covering Map

- Networks $N=(V, P, p)$ and $N^{\prime}=\left(V^{\prime}, P^{\prime}, p^{\prime}\right)$
- Surjection $\varphi: V \rightarrow V^{\prime}$ that preserves inputs, degrees, connections, and port numbers

Holds for any pair of nodes

Holds for any pair of nodes

φ

$N^{\prime}:$

Holds for any pair of nodes

Covering Map

- Networks $N=(V, P, p)$ and $N^{\prime}=\left(V^{\prime}, P^{\prime}, p^{\prime}\right)$
- Surjection $\varphi: V \rightarrow V^{\prime}$ that preserves inputs, degrees, connections, and port numbers
- Theorem: If we run an algorithm A in N and N^{\prime}, then nodes v and $\varphi(v)$ are always in the same state

Covering Map

- Theorem: If we run an algorithm A in N and N^{\prime}, then nodes v and $\varphi(v)$ are always in the same state
- Proof: By induction
- before round i : map φ preserves local states
- during round i : map φ preserves messages
- after round $i: \operatorname{map} \varphi$ preserves local states

Covering Map

- Application: symmetry breaking in a path graph

$$
\begin{aligned}
& N: \quad 1 \longleftrightarrow \square \quad N: \subset 1 \\
& G: \quad 0-0
\end{aligned}
$$

Covering Map

- Application: symmetry breaking in a path graph
$N:$
$G:$

Covering Map

- Application: symmetry breaking in a path graph
$N:$

G:

Covering Map

- Application: symmetry breaking in a cycle

$$
N^{\prime}: \quad \begin{aligned}
& \frac{1}{2} \\
& \hline
\end{aligned}
$$

$G:$

Local Neighbourhoods

- Local neighbourhoods of nodes u and v "look identical" up to distance r
- isomorphism between radius- r neighbourhood of u and radius- r neighbourhood of v
- preserves inputs, degrees, connections, and port numbers

Local Neighbourhoods

- Local neighbourhoods of nodes u and v "look identical" up to distance r

Local Neighbourhoods

- Local neighbourhoods of nodes u and v "look identical" up to distance r
- Theorem: In any algorithm, up to time r, the local states of u and v are identical
- Informal proof: time \approx distance
- Formal proof: by induction on time

Local Neighbourhoods

- Time o: identical local states in radius-r neighbourhoods

Local Neighbourhoods

- Time 1: identical outgoing messages in radius-r neighbourhoods

Local Neighbourhoods

- Time 1: identical incoming messages in radius-($r-1$) neighbourhoods

Local Neighbourhoods

- Time 1: identical local states in radius-($r-1$) neighbourhoods

Local Neighbourhoods

- Time t : identical local states in radius- $(r-t)$ neighbourhoods

Local Neighbourhoods

- Time r: identical local states in radius-o neighbourhoods

Local Neighbourhoods

- Application: finding midpoint of a path requires $\Omega(n)$ rounds

Local Neighbourhoods

- Application: counting the number of nodes requires $\Omega(n)$ rounds

Proof Techniques

- Covering maps
- problems that cannot solved at all
- Isomorphic local neighbourhoods
- problems that cannot be solved quickly
- Plenty of exercises...

Vertex Covers \& Edge Packings

DDA Course
Lecture 4.1
3 April 2012

Vertex Cover

- Finding a minimum vertex cover is hard
- How to find good approximations?
- General idea: find something else first, show that it is useful...

Chapter 1

maximal matching

Exercise 1.3:

- find any maximal matching
- take all matched nodes
- 2-approximation of minimum vertex cover

Chapter 1

maximal matching

2-approx.
no distributed
algorithm

Corollary 3.3:

- there is no distributed algorithm that finds a maximal matching

Chapter 1
 Chapter 2

maximal matching
paths \& cycles

3-approx.
fast distributed algorithm

Chapter 1

maximal matching

2-approx.
no distributed algorithm

Chapter 2

paths \& cycles

3-approx.
fast distributed algorithm

Chapter 4

edge packing

2-approx.
fast distributed algorithm

Edge Packing

- Function $f: E \rightarrow[0,1]$
- $f[v]=$ sum of $f(e)$ over all edges e incident to v
- Constraints: $f[v] \leq 1$

$$
\begin{aligned}
& f[0]=1 / 5 \\
& f[0]=1
\end{aligned}
$$

Edge Packing

- Function $f: E \rightarrow[0,1]$
- $f[v]=$ sum of $f(e)$ over all edges e incident to v
- Constraints: $f[v] \leq 1$
- v is saturated if $f[v]=1$

- edge $e=\{u, v\}$ is saturated if u or v is saturated
- edge packing is maximal if all edges are saturated

Edge Packing

- Function $f: E \rightarrow[0,1]$
- $f[v]=\operatorname{sum}$ of $f(e)$ over all edges e incident to v
- Constraints: $f[v] \leq 1$

- "Fractional" matching

Edge Packing

- Find any maximal edge packing
- Set of saturated nodes: vertex cover
- Proof: maximal

= each edge saturated
= each edge has a saturated endpoint
= saturated nodes form a vertex cover

Edge Packing

- Find any maximal edge packing
- Set of saturated nodes: 2-approximation of minimum vertex cover

Edge Packing

Each node $v \in C^{*}$ has 1 unit of money

Give $f(e)$ units to each edge e

Double all money
Give $f[v]=1$ units to each saturated node $v \in C$

$|C| \leq 2\left|C^{*}\right|$
C

Edge Packing

- How to find maximal edge packings?
- Basic idea:
- bipartite double covers
- maximal matching
- recursively!

Edge Packing

- In general only "half-saturating"

Half-saturating edge packing:

$$
\mathrm{O}-1 / 2-\mathrm{O}-1 / 2-0-0-0-1 / 2-\mathrm{O}-1 / 2-0-0-\mathrm{O}-1-0-0
$$

Unsaturated subgraph (lower degrees):

Recursively, find a maximal edge packing:
O-1-O
Combine solutions - maximal edge packing:

Edge Packing

- Recursion by maximum degree Δ
- Case $\Delta=1$ trivial
- Assuming that case $\Delta-1$ has been solved:
- find a half-saturating edge packing f
- recursively, find a maximal edge packing g for unsaturated subgraph (maximum degree $\Delta-1$)
- return maximal edge packing $h=f+g / 2$

Summary

- Distributed algorithms that finds a maximal edge packing
- in any graph of maximum degree Δ in time $O\left(\Delta^{2}\right)$
- Saturated nodes:

2-approximation of minimum vertex cover

Unique Identifiers

DDA Course
Lecture 5.1
17 April 2012

Thiccoccien

- Networks with globally unique identifiers
- IPv4 address, IPv6 address, MAC address, IMEI number, ...
- "Everything" can be discovered
- in a connected graph G, all nodes can discover full information about G in time $O(\operatorname{diam}(G))$

Unique Identifiers

- "Everything" can be discovered
- in a connected graph G, all nodes can discover full information about G in time $O(\operatorname{diam}(G))$
- "Everything" can be solved
- once all nodes know G, solving a graph problem is just a local state transition
- Key question: what can be solved fast?

Graph Colouring

- Given unique identifiers, can we find a graph colouring fast?
- unique identifiers from $\{1,2, \ldots, x\}$ can be interpreted as a graph colouring with x colours
- problem: huge number of colours
- we only need to solve a colour reduction problem: given an x-colouring, find a y-colouring for a small $y<x$

Greedy Graph Colouring

- All nodes of colour x pick the smallest free colour in their neighbourhood
- there is always a free colour in the set $\{1,2, \ldots, \Delta+1\}$
- reduces the number of colours from x to $x-1$, assuming that $x>\Delta+1$
- Very slow...

Fast Graph Colouring

- Let's first study a special case...
- Directed pseudoforest
- edges oriented
- outdegree ≤ 1

Fast Graph Colouring

- Idea: colour = binary string
- Reduce colours:
- k bits \rightarrow
$1+\log _{2} k$ bits
- 2^{k} colours \rightarrow $2 k$ colours

Fast Graph Colouring

- Compare bit string with the successor, find the first bit that differs

Fast Graph Colouring

- Correct, no matter what the successor does

Fast Graph Colouring

- Correct, no matter what the successor does
- For each directed edge (u, v) :
- the new colour of node u is different from the new colour of its successor v
- Proper graph colouring

Fast Graph Colouring

- No successor? Pretend that there is one...

Fast Graph Colouring

- Very fast colour reduction:
- 2^{128} colours $\rightarrow 2 \cdot 128=2^{8}$ colours
- 2^{8} colours $\rightarrow 2 \cdot 8=2^{4}$ colours
- 2^{4} colours $\rightarrow 2 \cdot 4=2^{3}$ colours
- 2^{3} colours $\rightarrow 2 \cdot 3=6$ colours
- But now we are stuck - how to get below 6?

Fast Graph Colouring

- Directed pseudotree with 6 colours: how to reduce the number of colours?

Fast Graph Colouring

- Shift colours "down": all predecessors have the same colour

Fast Graph Colouring

- Now greedy works very well: there is always a free colour in set $\{1,2,3\}$

Fast Graph Colouring

- Colour reduction in directed pseudotrees
- bit comparisons: very quickly from x to 6 colours
- $\mathbf{2}^{128} \rightarrow 2^{8} \rightarrow 16 \rightarrow 8 \rightarrow 6$
- shift + greedy: slowly from 6 to 3 colours
- $6 \rightarrow 5 \rightarrow 4 \rightarrow 3$

Fast Graph Colouring

- Colour reduction in directed pseudotrees
- next lecture: fast graph colouring for arbitrary graphs

Graph Colouring

DDA Course
Lecture 5.2
19 April 2012

Fast Graph Colouring

- Previous lecture:
- colour reduction in directed pseudoforests
- Today:
- colour reduction in general graphs of maximum degree Δ

Input:

Input:

Colours \rightarrow orientation:

Input:

Colours \rightarrow orientation:

Port numbers \rightarrow partition in Δ directed pseudoforests

(87) (89) (95)
(63) (45)
 (31) (52) (40) (27) (30)

Find a 3-colouring for each pseudoforest

Computed in parallel, simulate Δ instances of the algorithm

Each node has Δ colours, one for each forest

(A) (A) (4) (4) $\left.)^{(4)}\right)^{(4)}$
 (a) (4) (4) (a) (a) (4) (4)
 $\left.\left.G_{0}^{\prime}(4)(4){ }^{(4)}\right)^{(4)}\right)^{(4)}(4)$

$G_{0}^{\prime}:(\Delta+1)$-coloured

- trivial, no edges

G_{0}^{\prime} (4) (4) (A) (A) (A)

G_{1}

(1)

union of edges, combination of colours
$a+b \rightarrow(a, b)$

(1)
(A) (A) (A) (a) (a) ${ }^{(4)}$

(3) (2) (3) (3) (3) (3) (3) (3)

$G_{0}^{\prime}:(\Delta+1)$-coloured
G_{1} : 3-coloured
$G_{1}^{\prime}: 3(\Delta+1)$-coloured

(A) (A) (A) (A) (A) (A)
(A) (A) (A) AA A) A A A G_{0}^{\prime} (A) (A) (A) (A) (A)

$G_{0}^{\prime}:(\Delta+1)$-coloured
$G_{1}: 3$-coloured
$G_{1}^{\prime}: 3(\Delta+1)$-coloured,
reduce to $\Delta+1$ greedily
(1) (1) (1) (1)

(1)

$G_{1}^{\prime}:(\Delta+1)$-coloured

(1) (1) (1)

$G_{1}^{\prime}:(\Delta+1)$-coloured
$G_{2}: 3$-coloured
$G_{2}^{\prime}: 3(\Delta+1)$-coloured

(1) (1) (1) (1)

$G_{1}^{\prime}:(\Delta+1)$-coloured
$G_{2}: 3$-coloured
$G_{2}^{\prime}: 3(\Delta+1)$-coloured,
reduce to $\Delta+1$ greedily

$G_{2}^{\prime}:(\Delta+1)$-coloured

($\Delta+1$)-colouring of the original graph

Fast Graph Colouring

- Colour reduction from x to $\Delta+1$
- orientation: 1 round
- partition: o rounds
- 3-colouring: $O\left(\log ^{*} x\right)$ rounds - see Exercise 5.4
- Δ phases:
- merge \& reduce $3(\Delta+1) \rightarrow \Delta+1: 2(\Delta+1)$ rounds
- total: $O\left(\Delta^{2}+\log ^{*} x\right)$ rounds

Fast Graph Colouring

- Colour reduction from x to $\Delta+1$
- $O\left(\Delta^{2}+\log ^{*} x\right)$ rounds
- Plenty of applications - see exercises
- Similar techniques can be used to solve other problems

Fast Graph Colouring

- Colour reduction from x to $\Delta+1$
- $O\left(\Delta^{2}+\log ^{*} x\right)$ rounds
- Fast, but running time depends on x
- Next week:
- dependence on x is necessary
- even if $\Delta=2$, we cannot reduce the number of colours from x to 3 in constant time, independently of x

Ramsey Theory

DDA Course
Lecture 6.1
24 April 2012

ON A PROBLEM OF FORMAL LOGIC

By F. P. Ramsey.

[Received 28 November, 1928. -Read 13 December, 1928.]

This paper is primarily concerned with a special case of one of the leading problems of mathematical logic, the problem of finding a regular procedure to determine the truth or falsity of any given logical formula*. But in the course of this investigation it is necessary to use certain theorems on combinations which have an independent interest and are most conveniently set out by themselves beforehand.

"... certain theorems on combinations which have an independent interest..."

Pigeonhole Principle

$N=4$ items, colour each of them red or blue

Possible: only 2 red and only 2 blue
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)

(1)
(2)
(4)
(1)
(2)
(3)
(4)

Pigeonhole Principle

$N=5$ items, colour each of them red or blue

Always: at least 3 red or at least 3 blue

Pigeonhole Principle

- Let $n=3$
- N items, colour each of them red or blue
- If N is large enough, there are always
- at least n red items or
- at least n blue items
- Here $N \geq 5$ is sufficient, $N<5$ is not

Pigeonhole Principle

- Let n be anything
- N items, colour each of them red or blue
- If N is large enough, there are always
- at least n red items or
- at least n blue items
- Here $N \geq 2 n-1$ is sufficient

Ramsey Theory

- Generalisation of pigeonhole principle
- Again, we have N items
- However, we will not colour items, we will colour sets of items
- example: we colour all 2-subsets of items
- " k-subset" = subset of size k

Ramsey Theory

- Y : set with N items
- $N=4: \quad Y=\{1,2,3,4\}$
- f : colouring of k-subsets of Y
- $k=2: f(\{1,2\})=$ red, $f(\{1,3\})=$ blue, \ldots
- $X \subseteq Y$ is monochromatic if all k-subsets of X have the same colour
$N=4, Y=\{1,2, \ldots, N\}, k=2$
Colour each 2-subset of Y :
$1,21,31,4$ 2,3 2,4 3,4
$\{1,2,3\}$ is not monochromatic:
$1,21,3$
2,3
$\{1,2,4\}$ is monochromatic:
1,2
1,4
2, 4
$N=4, Y=\{1,2, \ldots, N\}, k=2$

Colour each 2-subset of Y :
1,2 1,3 1,4 2,3 2,4 3,4

$\{1,2,3\}$ is not monochromatic:
$1,21,3$
2,3

$\{1,2,4\}$ is monochromatic:
1,2
1,4
2,4

Ramsey Theory

- Let $n=3, k=2$
- N items, colour each k-subset red or blue
- Claim: if N is sufficiently large, there is always a monochromatic subset of size n
$N=5, Y=\{1,2, \ldots, N\}, k=2$

Colour each 2-subset of Y :

| 1,2 | 1,3 | 1,4 | 1,5 | 2,3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2,4 | 2,5 | 3,4 | 3,5 | 4,5 |

$\{1,2,3\}$ is not monochromatic:
1,2 1,3 2,3

Check all possibilities: there is no monochromatic subset of size 3
$N=6, Y=\{1,2, \ldots, N\}, k=2$
Colour each 2-subset of Y :
1,2

1,3	1,4	1,5	1,6
2,3	2,4	2,5	2,6
	3,4	3,5	3,6
		4,5	4,6
			5,6

$N=6, Y=\{1,2, \ldots, N\}, k=2$
Colour each 2-subset of Y : 1,2

$\{1,3,4\}$ is monochromatic
$N=6, Y=\{1,2, \ldots, N\}, k=2$
Colour each 2-subset of Y :

$$
\begin{array}{llllll|}
1,2 & 1,3 & 1,4 & 1,5 & 1,6 \\
& 2,3 & 2,4 & 2,5 & 2,6 \\
& 3,4 & 3,5 & 3,6 \\
& & 4,5 & 4,6 \\
& & & & 5,6 \\
& & & & & \\
& & & \\
& &
\end{array}
$$

$N=6, Y=\{1,2, \ldots, N\}, k=2$
Colour each 2-subset of Y :

$\{1,3,5\}$ is monochromatic

Ramsey Theory

- Let $n=3, k=2$
- N items, colour each k-subset red or blue
- Claim: if N is sufficiently large, there is always a monochromatic subset of size n
- $N=5$ is not enough
- it is possible to show that $N=6$ is enough

Ramsey Theory

- Let n and k be any positive integers
- N items, colour each k-subset red or blue
- Claim: if N is sufficiently large, there is always a monochromatic subset of size n

Ramsey Theory

- Let c, n, and k be any positive integers
- N items, colour each k-subset with a colour from $\{1,2, \ldots, c\}$
- Claim: if N is sufficiently large, there is always a monochromatic subset of size n

Ramsey's Theorem

- Theorem: For all c, n, and k, there is a number $R_{c}(n ; k)$ such that if you take $N \geq R_{c}(n ; k)$ items, and colour each k-subset with one of c colours, there is always a monochromatic n-subset

Ramsey's Theorem

- Theorem: For all c, n, and k, there is a number $R_{c}(n ; k)$ such that if you take $N \geq R_{c}(n ; k)$ items, and colour each k-subset with one of c colours, there is always a monochromatic n-subset
- proof: see the course material
- numbers $R_{c}(n ; k)$ are called Ramsey numbers
- examples: $R_{2}(3 ; 2)=6, R_{2}(4 ; 2)=18$

Ramsey's Theorem

- No matter how you colour subsets, if the base set is large enough, we can always find a monochromatic subset
- Our application: no constant-time algorithm for 3-colouring directed cycles
- no matter how you design your algorithm, if the set of possible identifiers is large enough, we can always find a "bad input"

Colouring in Constant Time?

DDA Course
Lecture 6.2
26 April 2012

Colouring in Cycles

- Problem: 3-colouring in directed cycles
- unique identifiers from $\{1,2, \ldots n\}$
- outdegree $=$ indegree $=1$

Colouring in Cycles

- Problem: 3-colouring in directed cycles
- unique identifiers from $\{1,2, \ldots n\}$
- outdegree $=$ indegree $=1$
- We know how to solve this problem in time $O\left(\log ^{*} n\right)$
- special case of directed pseudoforests

Colouring in Cycles

- Problem: 3-colouring in directed cycles
- unique identifiers from $\{1,2, \ldots n\}$
- outdegree $=$ indegree $=1$
- We know how to solve this problem in time $O\left(\log ^{*} n\right)$
- Can we do it in time $O(1)$?

Ramsey Says No

- Assume that algorithm A :
- in any directed cycle, stops in time T for some constant T
- produces local outputs from $\{1,2,3\}$
- We will use Ramsey's theorem to show that there is a directed cycle in which A fails to produce a proper vertex colouring

Ramsey Says No

- Example: algorithm runs in time $T=2$
- Output of a node only depends on $k=2 T+1=5$ nodes around it
- choose $c=3, n=k+1=6$
- choose $N \geq R_{c}(n ; k)$
- c-colour k-subsets of $\{1,2, \ldots, N\}$: there is a monochromatic n-subset

Ramsey Says No

- Set of identifiers: $Y=\{1,2, \ldots N\}$
- We use algorithm A to colour k-subsets of Y
- for each set $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq Y$, $x_{1}<x_{2}<\ldots<x_{k}$
- construct a cycle where nodes $x_{1}, x_{2}, \ldots, x_{k}$ are placed in this order
- $f(B)=$ output of the middle node

Colour each k-subset of Y :

- what is the colour of $\{1,2,3,4,5\}$?

- middle node 3 outputs "blue"
$-\operatorname{set} f(\{1,2,3,4,5\})=$ "blue"

$$
1,2,3,4,5
$$

Colour each k-subset of Y :

- what is the colour of $\{3,6,8,9,10\}$?

- middle node 8 outputs "green"
$-\operatorname{set} f(\{3,6,8,9,10\})=$ "green"

$$
1,2,3,4,53,6,8,9,10
$$

Colour each k-subset of Y :

- what is the colour of $\{3,6,8,9,10\}$?

- middle node 8 outputs "green"
$-\operatorname{set} f(\{3,6,8,9,10\})=$ "green"

$$
1,2,3,4,5 \quad 3,6,8,9,10
$$

Ramsey Says No

- We have assigned a colour $f(B) \in\{1,2,3\}$ to each k-subset B of Y

$1,2,3,4,5$	$1,2,3,4,10$	$1,2,3,5,10$
$1,2,3,4,6$	$1,2,3,5,6$	$1,2,3,6,7$
$1,2,3,4,7$	$1,2,3,5,7$	$1,2,3,6,8$
$1,2,3,4,8$	$1,2,3,5,8$	$\bullet \bullet \bullet$
$1,2,3,4,9$	$1,2,3,5,9$	$6,7,8,9,10$

Ramsey Says No

- We have assigned a colour $f(B) \in\{1,2,3\}$ to each k-subset B of Y
- Ramsey: set Y was large enough, there is a monochromatic subset of size n
- example: $\{2,3,5,7,8,9\}$ is monochromatic

$2,3,5,7,8$	$2,3,5,8,9$	$2,3,7,8,9$
$2,3,5,7,9$	$2,5,7,8,9$	$3,5,7,8,9$

Ramsey Says No

What happens here?

$2,3,5,7,8$	$2,3,5,8,9$	$2,3,7,8,9$
$2,3,5,7,9$	$2,5,7,8,9$	$3,5,7,8,9$

same local neighbourhood, same output

$2,3,5,7,8$	$2,3,5,8,9$	$2,3,7,8,9$
$2,3,5,7,9$	$2,5,7,8,9$	$3,5,7,8,9$

same local neighbourhood, same output

$2,3,5,7,8$	$2,3,5,8,9$	$2,3,7,8,9$
	$2,3,5,7,9$	$2,5,7,8,9$
		$3,5,7,8,9$

Ramsey Says No

Bad output!

$2,3,5,7,8$	$2,3,5,8,9$	$2,3,7,8,9$
$2,3,5,7,9$	$2,5,7,8,9$	$3,5,7,8,9$

Ramsey Says No

- There is no algorithm that finds a 3-colouring in time T
- the proof holds for any constant T
- larger $T \rightarrow$ need a (much) larger identifiers space Y

Summary

Distributed Algorithms

- Two models
- Port-numbering model
- key question: what is computable?
- Unique identifiers
- key question: what can be computed fast?

Algorithm Design

- Colouring is a powerful symmetry-breaking tool
- Port-numbering model
- bipartite double covers \rightarrow 2-colouring...
- Unique identifiers
- identifiers \rightarrow colouring \rightarrow colour reduction...

Lower Bounds

- Port-numbering model
- covering maps
- local neighbourhoods
- Unique identifiers
- Ramsey's theorem
- local neighbourhoods

That's all.

- Exam: 4 May 2012
- check the learning objectives!
- What next?
- course feedback
- seminar course, autumn 2012
- Master's thesis topics available

