Deterministic Distributed Algorithms

www.iki.fi/suo/dda-2014

Jukka Suomela
University of Helsinki, March-April 2014

Introduction

DDA Course
week 1

Practicalities

- Read the course web page: www.iki.fi/suo/dda-2014
- Pay attention to:
- course content - theory, not practice
- course format - not a typical lecture course
- social media - two online forums, you can also use these for real-time feedback!

Course Content

- Fundamental questions:
- what can be computed?
- what can be computed fast?
- Model of computation:
- distributed systems

Traditional Perspective

Programmer:

Adversary:

chooses any
valid input

Machine: $\quad x>M \square \begin{aligned} & \text { does computation, } \\ & \text { prints a valid output }\end{aligned}$

M
constructs a machine

Distributed Algorithms

Programmer:
constructs
a machine

Adversary:

constructs
a network

Network:

does communication, prints a valid output

You Will Learn...

- A new mindset: how to reason about distributed and parallel systems
- not a bad skill in the multi-core era
- Combinatorial optimisation
- Some math that has plenty of applications in computer science
- graph theory, Ramsey theory, ...

Plan: Two Models

- Week 1: some graph theory
- Weeks 2-4: "port-numbering model"
- weeks 2 and 4: positive results, week 3: negative results
- Weeks 5-6: "unique identifiers"
- week 5: positive results, week 6: negative results

Graphs

Graphs

Graphs

adjacent nodes neighbours

Graphs

adjacent edges

Graphs

node with 3 neighbours adjacent to 3 nodes incident to 3 edges degree is 3

Graphs

subgraph

Graphs

subgraph induced by the red nodes

all red nodes

all edges that join a pair of red nodes

Graphs

subgraph induced by the red edges

all red edges
all nodes that are incident to red edges

Graphs

not a node-induced subgraph
not an edge-induced subgraph
not a spanning subgraph

Graphs

a shortest path from u to v
length 6
(six edges, seven nodes)
$\operatorname{dist}(u, v)=6$
diameter ≥ 6

Graphs

connected graph one connected component

Graphs

not a connected graph three connected components one isolated node

Graphs

tree

connected
no cycles

Graphs

forest
four connected components no cycles

Graphs

cycle graph

connected

2-regular

Graphs

path graph
tree
connected
maximum degree 2

Graphs

two isomorphic graphs

Graphs

two isomorphic graphs

bijection that preserves the structure

Graphs

three isomorphic graphs

Graph Problems

Graph Problems

- Recall the definitions:
- independent set - vertex cover - dominating set
- matching - edge cover - edge dominating set
- vertex colouring - domatic partition
- edge colouring - edge domatic partition
- Examples in the course material...

Optimisation

- Maximisation problems:
- maximal $=$ cannot add anything
- maximum = largest possible size
- α-approximation $=$ at least $1 / \alpha$ times maximum
- Example: independent set
- maximal is trivial to find greedily, maximum may be very difficult to find

Optimisation

- Minimisation problems:
- minimal = cannot remove anything
- minimum = smallest possible size
- α-approximation $=$ at most α times minimum
- Example: vertex cover
- minimal is trivial to find greedily, minimum may be very difficult to find

Optimisation

Terminology:

" α-approximation of minimum vertex cover"
implies two properties:

1. vertex cover
2. at most α times as large as minimum vertex cover

Approximations are always feasible solutions!

