Deterministic Distributed Algorithms

www.iki.fi/suo/dda-2014

Jukka Suomela

University of Helsinki, March–April 2014

Introduction

DDA Course week 1

Practicalities

- Read the course web page: www.iki.fi/suo/dda-2014
- Pay attention to:
 - *course content* theory, not practice
 - *course format* not a typical lecture course
 - social media two online forums, you can also use these for *real-time feedback*!

Course Content

- Fundamental questions:
 - what can be computed?
 - what can be computed fast?
- Model of computation:
 - distributed systems

Traditional Perspective

Programmer:

constructs a machine

Adversary:

chooses any valid input

Machine:

 $|x\rangle$ $|y\rangle$

does computation, prints a valid output

Distributed Algorithms

You Will Learn...

- A new mindset: how to reason about distributed and parallel systems
 - not a bad skill in the multi-core era
- Combinatorial optimisation
- Some math that has plenty of applications in computer science
 - graph theory, Ramsey theory, ...

Plan: Two Models

- Week 1: some graph theory
- Weeks 2–4: *"port-numbering model"*
 - weeks 2 and 4: positive results, week 3: negative results
- Weeks 5–6: *"unique identifiers"*
 - week 5: positive results, week 6: negative results

adjacent nodes neighbours

adjacent edges

node with 3 neighbours adjacent to 3 nodes incident to 3 edges degree is 3

subgraph

subgraph induced by the red nodes

all red nodes

all edges that join a pair of red nodes

subgraph induced by the red edges

all red edges

all nodes that are incident to red edges

not a node-induced subgraph

not an edge-induced subgraph

not a spanning subgraph

a shortest path from u to vlength 6 (six *edges*, seven *nodes*) dist(u, v) = 6 diameter \ge 6

connected graph one connected component

not a connected graph three connected components one isolated node

tree connected no cycles

forest four connected components no cycles

cycle graph connected 2-regular

path graph tree connected maximum degree 2

two isomorphic graphs

two isomorphic graphs

bijection that preserves the structure

three isomorphic graphs

Graph Problems

Graph Problems

- Recall the definitions:
 - independent set vertex cover dominating set
 - matching edge cover edge dominating set
 - vertex colouring domatic partition
 - edge colouring edge domatic partition
- Examples in the course material...

Optimisation

- Maximisation problems:
 - *maximal* = cannot add anything
 - *maximum* = largest possible size
 - α -approximation = at least $1/\alpha$ times maximum
- Example: independent set
 - maximal is trivial to find greedily, maximum may be very difficult to find

Optimisation

- Minimisation problems:
 - *minimal* = cannot remove anything
 - *minimum* = smallest possible size
 - α -approximation = at most α times minimum
- Example: vertex cover
 - minimal is trivial to find greedily, minimum may be very difficult to find

Optimisation

Terminology:

" α -approximation of minimum vertex cover"

implies two properties:

1. vertex cover

2. at most α times as large as minimum vertex cover

Approximations are always feasible solutions!