Vertex Covers & Edge Packings

DDA Course week 4

Vertex Cover

- Finding a minimum vertex cover is hard
- How to find good approximations?
- General idea: find something else first, show that it is useful...

Chapter 1

maximal matching

Exercise 1.3:

- find any maximal matching
- take all matched nodes
- 2-approximation of minimum vertex cover

Chapter 1

maximal matching

2-approx.

no distributed algorithm

Corollary 3.3:

 there is no distributed algorithm that finds a maximal matching

VC3

- Function $f: E \rightarrow [0, 1]$
 - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints: $f[v] \le 1$

f[0] = 1/5 $f[\bullet] = 1$

- Function $f: E \rightarrow [0, 1]$
 - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints: $f[v] \le 1$
 - v is *saturated* if f[v] = 1

- edge $e = \{u, v\}$ is *saturated* if u or v is saturated
- edge packing is *maximal* if all edges are saturated

- Function $f: E \rightarrow [0, 1]$
 - *f*[*v*] = sum of *f*(*e*) over all edges *e* incident to *v*
- Constraints: $f[v] \le 1$

• "Fractional" matching

- Find any maximal edge packing
- Set of saturated nodes:
 vertex cover
 - *Proof*: maximal
 - = each edge saturated
 - = each edge has a saturated endpoint
 - = saturated nodes form a vertex cover

- Find any maximal edge packing
- Set of saturated nodes:
 2-approximation of minimum vertex cover

Each node $v \in C^*$ has 1 unit of money

Give *f*(*e*) units to each edge *e*

Double all money

Give f[v] = 1 units to each saturated node $v \in C$

 C^*

 $|C| \le 2 |C^*|$

- How to find maximal edge packings?
- Basic idea:
 - bipartite double covers
 - maximal matching
 - recursively!

One edge: 1/2 Two edges: 1

• In general only "half-saturating"

Half-saturating edge packing:

Unsaturated subgraph (*lower degrees*):

Recursively, find a *maximal* edge packing:

●-1-**●**

Combine solutions — *maximal* edge packing:

 $= \mathbf{0} - \frac{1}{2} - \mathbf{0} - \mathbf{0}$

- Recursion by maximum degree Δ
- Case $\Delta = 1$ trivial
- Assuming that case $\Delta 1$ has been solved:
 - find a *half-saturating* edge packing f
 - recursively, find a *maximal* edge packing g for unsaturated subgraph (maximum degree $\Delta 1$)
 - return *maximal* edge packing h = f + g/2

Summary

- Distributed algorithms that finds a *maximal edge packing*
 - in any graph of maximum degree Δ in time $O(\Delta^2)$
- Saturated nodes:
 2-approximation of minimum vertex cover

