Instructions. There are three questions, each of them worth 20 points. For the minimum passing grade of $1 / 5$, you will need approximately 30 points, and for the highest grade of $5 / 5$, you will need approximately 50 points. You can answer in English, Finnish, or Swedish.

Question 1. Define the following terms and concepts (10×1 points):
(a) Vertex cover.
(b) Minimal vertex cover.
(c) Minimum vertex cover.
(d) 2-approximation of a minimum vertex cover.
(e) Matching.
(f) Regular graph.
(g) Port-numbered network.
(h) Simple port-numbered network.
(i) Function $\log ^{*} x$.
(j) Monochromatic subset (in the context of Ramsey's theorem).

Solve (2×5 points):
(k) Let $G=(V, E)$ be a graph, and let $M \subseteq E$ be a maximal matching in G. Define $C=\bigcup M$, that is, C consists of all nodes that are incident to an edge in matching M. Prove that C is a 2-approximation of a minimum vertex cover in graph G.
(1) Let $G=(V, E)$ be a regular graph. Define $C=V$, that is, C is the set of all nodes. Prove that C is a 2-approximation of a minimum vertex cover in graph G.

Question 2. Let \mathscr{F}_{P} be the family of path graphs; that is, $G \in \mathscr{F}_{\mathrm{P}}$ if G is a connected acyclic simple undirected graph and each node of G has a degree at most 2 .

Design a deterministic distributed algorithm A that finds a 2 -approximation of a minimum vertex cover on graph family \mathscr{F}_{P}, in the port-numbering model. Present your algorithm in a formally precise manner, using the state machine formalism. You will have to define

- States $_{A}$, the set of states,
- Msg_{A}, the set of possible messages,
\cdot init $_{A, d}: \operatorname{Input}_{A} \rightarrow$ States $_{A}$, the function that initialises the state machine,
- $\operatorname{send}_{A, d}:$ States $_{A} \rightarrow$ Msg $_{A}^{d}$, the function that constructs outgoing messages, and
- receive $_{A, d}:$ States $_{A} \times$ Msg $_{A}^{d} \rightarrow$ States $_{A}$, the function that processes incoming messages.

Note that the set of local inputs is Input $_{A}=\{0\}$, and the set of local outputs (stopping states) is Output $_{A}=\{0,1\}$. Prove that your algorithm is correct, and analyse its running time.

Question 3. Let \mathscr{F}_{C} be the family of cycle graphs; that is, $G \in \mathscr{F}_{\mathrm{C}}$ if G is a connected 2-regular simple undirected graph. Let Π_{0} be the distributed graph problem of finding a minimal vertex cover, and let Π_{1} be the distributed graph problem of finding a minimum vertex cover.

Prove that there is no deterministic distributed algorithm that solves problem Π_{1} on graph family \mathscr{F}_{C} given Π_{0}. That is, given a cycle graph and a minimal vertex cover, it is not possible to find a minimum vertex cover. You can use the following result that is familiar from the course material.

Theorem. Assume that A is a distributed algorithm, $X=\operatorname{Input}_{A}$ is a set of local inputs, $N=(V, P, p)$ and $N^{\prime}=\left(V^{\prime}, P^{\prime}, p^{\prime}\right)$ are port-numbered networks, $f: V \rightarrow X$ and $f^{\prime}: V^{\prime} \rightarrow X$ are arbitrary functions, and $\phi: V \rightarrow V^{\prime}$ is a covering map from (N, f) to (N^{\prime}, f^{\prime}). Let x_{0}, x_{1}, \ldots be the execution of A on (N, f), and let $x_{0}^{\prime}, x_{1}^{\prime}, \ldots$ be the execution of A on $\left(N^{\prime}, f^{\prime}\right)$. Then for each $t=0,1, \ldots$ and each $v \in V$ we have $x_{t}(v)=x_{t}^{\prime}(\phi(v))$.

