Instructions. There are three questions, each of them worth 20 points. For the minimum passing grade of 1/5, you will need approximately 30 points, and for the highest grade of 5/5, you will need approximately 50 points. You can answer in English, Finnish, or Swedish.

Question 1. Define the following terms and concepts $(10 \times 1 \text{ points})$:

- (a) Vertex cover.
- (b) Minimal vertex cover.
- (c) Minimum vertex cover.
- (d) 2-approximation of a minimum vertex cover.
- (e) Matching.
- (f) Regular graph.
- (g) Port-numbered network.
- (h) Simple port-numbered network.
- (i) Function $\log^* x$.
- (j) Monochromatic subset (in the context of Ramsey's theorem).

Solve $(2 \times 5 \text{ points})$:

- (k) Let G = (V, E) be a graph, and let $M \subseteq E$ be a **maximal matching** in *G*. Define $C = \bigcup M$, that is, *C* consists of all nodes that are incident to an edge in matching *M*. Prove that *C* is a **2-approximation of a minimum vertex cover** in graph *G*.
- (1) Let G = (V, E) be a **regular graph**. Define C = V, that is, *C* is the set of all nodes. Prove that *C* is a **2-approximation of a minimum vertex cover** in graph *G*.

Question 2. Let \mathscr{F}_{P} be the family of **path graphs**; that is, $G \in \mathscr{F}_{P}$ if *G* is a connected acyclic simple undirected graph and each node of *G* has a degree at most 2.

Design a deterministic distributed algorithm *A* that finds a **2-approximation of a minimum vertex cover** on graph family \mathscr{F}_{P} , in the port-numbering model. Present your algorithm in a formally precise manner, using the *state machine formalism*. You will have to define

- · States_{*A*}, the set of states,
- Msg_A , the set of possible messages,
- · init_{A,d}: Input_A \rightarrow States_A, the function that initialises the state machine,
- · send_{*A*,*d*}: States_{*A*} \rightarrow Msg^{*d*}_{*A*}, the function that constructs outgoing messages, and
- receive_{A,d}: States_A × Msg_A^d → States_A, the function that processes incoming messages.

Note that the set of local inputs is $Input_A = \{0\}$, and the set of local outputs (stopping states) is $Output_A = \{0, 1\}$. Prove that your algorithm is correct, and analyse its running time.

Question 3. Let \mathscr{F}_{C} be the family of **cycle graphs**; that is, $G \in \mathscr{F}_{C}$ if *G* is a connected 2-regular simple undirected graph. Let Π_{0} be the distributed graph problem of finding a **minimal vertex cover**, and let Π_{1} be the distributed graph problem of finding a **minimum vertex cover**.

Prove that there is no deterministic distributed algorithm that solves problem Π_1 on graph family \mathscr{F}_C given Π_0 . That is, given a cycle graph and a minimal vertex cover, it is not possible to find a minimum vertex cover. You can use the following result that is familiar from the course material.

Theorem. Assume that *A* is a distributed algorithm, $X = \text{Input}_A$ is a set of local inputs, N = (V, P, p) and N' = (V', P', p') are port-numbered networks, $f : V \to X$ and $f': V' \to X$ are arbitrary functions, and $\phi: V \to V'$ is a covering map from (N, f) to (N', f'). Let x_0, x_1, \ldots be the execution of *A* on (N, f), and let x'_0, x'_1, \ldots be the execution of *A* on (N, f), and let x'_0, x'_1, \ldots be the execution of *A* on (N, f).