Port-Numbering Model

DDA Course
week 2

Distributed Systems

- Intuition:
- distributed system
\approx communication network
\approx network equipment + communication links
- distributed algorithm
\approx computer program
- Precisely how are we going to model this?

Port Numbering

Port Numbering

- Network device = state machine with communication ports
- Ports are numbered: 1, 2, 3, ...

$$
\begin{array}{ll}
\mathbf{1} 2 \mathbf{2} 4 \\
\square \\
\square
\end{array}
$$

Port-Numbered Network

- Network = several devices, connections between ports
- we will formalise it as a triple $N=(V, P, p)$

Port-Numbered Network

- nodes $V=\{u, v, \ldots\}$
- ports $P=\{(u, 1),(u, 2),(u, 3),(u, 4),(v, 1),(v, 2),(v, 3), \ldots\}$
- connections $p(u, 4)=(v, 1), p(v, 1)=(u, 4), \ldots$

Port-Numbered Network

- nodes $V=\{u, v, \ldots\}$
- ports $P=\{(u, 1),(u, 2),(u, 3),(u, 4),(v, 1),(v, 2),(v, 3), \ldots\}$
- connections $p(u, 4)=(v, 1), p(v, 1)=(u, 4), \ldots$

$u, 1$
$u, 2$
$u, 3$
$u, 4$
$v, 2$
$v, 3$

not a complete example, some ports not connected!

Port-Numbered Network

- nodes $V=\{a, b, c, d\}$
- ports $P=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(c, 1),(c, 2),(d, 1)\}$
- connections $p(a, 1)=(b, 1), p(b, 1)=(a, 1), \ldots$

all ports connected

Port-Numbered Network

- nodes $V=$ a finite set
- ports $P=$ a finite set of (node, number) pairs
- connections $p=$ an involution $P \rightarrow P$

involution:
$p^{-1}=p$
$p(p(x))=x$

Port-Numbered Network

- We may have multiple connections or loops

$$
\begin{aligned}
& p(c, 3)=(c, 4) \\
& p(c, 4)=(c, 3) \\
& p(d, 2)=(d, 2)
\end{aligned}
$$

Port-Numbered Network

- Simple port-numbered network: no multiple connections, no loops

Port-Numbered Network

- Underlying graph of a simple port-numbered network

Distributed Algorithms

Distributed Algorithm

- State machine, $x=$ current state:
- $x \leftarrow \operatorname{init}(z)$: initial state for local input z
- $\operatorname{send}(x)$: construct outgoing messages
- $\operatorname{send}(x)=$ vector, one element per port
- $x \leftarrow \operatorname{receive}(x, m)$: process incoming messages
- $m=$ vector, one element per port

Execution

- "Execution of algorithm A in network $N "$
- All nodes of N are identical copies of the same state machine A
- functions init, send, and receive may depend on node degree (number of ports)
- in all other aspects the nodes are identical

Execution

- All nodes are initialised
- Time step (communication round):
- all nodes construct outgoing messages
- messages are propagated
- all nodes process incoming messages
- Continue until all nodes have stopped

Communication Round

- Construct outgoing messages

Communication Round

- Construct outgoing messages
- Exchange messages along communication links

Communication Round

- Construct outgoing messages
- Exchange messages along communication links

Communication Round

- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages

Communication Round

- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages
- Communication rounds are synchronous
- Each step happens synchronously in parallel for all nodes
- Everything is deterministic

Distributed Algorithm

- Algorithm designed chooses:
- how to initialise nodes
- how to construct outgoing messages
- how to process incoming messages
- Network structure determines:
- how messages are propagated between ports

Distributed Algorithm

- "Algorithm A solves graph problem Π on graph family \mathcal{F} ":
- for any graph $G \in \mathcal{F}$,
- for any simple port-numbered network N that has G as underlying graph,
- execution of A on N stops and produces a valid solution of Π

Distributed Algorithm

- "Algorithm A finds a minimum vertex cover in any regular graph":
- for any simple port-numbered network N that has a regular graph as underlying graph,
- execution of A on N stops,
- the stopping states of the nodes are " $\mathbf{0}$ " and " $\mathbf{1}$ ",
- nodes in state " 1 " form a minimum vertex cover

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

Example

- Nodes of degree 1:
- init $_{1}=$?, $\operatorname{send}_{1}(?)=(\mathrm{A})$

- $\operatorname{receive}_{1}(?, A)=0, \operatorname{receive}_{1}(?, B)=0$
- Nodes of degree 2:
- $\operatorname{init}_{2}=$?, $\operatorname{send}_{2}(?)=(B, B)$
- $\operatorname{receive}_{2}($?, $A, A)=1, \quad \operatorname{receive}_{2}(?, A, B)=1$, $\operatorname{receive}_{2}(?, B, A)=1, \quad \operatorname{receive}_{2}($?, $B, B)=0$

Example

- Design a distributed algorithm that finds a minimum vertex cover in

$$
\mathcal{F}=\{\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}, \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}\}
$$

- Solved!
- Running time: 1 communication round

General Principles

General Principles

- Synchronous execution
- "worst case"
- synchronisers exist

General Principles

- Synchronous execution
- Deterministic algorithms
- cf. the name of this course
- nodes do not have any source of randomness

General Principles

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- identical nodes (except for their degree)
- Chapters 5-6: what happens if each node has a unique name

General Principles

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- Time $=$ number of communication rounds
- focus on communication, not computation...

Examples

Maximal Matching

- We will design distributed algorithm BMM that finds a maximal matching in any 2-coloured graph
- we assume that we are given a proper 2-colouring of the underlying graph as input
- algorithm will output a maximal matching

Given

encoding of 2-colouring

Find

encoding of maximal matching

Maximal Matching

- Algorithm idea:
- white nodes send proposals to their ports, one by one
- black nodes accept the first proposal that they get

Maximal Matching

- Algorithm idea:
- white nodes send proposals to their ports, one by one
- black nodes accept the first proposal that they get
- proposal-accept pair = edge in matching
- Running time: $O(\Delta)$
- $\Delta=$ maximum degree

Maximal Matching

- We can find a maximal matching if we are given a 2 -colouring
- some auxiliary information is necessary, as we will see in Chapter 3
- Application: vertex cover approximation
- works correctly in any network, no need to have 2-colouring!

Vertex Cover

- We will design distributed algorithm VC3 that finds a 3 -approximation of minimum vertex cover in any graph
- each node stops and outputs " 0 " or " 1 "
- nodes that output " 1 " form a 3 -approximation of a minimum vertex cover for the underlying graph

Vertex Cover

- Given: a port-numbered network
- drawing here just the underlying graph...

Vertex Cover

- Construct the bipartite double cover: two copies of each node, edges across

Vertex Cover

- Simulate algorithm BMM, outputs a maximal matching M^{\prime}

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!
- Why vertex cover?
- assume that there is an uncovered edge
- conclude that M^{\prime} is not maximal

Vertex Cover

- $C=$ nodes with at least one copy matched: 3-approximation of minimum vertex cover!
- Why vertex cover?
- Why 3-approximation?

Vertex Cover

- Idea: matching in bipartite double cover \rightarrow paths and/or cycles in original graph

Vertex Cover

- Any vertex cover contains at least $1 / 3$ of nodes of any path or cycle
- 3-approximation if we take all of these

Summary

- We can solve non-trivial problems with distributed algorithms
- e.g., 3-approximation of minimum vertex cover
- What next?
- week 3: problems that cannot be solved at all
- week 4: more positive results
- weeks $5-6$: what changes if the nodes have names?

