
Ramsey 
Theory

1

DDA Course 
week 6

1
2

3
46

5

1
2

3
46

5



2

“… certain theorems on combinations 
which have an independent interest…”



Pigeonhole Principle
N = 5 items, colour each of them red or blue
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Pigeonhole Principle
• Let n = 3 

• N items, colour each of them red or blue 

• If N is large enough, there are always 
• at least n red items or 

• at least n blue items 

• Here N ≥ 5 is sufficient, N < 5 is not
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Pigeonhole Principle
• Let n be anything 

• N items, colour each of them red or blue 

• If N is large enough, there are always 
• at least n red items or 

• at least n blue items 

• Here N ≥ 2n − 1 is sufficient
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Ramsey Theory
• Generalisation of pigeonhole principle 

• Again, we have N items 

• However, we will not colour items, 
we will colour sets of items 

• example: we colour all 2-subsets of items 

• “k-subset” = subset of size k
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Ramsey Theory
• Y: set with N items 

• N = 4:   Y = {1, 2, 3, 4} 

• f: colouring of k-subsets of Y 
• k = 2:   f ({1, 2}) = red,  f ({1, 3}) = blue, … 

• X ⊆ Y  is monochromatic if  
all k-subsets of X have the same colour
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1, 2 1, 3 1, 4 2, 3 2, 4 3, 4

N = 4,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

1, 2 1, 3 2, 3
{1, 2, 3} is not monochromatic:

1, 2 1, 4 2, 4
{1, 2, 4} is monochromatic:



1

2

3

41, 2 1, 3 1, 4 2, 3 2, 4 3, 4

N = 4,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

1, 2 1, 3 2, 3
{1, 2, 3} is not monochromatic:

1, 2 1, 4 2, 4
{1, 2, 4} is monochromatic:
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Ramsey Theory
• Let n = 3,  k = 2 

• N items, colour each k-subset red or blue 

• Claim: if N is sufficiently large, there is  
always a monochromatic subset of size n
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
{1, 3, 4} is monochromatic
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
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1, 2 1, 3 1, 4 1, 5 1, 6
2, 3

N = 6,  Y = {1, 2, …, N},  k = 2

Colour each 2-subset of Y:

2, 4 2, 5 2, 6
1

2
3
46

53, 4 3, 5 3, 6
4, 5 4, 6

5, 6
{1, 3, 5} is monochromatic
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Ramsey Theory
• Let n = 3,  k = 2 

• N items, colour each k-subset red or blue 

• Claim: if N is sufficiently large, there is  
always a monochromatic subset of size n 

• we can show that N = 6 is enough 

• we can show that N = 5 is not enough
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Ramsey Theory
• Let n = 4,  k = 2 

• N items, colour each k-subset red or blue 

• Claim: if N is sufficiently large, there is  
always a monochromatic subset of size n 

• simple upper bound: N = 20 is enough 

• a bit more difficult argument: N = 18 is enough
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Ramsey Theory
• Let n and k be any positive integers 

• N items, colour each k-subset red or blue 

• Claim: if N is sufficiently large, there is  
always a monochromatic subset of size n
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Ramsey Theory
• Let c, n, and k be any positive integers 

• N items, colour each k-subset with  
a colour from {1, 2, …, c} 

• Claim: if N is sufficiently large, there is  
always a monochromatic subset of size n
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Ramsey’s Theorem
• Theorem: For all c, n, and k, there is  

a number Rc(n; k) such that if you take  
N ≥ Rc(n; k) items, and colour each  
k-subset with one of c colours, there is  
always a monochromatic n-subset
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R2(3; 2) = 6
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Ramsey’s Theorem
• Theorem: For all c, n, and k, there is  

a number Rc(n; k) such that if you take  
N ≥ Rc(n; k) items, and colour each  
k-subset with one of c colours, there is  
always a monochromatic n-subset 

• proof: see the course material 

• numbers Rc(n; k) are called Ramsey numbers 

• examples:  R2(3; 2) = 6,  R2(4; 2) = 18
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Ramsey’s Theorem
• No matter how you colour subsets, 

if the base set is large enough, we can 
always find a monochromatic subset 

• Our application: no constant-time 
algorithm for 3-colouring directed cycles 

• no matter how you design your algorithm, 
if the set of possible identifiers is large enough, 
we can always find a “bad input”
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Colouring in 
Constant Time?
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Colouring in Cycles
• Problem: 3-colouring in directed cycles 

• unique identifiers from {1, 2, … n} 

• outdegree = indegree = 1
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Colouring in Cycles
• Problem: 3-colouring in directed cycles 

• unique identifiers from {1, 2, … n} 

• outdegree = indegree = 1 

• We know how to solve this  
problem in time O(log* n) 

• special case of  
directed pseudoforests
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Colouring in Cycles
• Problem: 3-colouring in directed cycles 

• unique identifiers from {1, 2, … n} 

• outdegree = indegree = 1 

• We know how to solve this  
problem in time O(log* n) 

• Can we do it in time O(1)?
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Ramsey Says No
• Assume that algorithm A: 

• in any directed cycle, 
stops in time T for some constant T 

• produces local outputs from {1, 2, 3} 

• We will use Ramsey’s theorem to show that 
there is a directed cycle in which A fails  
to produce a proper vertex colouring
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Ramsey Says No
• Example: algorithm runs in time T = 2 

• Output of a node only depends  
on k = 2T + 1 = 5 nodes around it 

• choose c = 3,  n = k + 1 = 6 

• choose N ≥ Rc(n; k) 

• c-colour k-subsets of {1, 2, …, N}: 
there is a monochromatic n-subset
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Ramsey Says No
• Set of identifiers: Y = {1, 2, … N} 

• We use algorithm A to colour k-subsets of Y 
• for each set B = {x1, x2, …, xk} ⊆ Y, 

x1 < x2 < … < xk 

• construct a cycle where nodes  
x1, x2, …, xk are placed in this order 

• f (B) = output of the middle node
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Colour each k-subset of Y:
— what is the colour of {1, 2, 3, 4, 5}?

— middle node 3 outputs “blue”
— set f({1, 2, 3, 4, 5}) = “blue”

1, 2, 3, 4, 5
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A

Colour each k-subset of Y:
— what is the colour of {3, 6, 8, 9, 10}?

— middle node 8 outputs “green”
— set f({3, 6, 8, 9, 10}) = “green”

1, 2, 3, 4, 5 3, 6, 8, 9, 10
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Ramsey Says No
• We have assigned a colour f (B) ∈ {1, 2, 3}  

to each k-subset B of Y

1, 2, 3, 4, 5
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 4, 8
1, 2, 3, 4, 9

1, 2, 3, 4, 10
1, 2, 3, 5, 6
1, 2, 3, 5, 7
1, 2, 3, 5, 8
1, 2, 3, 5, 9

1, 2, 3, 5, 10
1, 2, 3, 6, 7
1, 2, 3, 6, 8

6, 7, 8, 9, 10
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Ramsey Says No
• We have assigned a colour f (B) ∈ {1, 2, 3}  

to each k-subset B of Y 

• Ramsey: set Y was large enough, there  
is a monochromatic subset of size n 

• example: {2, 3, 5, 7, 8, 9} is monochromatic

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9
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Ramsey Says No

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9
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What happens here?
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2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
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same local
neighbourhood,
same output



2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9
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4

1

9

10
2

6

3

5
7 8

?

?

?

?
?

?

?

?
1 ?

A

4

2

1

10
3

6

5

7
8 9

?

?

?

?
?

?

?

1
? ?

A

same local
neighbourhood,
same output

35



36

Ramsey Says No
Bad output!

2, 3, 5, 7, 8
2, 3, 5, 7, 9

2, 3, 5, 8, 9
2, 5, 7, 8, 9

2, 3, 7, 8, 9
3, 5, 7, 8, 9
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Ramsey Says No
• There is no algorithm that  

finds a 3-colouring in time T 
• the proof holds for any constant T 

• larger T → need a (much) larger identifiers space Y

37



Summary

38



Distributed Algorithms
• Two models 

• Port-numbering model 
• key question: what is computable? 

• Unique identifiers 
• key question: what can be computed fast?
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Algorithm Design
• Colouring is a powerful  

symmetry-breaking tool 

• Port-numbering model 
• bipartite double covers → 2-colouring… 

• Unique identifiers 
• identifiers → colouring → colour reduction…
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Lower Bounds
• Port-numbering model 

• covering maps 

• local neighbourhoods 

• Unique identifiers 
• Ramsey’s theorem 

• local neighbourhoods
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• Exam: 28 April 2014 
• learning objectives! 

• What next? 
• course feedback 

• Master’s thesis topics available

That’s all.
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