Port-Numbering
Model

Distributed Systems

e Intuition:

e distributed system
~ communication network
~ network equipment + communication links

o distributed algorithm
~ computer program

 Precisely how are we going to model this?

Port Numbering

i polD.n _‘ 10/100/1000Base-T Ports

Port Numbering

» Network device = state machine with
communication ports

» Ports are numbered: 1, 2, 3, ...

1 2 3 4

Port-Numbered Network

« Network = several devices,
connections between ports

. we will formalise it as a triple N = (V, P, p)

1 2 3 4 1 2 3

L~

Port-Numbered Network

e nodesV={u,v,..}
 ports P =1{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...}

e connections p(u, 4) = (v, 1), p(v,1) =(u, 4), ...

ul12 34 vl123

L~

Port-Numbered Network

e nodesV={u,v,..}
 ports P =1{(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), ...}

e connections p(u, 4) = (v, 1), p(v,1) =(u, 4), ...

u, 1

v, 1
u, 2

v, 2
> /
u, 4 b3 not a complete example,

some ports not connected!

Port-Numbered Network

« nodes V={aq,b, c, d}
e ports P =1(a,1), (a,2), (a,3), (b,1), (b,2), (c,1), (c,2), (d,1)}

« connections p(a,1) = (b,1), p(b,1) =(a,1), ...

b, 1

b, 2
[C,l
c, 2

—~_
/

a, 1

a, 2

a, 3

/

all ports connected

Port-Numbered Network

 nodes V = a finite set
 ports P = a finite set of (node, number) pairs

 connections p = an involution P — P

b, 1
b, 2 <\> a, 1
a, 2 d, 1 involution:
C, 1 / / -1 —
a3 p=p
c, 2

p(p(x)) =x

Port-Numbered Network

« We may have multiple connections or loops

T e
b, 3 \ a, 2 / d, 1
[a, 3 d,2 ()
C1[~— [,
62 p(c, 3) = (c, 4)
C &3 plc, 4) = (c, 3)
o4 p(d, 2) = (d, 2)

Port-Numbered Network

» Simple port-numbered network:
no multiple connections, no loops

b, 1

b,2<\>a’1
: d,
[C’l e

c, 2

Port-Numbered Network

o Underlying graph ot
a simple port-numbered network

b, 1

b,2<\>a,1 b
, d, | O—Od
[C,l /Z,z/ ! . a

c, 2

Distributed
Algorithms

Distributed Algorithm

o State machine, x = current state:
» x < init(z): initial state for local input z
« send(x): construct outgoing messages
 send(x) = vector, one element per port
e X < receive(x, m): process incoming messages

« m = vector, one element per port

Execution

» “Execution of algorithm A in network N”

 All nodes of N are identical copies
of the same state machine A

o functions init, send, and receive may
depend on node degree (number of ports)

« in all other aspects the nodes are identical

Execution

o All nodes are initialised

e Time step (communication round):

» all nodes construct outgoing messages
» messages are propagated

» all nodes process incoming messages

» Continue until all nodes have stopped

Communication Round

B2

C2

b, 1

b, 2

c, 1

c, 2

B1

C1

A

A

|

2

S
/

a, 1

a, 2

a, 3

« Construct outgoing messages

D1

o

Communication Round

« Construct outgoing messages

« Exchange messages along communication links

B1
b, 1

—a
B2 — N
b,2 a1
ﬁa,zwd,l
¢ 1 |3 a3

c, 2

C2

Communication Round

« Construct outgoing messages

« Exchange messages along communication links

A1
b, 1

Co— w
b,2 al
TR
C, 1 AZ/ a, 3

c, 2

B2

Communication Round

« Construct outgoing messages
« Exchange messages along communication links

» Process incoming messages

A1
b, 1
N
b, 2 ’
A3
a, 2 d, 1
ﬂ (M)
c, 1
*~ A2 a3
55 G2

Communication Round

Construct outgoing messages
Exchange messages along communication links

Process incoming messages

Communication rounds are synchronous
Each step happens synchronously in parallel for all nodes

Everything is deterministic

Distributed Algorithm

o Algorithm designed chooses:

« how to initialise nodes
« how to construct outgoing messages

« how to process incoming messages

 Network structure determines:

« how messages are propagated between ports

Distributed Algorithm

e “Algorithm A solves graph problem II
on graph family F”:

o for any graph G € F,

o for any simple port-numbered network N
that has G as underlying graph,

 execution of A on N stops and produces
a valid solution of I1

Distributed Algorithm

» “Algorithm A finds a minimum vertex cover
in any regular graph”:

o for any simple port-numbered network N
that has a regular graph as underlying graph,

 execution of A on N stops,
» the stopping states of the nodes are “0” and “1”,

e nodes in state “1” form a minimum vertex cover

Example

» Design a distributed algorithm that

finds a minimum vertex cover 1n
F = {O-0-0-0, O-O0-0-0-0}

Example

» Design a distributed algorithm that

finds a minimum vertex cover 1n
F = {O-0-0-0, O-O0-0-0-0}

1 1 1 1 1
1 [7 1 1 [7
2 2 2 2 2
1 1 1 1 1
14/7 \1 14/7 \
9 |le> 2 9 l«e> 2)

Example

» Nodes of degree 1: R
e Init; = ?, send(?) = (A)
e recelve;(?, A) = 0, receivei(?,B) =0

» Nodes of degree 2:
+ init, = ?, senda(?) = (B, B)

e receives(?, A, A) =1, receives(?, A,B) =1,
receivex(?, B, A) =1, receives(?,B,B) =0

Example

» Design a distributed algorithm that

finds a minimum vertex cover 1n
F = {O-0-0-0, O-O0-0-0-0}

e Solved!

» Running time: 1 communication round

General
Principles

General Principles

« Synchronous execution

e “worst case”

 synchronisers exist

General Principles

« Synchronous execution

e Deterministic algorithms

o cf. the name of this course

» nodes do not have any source of randomness

General Principles

« Synchronous execution
» Deterministic algorithms

« Anonymous networks

» identical nodes (except for their degree)

« Chapters 5—6: what happens if each node
has a unique name

General Principles

» Synchronous execution
e Deterministic algorithms
« Anonymous networks

« Time = number of communication rounds

 focus on communication, not computation...

Examples

Maximal Matching

« We will design distributed algorithm BMM
that finds a maximal matching in
any 2-coloured graph

« we assume that we are given a proper 2-colouring
of the underlying graph as input

o algorithm will output a maximal matching

Glven Find

encoding of 2-colouring encoding of maximal

matching
L 2
A BN A BN
@ @ N N
1 1‘/ 1 1‘/
ey N W N\
) o

o I

Maximal Matching

 Algorithm idea:

« white nodes send proposals to their ports, one by one

 black nodes accept the first proposal that they get

2

¢

11—

2

\
o

1

Maximal Matching

 Algorithm idea:
« white nodes send proposals to their ports, one by one
 black nodes accept the first proposal that they get

« proposal—accept pair =
edge in matching T —1i

2

« Running time: O(A)
« A = maximum degree \;

Maximal Matching

e We can find a maximal matching
if we are given a 2-colouring

« some auxiliary information is necessary,
as we will see in Chapter 3

 Application: vertex cover o —n
approximation 2

« works correctly in any network,)
no need to have 2-colouring! \3

Vertex Cover

e We will design distributed algorithm VC3
that finds a 3-approximation of
minimum vertex cover in any graph

(14 b ¢«_

 each node stops and outputs “0” or “1

» nodes that output “1” form a 3-approximation of
a minimum vertex cover for the underlying graph

Vertex Cover

 Given: a port-numbered network

» drawing here just the underlying graph...

<

Vertex Cover

» Construct the bipartite double cover:
two copies of each node, edges across

Vertex Cover

« Simulate algorithm BMM,
outputs a maximal matching M’

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

o— —»o
O~ N0

« Why vertex cover?

« assume that there
1s an uncovered edge

e conclude that M’
1s not maximal

O Ol _

Vertex Cover

» C = nodes with at least one copy matched:
3-approximation of minimum vertex cover!

« Why vertex cover? Q) (P
e

« Why 3-approximation?

O®
O

Vertex Cover

 Idea: matching in bipartite double cover
— paths and/or cycles in original graph

/C.\\-g

ceo—oe

—>

~

/C.\\-O
)
®

. O

~

4

O

)

Vertex Cover

« Any vertex cover contains at least
1/3 of nodes of any path or cycle

e 3-approximation if we take all of these

KiARgste

Summary

» We can solve non-trivial problems
with distributed algorithms

e €.g., 3-approximation of minimum vertex cover

« What next?

» week 3: problems that cannot be solved at all
« week 4: more positive results

» weeks 5—6: what changes if the nodes have names?

