Port-Numbering Model

DDA Course week 2

Distributed Systems

• Intuition:

- distributed system
 ≈ communication network
 ≈ network equipment + communication links
- distributed algorithm
 ≈ computer program
- Precisely how are we going to model this?

Port Numbering

Port Numbering

- Network device = state machine with communication ports
- Ports are *numbered*: 1, 2, 3, ...

- Network = several devices,
 connections between ports
 - we will formalise it as a triple N = (V, P, p)

- nodes $V = \{u, v, ...\}$
- ports $P = \{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...\}$
- connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), ...

- nodes $V = \{u, v, ...\}$
- ports $P = \{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...\}$
- connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), ...

not a complete example, some ports not connected!

- nodes $V = \{a, b, c, d\}$
- ports $P = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (d, 1)\}$
- connections p(a, 1) = (b, 1), p(b, 1) = (a, 1), ...

all ports connected

- nodes *V* = a finite set
- ports *P* = a finite set of (node, number) pairs
- connections p = an involution $P \rightarrow P$

involution: $p^{-1} = p$ p(p(x)) = x

• We may have *multiple connections* or *loops*

• *Simple* port-numbered network: no multiple connections, no loops

• *Underlying graph* of a simple port-numbered network

- State machine, *x* = current state:
 - $x \leftarrow init(z)$: initial state for local input z
 - send(x): construct *outgoing messages*
 - send(x) = vector, one element per port
 - *x* ← **receive**(*x*, *m*): process *incoming messages*
 - *m* = vector, one element per port

Execution

- "Execution of algorithm A in network N"
- All nodes of *N* are *identical copies* of the same state machine *A*
 - functions init, send, and receive may depend on node degree (number of ports)
 - in all other aspects the nodes are identical

Execution

- All nodes are initialised
- Time step (*communication round*):
 - all nodes construct outgoing messages
 - messages are propagated
 - all nodes process incoming messages
- Continue until all nodes have stopped

Construct *outgoing messages*

- Construct outgoing messages
- Exchange messages along communication links

- Construct outgoing messages
- Exchange messages along communication links

- Construct outgoing messages
- Exchange messages along communication links
- Process *incoming messages*

- Construct outgoing messages
- Exchange messages along communication links
- Process incoming messages

- Communication rounds are *synchronous*
- Each step happens synchronously in parallel for all nodes
- Everything is *deterministic*

- Algorithm designed chooses:
 - how to initialise nodes
 - how to construct outgoing messages
 - how to process incoming messages
- Network structure determines:
 - how messages are propagated between ports

- "Algorithm A solves graph problem П on graph family *F*":
 - for any graph $G \in \mathcal{F}$,
 - for *any simple port-numbered network N* that has *G* as underlying graph,
 - execution of *A* on *N* stops and produces a valid solution of Π

- "Algorithm *A* finds a minimum vertex cover in any regular graph":
 - for *any simple port-numbered network N* that has a regular graph as underlying graph,
 - execution of *A* on *N* stops,
 - the stopping states of the nodes are "**0**" and "**1**",
 - nodes in state "1" form a minimum vertex cover

• Design a distributed algorithm that finds a *minimum vertex cover* in $\mathcal{F} = \{0-0-0-0, 0-0-0-0-0\}$

• Design a distributed algorithm that finds a *minimum vertex cover* in $\mathcal{F} = \{ \bigcirc - \bigcirc - \bigcirc , \bigcirc - \bigcirc - \bigcirc - \bigcirc \}$

- Nodes of degree 1:
 - $init_1 = ?$, $send_1(?) = (A)$
 - receive₁(?, A) = 0, receive₁(?, B) = 0
- Nodes of degree 2:
 - $init_2 = ?$, $send_2(?) = (B, B)$
 - receive₂(?, A, A) = 1, receive₂(?, A, B) = 1, receive₂(?, B, A) = 1, receive₂(?, B, B) = 0

• Design a distributed algorithm that finds a *minimum vertex cover* in $\mathcal{F} = \{ \bigcirc - \bigcirc - \bigcirc, \bigcirc - \bigcirc - \bigcirc - \bigcirc \}$

- Solved!
- Running time: 1 communication round

Synchronous execution

- "worst case"
- synchronisers exist

- Synchronous execution
- Deterministic algorithms
 - cf. the name of this course
 - nodes do not have any source of randomness

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
 - identical nodes (except for their degree)
 - Chapters 5–6: what happens if each node has a unique name

- Synchronous execution
- Deterministic algorithms
- Anonymous networks
- Time = number of communication rounds
 - focus on communication, not computation...

- We will design distributed algorithm BMM that finds a *maximal matching* in any *2-coloured graph*
 - we assume that we are given a proper 2-colouring of the underlying graph as input
 - algorithm will output a maximal matching

Given encoding of 2-colouring

Find encoding of maximal matching

- Algorithm idea:
 - white nodes send *proposals* to their ports, one by one
 - black nodes *accept* the first proposal that they get

- Algorithm idea:
 - white nodes send *proposals* to their ports, one by one
 - black nodes *accept* the first proposal that they get
 - proposal-accept pair = edge in matching
- Running time: $O(\Delta)$
 - Δ = maximum degree

- We can find a maximal matching if we are given a 2-colouring
 - some auxiliary information is necessary, as we will see in Chapter 3
- Application: vertex cover approximation
 - works correctly in any network, no need to have 2-colouring!

- We will design distributed algorithm VC3 that finds a *3-approximation of minimum vertex cover* in any graph
 - each node stops and outputs "0" or "1"
 - nodes that output "1" form a 3-approximation of a minimum vertex cover for the underlying graph

- Given: a port-numbered network
 - drawing here just the underlying graph...

• Construct the *bipartite double cover*: two copies of each node, edges across

• Simulate algorithm BMM, outputs a *maximal matching M*'

C = nodes with at least one copy matched:
 3-approximation of minimum vertex cover!

- *C* = nodes with at least one copy matched:
 3-approximation of minimum vertex cover!
- Why vertex cover?
 - assume that there is an uncovered edge
 - conclude that *M*' is not maximal

- *C* = nodes with at least one copy matched:
 3-approximation of minimum vertex cover!
- Why vertex cover?
- Why 3-approximation?

Idea: matching in bipartite double cover
 → paths and/or cycles in original graph

- Any vertex cover contains at least 1/3 of nodes of any path or cycle
- 3-approximation if we take all of these

Summary

- We can solve non-trivial problems with distributed algorithms
 - e.g., 3-approximation of minimum vertex cover
- What next?
 - week 3: problems that cannot be solved at all
 - week 4: more positive results
 - weeks 5–6: what changes if the nodes have names?