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Distributed Systems
• Intuition: 

• distributed system 
≈ communication network 
≈ network equipment + communication links 

• distributed algorithm 
≈ computer program 

• Precisely how are we going to model this?
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Port Numbering
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Port Numbering
• Network device = state machine with  

communication ports 

• Ports are numbered: 1, 2, 3, …
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Port-Numbered Network
• Network = several devices, 

connections between ports 
• we will formalise it as a triple N = (V, P, p)
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Port-Numbered Network
• nodes V = {u, v, …} 

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …} 

• connections p(u, 4) = (v, 1),  p(v, 1) = (u, 4),  …
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Port-Numbered Network
• nodes V = {u, v, …} 

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …} 

• connections p(u, 4) = (v, 1),  p(v, 1) = (u, 4),  …
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u, 4
u, 3
u, 2
u, 1

v, 3
v, 2
v, 1

not a complete example, 
some ports not connected!



Port-Numbered Network
• nodes V = {a, b, c, d} 

• ports P = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (d, 1)} 

• connections p(a, 1) = (b, 1),  p(b, 1) = (a, 1),  …
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Port-Numbered Network
• nodes V = a finite set 

• ports P = a finite set of (node, number) pairs 

• connections p = an involution P → P
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b, 1
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a, 3
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c, 1
c, 2

d, 1 involution: 
p−1 = p 
p( p(x)) = x



Port-Numbered Network
• We may have multiple connections or loops
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p(c, 3) = (c, 4) 
p(c, 4) = (c, 3) 
p(d, 2) = (d, 2)



Port-Numbered Network
• Simple port-numbered network: 

no multiple connections, no loops

!11

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1



Port-Numbered Network
• Underlying graph of  

a simple port-numbered network
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Distributed 
Algorithms

!13



Distributed Algorithm
• State machine, x = current state: 

• x ← init(z): initial state for local input z 

• send(x): construct outgoing messages 

• send(x) = vector, one element per port 

• x ← receive(x, m): process incoming messages 

• m = vector, one element per port
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Execution
• “Execution of algorithm A in network N ” 

• All nodes of N are identical copies  
of the same state machine A 

• functions init, send, and receive may 
depend on node degree (number of ports) 

• in all other aspects the nodes are identical
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Execution
• All nodes are initialised 

• Time step (communication round): 
• all nodes construct outgoing messages 

• messages are propagated 

• all nodes process incoming messages 

• Continue until all nodes have stopped
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Communication Round
• Construct outgoing messages
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Communication Round
• Construct outgoing messages 

• Exchange messages along communication links
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Communication Round
• Construct outgoing messages 

• Exchange messages along communication links

!19

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

A1
B1

D1

A3
C1

A2

B2

C2



Communication Round
• Construct outgoing messages 

• Exchange messages along communication links 

• Process incoming messages
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Communication Round
• Construct outgoing messages 

• Exchange messages along communication links 

• Process incoming messages 

!

• Communication rounds are synchronous 

• Each step happens synchronously in parallel for all nodes 

• Everything is deterministic
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Distributed Algorithm
• Algorithm designed chooses: 

• how to initialise nodes 

• how to construct outgoing messages 

• how to process incoming messages 

• Network structure determines: 
• how messages are propagated between ports
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Distributed Algorithm
• “Algorithm A solves graph problem Π  

on graph family F ”: 

• for any graph G ∈ F, 

• for any simple port-numbered network N  
that has G as underlying graph, 

• execution of A on N stops and produces 
a valid solution of Π
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Distributed Algorithm
• “Algorithm A finds a minimum vertex cover 

in any regular graph”: 
• for any simple port-numbered network N  

that has a regular graph as underlying graph, 

• execution of A on N stops, 

• the stopping states of the nodes are “0” and “1”, 

• nodes in state “1” form a minimum vertex cover
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Example
• Design a distributed algorithm that  

finds a minimum vertex cover in 
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Example
• Design a distributed algorithm that  

finds a minimum vertex cover in 
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F = { , }
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Example
• Nodes of degree 1: 

• init1 = ?,  send1(?) = (A) 

• receive1(?, A) = 0,   receive1(?, B) = 0 

• Nodes of degree 2: 
• init2 = ?,  send2(?) = (B, B) 

• receive2(?, A, A) = 1,    receive2(?, A, B) = 1, 
receive2(?, B, A) = 1,    receive2(?, B, B) = 0
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Example
• Design a distributed algorithm that  

finds a minimum vertex cover in  

!

!

• Solved! 

• Running time: 1 communication round
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F = { , }



General 
Principles
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General Principles
• Synchronous execution 

• “worst case” 

• synchronisers exist
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General Principles
• Synchronous execution 

• Deterministic algorithms 
• cf. the name of this course 

• nodes do not have any source of randomness

!31



General Principles
• Synchronous execution 

• Deterministic algorithms 

• Anonymous networks 
• identical nodes (except for their degree) 

• Chapters 5–6: what happens if each node  
has a unique name
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General Principles
• Synchronous execution 

• Deterministic algorithms 

• Anonymous networks 

• Time = number of communication rounds 
• focus on communication, not computation…
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Examples
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Maximal Matching
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• We will design distributed algorithm BMM 
that finds a maximal matching in 
any 2-coloured graph 

• we assume that we are given a proper 2-colouring  
of the underlying graph as input 

• algorithm will output a maximal matching
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Maximal Matching
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• Algorithm idea: 
• white nodes send proposals to their ports, one by one 

• black nodes accept the first proposal that they get
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Maximal Matching
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• Algorithm idea: 
• white nodes send proposals to their ports, one by one 

• black nodes accept the first proposal that they get 

• proposal–accept pair = 
edge in matching 

• Running time: O(∆) 
• ∆ = maximum degree
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Maximal Matching
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• We can find a maximal matching  
if we are given a 2-colouring 

• some auxiliary information is necessary, 
as we will see in Chapter 3 

• Application: vertex cover 
approximation 

• works correctly in any network, 
no need to have 2-colouring!
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Vertex Cover
• We will design distributed algorithm VC3  

that finds a 3-approximation of 
minimum vertex cover in any graph 

• each node stops and outputs “0” or “1” 

• nodes that output “1” form a 3-approximation of 
a minimum vertex cover for the underlying graph
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Vertex Cover
• Given: a port-numbered network 

• drawing here just the underlying graph…
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Vertex Cover
• Construct the bipartite double cover: 

two copies of each node, edges across
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Vertex Cover
• Simulate algorithm BMM, 

outputs a maximal matching M’
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Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover!
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Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover! 

• Why vertex cover? 
• assume that there  

is an uncovered edge 

• conclude that M’  
is not maximal
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Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover! 

• Why vertex cover? 

• Why 3-approximation?
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Vertex Cover
• Idea: matching in bipartite double cover 
→ paths and/or cycles in original graph
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→→



Vertex Cover
• Any vertex cover contains at least  

1/3 of nodes of any path or cycle 

• 3-approximation if we take all of these
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Summary
• We can solve non-trivial problems  

with distributed algorithms 
• e.g., 3-approximation of minimum vertex cover 

• What next? 
• week 3: problems that cannot be solved at all 

• week 4: more positive results 

• weeks 5–6: what changes if the nodes have names?
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