Impossibility

DDA Course week 3

Proof Techniques

- Covering maps
 - problems that cannot solved at all
- Isomorphic local neighbourhoods
 - problems that cannot be solved quickly

- Networks N = (V, P, p) and N' = (V', P', p')
- Surjection φ : $V \rightarrow V'$ that preserves inputs, degrees, connections, and port numbers

N:

3

 $\overline{\varphi(u)}$

 $\overline{\varphi(v)}$

Neighbours in port 1 agree

Holds for any pair of nodes

Holds for any pair of nodes

- Networks N = (V, P, p) and N' = (V', P', p')
- Surjection $\varphi: V \to V'$ that preserves inputs, degrees, connections, and port numbers
- **Theorem**: If we run an algorithm A in N and N, then nodes v and $\varphi(v)$ are always in the same state

- **Theorem**: If we run an algorithm A in N and N, then nodes v and $\varphi(v)$ are always in the same state
- **Proof**: By induction
 - before round i: map φ preserves local states
 - during round i: map φ preserves messages
 - after round i: map φ preserves local states

• Application: symmetry breaking in a path graph

$$N: \quad \boxed{1} \longrightarrow \boxed{1} \qquad \qquad N': \quad \bigcirc \boxed{1}$$

• Application: symmetry breaking in a path graph

• Application: symmetry breaking in a path graph

• Application: symmetry breaking in a cycle

- Local neighbourhoods of nodes u and v "look identical" up to distance r
 - isomorphism between radius-r neighbourhood of u and radius-r neighbourhood of v
 - preserves inputs, degrees, connections, and port numbers

• Local neighbourhoods of nodes u and v "look identical" up to distance r

- Local neighbourhoods of nodes u and v "look identical" up to distance r
- **Theorem**: In any algorithm, up to time *r*, the local states of *u* and *v* are identical
- *Informal proof*: time ≈ distance
- Formal proof: by induction on time

• Time 0: identical local states in radius-r neighbourhoods

• Time 1: identical *outgoing messages* in radius-r neighbourhoods

• Time 1: identical *incoming messages* in radius-(r-1) neighbourhoods

• Time 1: identical *local states* in radius-(r-1) neighbourhoods

• Time t: identical *local states* in radius-(r-t) neighbourhoods

• Time *r*: identical *local states* in radius-o neighbourhoods

• Application: finding midpoint of a path requires $\Omega(n)$ rounds

• Application: counting the number of nodes requires $\Omega(n)$ rounds

Proof Techniques

- Covering maps
 - problems that cannot solved at all
- Isomorphic local neighbourhoods
 - problems that cannot be solved quickly
- Plenty of exercises...