
Port-Numbering
Model

!1

DDA Course
week 2

Distributed Systems
• Intuition:

• distributed system 
≈ communication network 
≈ network equipment + communication links

• distributed algorithm 
≈ computer program

• Precisely how are we going to model this?

!2

Port Numbering

!3

Port Numbering
• Network device = state machine with  

communication ports

• Ports are numbered: 1, 2, 3, …

!4

431 2

Port-Numbered Network
• Network = several devices, 

connections between ports
• we will formalise it as a triple N = (V, P, p)

!5

431 2 1 2 3

Port-Numbered Network
• nodes V = {u, v, …}

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …}

• connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), …

!6

431 2 1 32u v

Port-Numbered Network
• nodes V = {u, v, …}

• ports P = {(u, 1), (u, 2), (u, 3), (u, 4), (v, 1), (v, 2), (v, 3), …}

• connections p(u, 4) = (v, 1), p(v, 1) = (u, 4), …

!7

u, 4
u, 3
u, 2
u, 1

v, 3
v, 2
v, 1

not a complete example, 
some ports not connected!

Port-Numbered Network
• nodes V = {a, b, c, d}

• ports P = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2), (d, 1)}

• connections p(a, 1) = (b, 1), p(b, 1) = (a, 1), …

!8

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

all ports connected

Port-Numbered Network
• nodes V = a finite set

• ports P = a finite set of (node, number) pairs

• connections p = an involution P → P

!9

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1 involution:
p−1 = p
p(p(x)) = x

Port-Numbered Network
• We may have multiple connections or loops

!10

b, 1
b, 2
b, 3

a, 1

a, 4
a, 3
a, 2

c, 4
c, 3

c, 1
c, 2

d, 2
d, 1

p(c, 3) = (c, 4)
p(c, 4) = (c, 3)
p(d, 2) = (d, 2)

Port-Numbered Network
• Simple port-numbered network: 

no multiple connections, no loops

!11

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

Port-Numbered Network
• Underlying graph of  

a simple port-numbered network

!12

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1 d
a

c

b

Distributed
Algorithms

!13

Distributed Algorithm
• State machine, x = current state:

• x ← init(z): initial state for local input z

• send(x): construct outgoing messages

• send(x) = vector, one element per port

• x ← receive(x, m): process incoming messages

• m = vector, one element per port

!14

Execution
• “Execution of algorithm A in network N ”

• All nodes of N are identical copies  
of the same state machine A

• functions init, send, and receive may 
depend on node degree (number of ports)

• in all other aspects the nodes are identical

!15

Execution
• All nodes are initialised

• Time step (communication round):
• all nodes construct outgoing messages

• messages are propagated

• all nodes process incoming messages

• Continue until all nodes have stopped

!16

Communication Round
• Construct outgoing messages

!17

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

B1
A1

A3

D1
A2

C1

C2

B2

Communication Round
• Construct outgoing messages

• Exchange messages along communication links

!18

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

B1
A1

A3

D1
A2

C1

C2

B2

Communication Round
• Construct outgoing messages

• Exchange messages along communication links

!19

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

A1
B1

D1

A3
C1

A2

B2

C2

Communication Round
• Construct outgoing messages

• Exchange messages along communication links

• Process incoming messages

!20

b, 1
b, 2

a, 3
a, 2
a, 1

c, 1
c, 2

d, 1

A1
B1

D1

A3
C1

A2

B2

C2

Communication Round
• Construct outgoing messages

• Exchange messages along communication links

• Process incoming messages

!

• Communication rounds are synchronous

• Each step happens synchronously in parallel for all nodes

• Everything is deterministic

!21

Distributed Algorithm
• Algorithm designed chooses:

• how to initialise nodes

• how to construct outgoing messages

• how to process incoming messages

• Network structure determines:
• how messages are propagated between ports

!22

Distributed Algorithm
• “Algorithm A solves graph problem Π  

on graph family F ”:

• for any graph G ∈ F,

• for any simple port-numbered network N  
that has G as underlying graph,

• execution of A on N stops and produces 
a valid solution of Π

!23

Distributed Algorithm
• “Algorithm A finds a minimum vertex cover 

in any regular graph”:
• for any simple port-numbered network N  

that has a regular graph as underlying graph,

• execution of A on N stops,

• the stopping states of the nodes are “0” and “1”,

• nodes in state “1” form a minimum vertex cover

!24

Example
• Design a distributed algorithm that  

finds a minimum vertex cover in

!25

F = { , }

Example
• Design a distributed algorithm that  

finds a minimum vertex cover in

!26

F = { , }

1
1

2

1

2
1 1

1

2

1

2
1

1

2

1
1

2

1

2
1 1

1

2

1

2
1

1

2 …

Example
• Nodes of degree 1:

• init1 = ?, send1(?) = (A)

• receive1(?, A) = 0, receive1(?, B) = 0

• Nodes of degree 2:
• init2 = ?, send2(?) = (B, B)

• receive2(?, A, A) = 1, receive2(?, A, B) = 1, 
receive2(?, B, A) = 1, receive2(?, B, B) = 0

!27

0 1

?

Example
• Design a distributed algorithm that  

finds a minimum vertex cover in

!

!

• Solved!

• Running time: 1 communication round

!28

F = { , }

General
Principles

!29

General Principles
• Synchronous execution

• “worst case”

• synchronisers exist

!30

General Principles
• Synchronous execution

• Deterministic algorithms
• cf. the name of this course

• nodes do not have any source of randomness

!31

General Principles
• Synchronous execution

• Deterministic algorithms

• Anonymous networks
• identical nodes (except for their degree)

• Chapters 5–6: what happens if each node  
has a unique name

!32

General Principles
• Synchronous execution

• Deterministic algorithms

• Anonymous networks

• Time = number of communication rounds
• focus on communication, not computation…

!33

Examples

!34

Maximal Matching

!35

• We will design distributed algorithm BMM 
that finds a maximal matching in 
any 2-coloured graph

• we assume that we are given a proper 2-colouring  
of the underlying graph as input

• algorithm will output a maximal matching

!36

1

2 2

1

1

2 2

1

1 2

2 1

Given

1

2 2

1

1

2 2

1

01 01

01 10

Find
encoding of 2-colouring encoding of maximal

matching

Maximal Matching

!37

• Algorithm idea:
• white nodes send proposals to their ports, one by one

• black nodes accept the first proposal that they get

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

1
2 2

1

Maximal Matching

!38

• Algorithm idea:
• white nodes send proposals to their ports, one by one

• black nodes accept the first proposal that they get

• proposal–accept pair = 
edge in matching

• Running time: O(∆)
• ∆ = maximum degree

1
2 2

1

1
2 2

1

Maximal Matching

!39

• We can find a maximal matching  
if we are given a 2-colouring

• some auxiliary information is necessary, 
as we will see in Chapter 3

• Application: vertex cover 
approximation

• works correctly in any network, 
no need to have 2-colouring!

1
2 2

1

1
2 2

1

Vertex Cover
• We will design distributed algorithm VC3  

that finds a 3-approximation of 
minimum vertex cover in any graph

• each node stops and outputs “0” or “1”

• nodes that output “1” form a 3-approximation of 
a minimum vertex cover for the underlying graph

!40

Vertex Cover
• Given: a port-numbered network

• drawing here just the underlying graph…

!41

Vertex Cover
• Construct the bipartite double cover: 

two copies of each node, edges across

!42

Vertex Cover
• Simulate algorithm BMM, 

outputs a maximal matching M’

!43

Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover!

!44

Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover! 

• Why vertex cover?
• assume that there  

is an uncovered edge

• conclude that M’  
is not maximal

!45

Vertex Cover
• C = nodes with at least one copy matched: 

3-approximation of minimum vertex cover! 

• Why vertex cover? 

• Why 3-approximation?

!46

Vertex Cover
• Idea: matching in bipartite double cover 
→ paths and/or cycles in original graph

!47

→→

Vertex Cover
• Any vertex cover contains at least  

1/3 of nodes of any path or cycle

• 3-approximation if we take all of these

!48

Summary
• We can solve non-trivial problems  

with distributed algorithms
• e.g., 3-approximation of minimum vertex cover

• What next?
• week 3: problems that cannot be solved at all

• week 4: more positive results

• weeks 5–6: what changes if the nodes have names?

!49

