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Foreword

This course is a brief introduction to the theory of distributed
algorithms, more specifically, deterministic, synchronous net-
work algorithms. The topics covered in this course include
algorithmic techniques that can be used to solve graph prob-
lems efficiently in extremely large networks, as well as funda-
mental impossibility results that put limitations on distributed
computing.

No prior knowledge of distributed systems is needed. A
basic knowledge of discrete mathematics and graph theory is
assumed, as well as familiarity with the basic concepts from
undergraduate-level courses on models on computation, com-
putational complexity, and algorithms and data structures.
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Chapter 1

Introduction and
Preliminaries

1.1 Scope

This course focuses on the theoretical foundations of distributed
systems. Our approach is similar to typical courses on models
of computation, computational complexity, and design and
analysis of algorithms. The main difference is in the models of
computation that we study: instead of traditional models, such
as finite state machines, Turing machines, RAM machines, or
Boolean circuits, our model of choice is a distributed system.

1.1.1 Distributed Systems as a Model of
Computation

A distributed system consists of multiple machines that are
connected to each other through communication links. We
usually view a distributed system as a (simple, undirected)
graph G = (V, E): each node v ∈ V represents a machine and
an edge {u, v} ∈ E represents a communication link between
machines u and v.

To understand the key difference between distributed sys-
tems and more familiar models of computation, let us consider

1



an illustrative example: the problem of finding a maximal inde-
pendent set.

An independent set for a graph G = (V, E) is a set I ⊆ V such
that for each edge {u, v} ∈ E at most one of u and v is in I . An
independent set I is maximal if it cannot be extended, i.e., it is
not a proper subset of another independent set.

Now given any model of computation X we can pose the
familiar question:

• Computability: is it possible to find a maximal independ-
ent set in model X?

• Computational complexity: can we find a maximal inde-
pendent set efficiently in model X?

We are familiar with such questions in the context of Turing
machines, but it is not immediately obvious what these ques-
tions mean in the context of distributed systems. The following
informal comparison illustrates the key differences.

Input. The input is a graph G.

Turing machines: We assume that the structure of G is
encoded as a string and given to the Turing machine on
the input tape.

2



Distributed systems: We assume that the structure of the
input graph G is the same as the structure of the distrib-
uted system. Initially, each machine v ∈ V only knows
some local information related to v (for example, the
degree of v and the unique identifier of v). To acquire
more information about G, the nodes need to exchange
messages.

Output. The output is an independent set I ⊆ V .

Turing machines: We require that the machine prints an
encoding of I on the output tape.

Distributed systems: We require that each node v ∈ V
produces one bit of output: if v ∈ I , node v has to output
1, and if v /∈ I , node v has to output 0.

Algorithm. We say that an algorithm solves the problem if it
produces a valid output for any valid input.

Turing machines: The algorithm designer chooses the
state transitions of the Turing machine.

Distributed systems: The algorithm designer writes one
program. The same program is installed in each v ∈ V .

Complexity measures. There are many possible complexity
measures, but perhaps the most commonly used is the
time complexity.

Turing machines: Time = number of elementary steps. In
each time unit, (1) the machine moves the tape heads,
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(2) performs a state transition that depends on the con-
tents of the tapes, and (3) possibly halts.

Distributed systems: Time = number of synchronous com-
munication rounds. In each time unit, all machines in
parallel (1) exchange messages with their neighbours,
(2) perform state transitions that depend on the mes-
sages that they received, and (3) possibly halt.

To oversimplify a bit, distributed computation is not really about
computation — it is all about communication. Throughout this
course, we will see striking examples of the implications of this
change of perspective.

1.1.2 Outside the Scope

The term “distributed computing” is overloaded, and it means
very different things to different people.

For the general public, distributed computing often refers
to large-scale high-performance computing in a computer net-
work; this includes scientific computing on grids and clusters,
and volunteer computing projects such as SETI@Home and
Folding@Home. However, this is not the definition that we
use, and our course is in no way related to large-scale number
crunching.

In general, our focus is on theory, not practice. For our
purposes, a communication network is an idealised abstraction.
We are not interested in any implementation details or engineer-
ing aspects. For example, the following topics are not covered
on this course: physical properties of wired or wireless media,
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modulation techniques, communication protocols, standards,
software architectures, programming languages, software lib-
raries, privacy, and security.

Within the field of the theory of distributed computing,
there are also numerous topics that we are not going to cover.
We will conclude this course with a brief overview of other
research areas within the field in Section 7.1.

1.2 Graphs

As we already saw in Section 1.1.1, the study of distributed
algorithms is closely related to graphs: we will interpret a
computer network as a graph, and we will study computational
problems related to this graph. In this section we will give a
summary of graph-theoretic concepts that we will use.

1.2.1 Terminology

A simple undirected graph is a pair G = (V, E), where V is the
set of nodes (vertices) and E is the set of edges. Each edge e ∈ E
is a 2-subset of nodes, that is, e = {u, v} where u ∈ V , v ∈ V ,
and u 6= v. Unless otherwise mentioned, we assume that V is a
non-empty finite set; it follows that E is a finite set. Usually, we
will draw graphs using circles and lines — each circle represents
a node, and a line that connects two nodes represents an edge.

Adjacency. If e = {u, v} ∈ E, we say that node u is adjacent
to v, nodes u and v are neighbours, node u is incident to e, and
edge e is also incident to u. If e1, e2 ∈ E, e1 6= e2, and e1∩e2 6=∅
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vu e e1
e2

Figure 1.1: Node u is adjacent to node v. Nodes u and v are
incident to edge e. Edge e1 is adjacent to edge e2.

(i.e., e1 and e2 are distinct edges that share an endpoint), we
say that e1 is adjacent to e2.

The degree of a node v ∈ V in graph G is

degG(v) =
�

�

�

u ∈ V : {u, v} ∈ E
	

�

�.

That is, v has degG(v) neighbours; it is adjacent to degG(v)
nodes and incident to degG(v) edges. A node v ∈ V is isolated
if degG(v) = 0. Graph G is k-regular if degG(v) = k for each
v ∈ V .

Subgraphs. Let G = (V, E) and H = (V2, E2) be two graphs. If
V2 ⊆ V and E2 ⊆ E, we say that H is a subgraph of G. If V2 = V ,
we say that H is a spanning subgraph of G.

If V2 ⊆ V and E2 = { {u, v} ∈ E : u ∈ V2, v ∈ V2 }, we say
that H = (V2, E2) is an induced subgraph; more specifically, H is
the subgraph of G induced by nodes V2.

If E2 ⊆ E and V2 =
⋃

E2, we say that H is an edge-induced
subgraph; more specifically, H is the subgraph of G induced by
edges E2.
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s

t

(a)

(b)

(c)

(d)

Figure 1.2: (a) A walk of length 5 from s to t. (b) A non-
backtracking walk. (c) A path of length 4. (d) A path of length 2;
this is a shortest path and hence distG(s, t) = 2.
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(a)

(b)

Figure 1.3: (a) A cycle of length 6. (b) A cycle of length 3; this
is a shortest cycle and hence the girth of the graph is 3.

Walks. A walk of length ` from node v0 to node v` is an altern-
ating sequence w = (v0, e1, v1, e2, v2, . . . , e`, v`) where vi ∈ V ,
ei ∈ E, and ei = {vi−1, vi} for all i; see Figure 1.2. The walk is
empty if ` = 0. We say that walk w visits the nodes v0, v1, . . . , v`,
and it traverses the edges e1, e2, . . . , e`. In general, a walk may
visit the same node more than once and it may traverse the
same edge more than once. A non-backtracking walk does not
traverse the same edge twice consecutively, that is, ei−1 6= ei for
all i. A path is a walk that visits each node at most once, that
is, vi 6= v j for all 0 ≤ i < j ≤ `. A walk is closed if v0 = v`. A
cycle is a non-empty closed walk with vi 6= v j and ei 6= e j for all
1≤ i < j ≤ `; it follows that the length of a cycle is at least 3.
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Connectivity and Distances. For each graph G = (V, E), we
can define a relation   on V as follows: u   v if there is a
walk from u to v. Clearly   is an equivalence relation. Let
C ⊆ V be an equivalence class; the subgraph induced by C is
called a connected component of G.

If u and v are in the same connected component, there is
at least one shortest path from u to v, that is, a path from u
to v of the smallest possible length. Let ` be the length of a
shortest path from u to v; we define that the distance between
u and v in G is distG(u, v) = `. If u and v are not in the same
connected component, we define distG(u, v) =∞. Note that
distG(u, u) = 0 for any node u.

For each node v and for a non-negative integer r, we define
the radius-r neighbourhood of v as follows:

ballG(v, r) = {u ∈ V : distG(u, v)≤ r }.

A graph is connected if it consists of one connected compon-
ent. The diameter of graph G, in notation diam(G), is the length
of a longest shortest path, that is, the maximum of distG(u, v)
over all u, v ∈ V ; we have diam(G) = ∞ if the graph is not
connected.

The girth of graph G is the length of a shortest cycle in G.
If the graph does not have any cycles, we define that the girth
is∞; in that case we say that G is acyclic.

A tree is a connected, acyclic graph. If T = (V, E) is a tree
and u, v ∈ V , then there exists precisely one path from u to v.
An acyclic graph is also known as a forest — in a forest each
connected component is a tree. A pseudotree has at most one
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ballG(v, 0):
v

v

v

ballG(v, 1):

ballG(v, 2):

Figure 1.4: Neighbourhoods.
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cycle, and in a pseudoforest each connected component is a
pseudotree.

A path graph is a graph that consists of one path, and a cycle
graph is a graph that consists of one cycle. Put otherwise, a path
graph is a tree in which all nodes have degree at most 2, and a
cycle graph is a 2-regular pseudotree. Note that any graph of
maximum degree 2 consists of disjoint paths and cycles, and
any 2-regular graph consists of disjoint cycles.

Isomorphism. An isomorphism from graph G1 = (V1, E1) to
graph G2 = (V2, E2) is a bijection f : V1 → V2 that preserves
adjacency: {u, v} ∈ E1 if and only if { f (u), f (v)} ∈ E2. If an
isomorphism from G1 to G2 exists, we say that G1 and G2 are
isomorphic.

If G1 and G2 are isomorphic, they have the same structure;
informally, G2 can be constructed by renaming the nodes of G1
and vice versa.

1.2.2 Packing and Covering

A subset of nodes X ⊆ V is

(a) an independent set if each edge has at most one endpoint
in X , that is, |e ∩ X | ≤ 1 for all e ∈ E,

(b) a vertex cover if each edge has at least one endpoint in X ,
that is, e ∩ X 6=∅ for all e ∈ E,

(c) a dominating set if each node v /∈ X has at least one
neighbour in X , that is, ballG(v, 1)∩ X 6=∅ for all v ∈ V .
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.5: Packing and covering problems; see Section 1.2.2.

A subset of edges X ⊆ E is

(d) a matching if each node has at most one incident edge in
X , that is, {t, u} ∈ X and {t, v} ∈ X implies u= v,

(e) an edge cover if each node has at least one incident edge
in X , that is,

⋃

X = V ,

(f) an edge dominating set if each edge e /∈ X has at least one
neighbour in X , that is, e ∩

�
⋃

X
�

6=∅ for all e ∈ E.

See Figure 1.5 for illustrations.
Independent sets and matchings are examples of packing

problems — intuitively, we have to “pack” elements into set X
while avoiding conflicts. Packing problems are maximisation
problems. Typically, it is trivial to find a feasible solution (for
example, an empty set), but it is more challenging to find a
large solution.
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Vertex covers, edge covers, dominating sets, and edge dom-
inating sets are examples of covering problems — intuitively,
we have to find a set X that “covers” the relevant parts of the
graph. Covering problems are minimisation problems. Typically,
it is trivial to find a feasible solution if it exists (for example,
the set of all nodes or all edges), but it is more challenging to
find a small solution.

The following terms are commonly used in the context of
maximisation problems; it is important not to confuse them:

(a) maximal: a maximal solution is not a proper subset of
another feasible solution,

(b) maximum: a maximum solution is a solution of the largest
possible cardinality.

Similarly, in the context of minimisation problems, analogous
terms are used:

(a) minimal: a minimal solution is not a proper superset of
another feasible solution,

(b) minimum: a minimum solution is a solution of the smal-
lest possible cardinality.

Using this convention, we can define the terms maximal inde-
pendent set, maximum independent set, maximal matching, max-
imum matching, minimal vertex cover, minimum vertex cover,
etc.

For example, Figure 1.5a shows a maximal independent
set: it is not possible to greedily extend the set by adding
another element. However, it is not a maximum independent
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set: there exists an independent set of size 3. Figure 1.5d shows
a matching, but it is not a maximal matching, and therefore it
is not a maximum matching either.

Typically, maximal and minimal solutions are easy to find
— you can apply a greedy algorithm. However, maximum and
minimum solutions can be very difficult to find — many of
these problems are NP-hard optimisation problems.

A minimum maximal matching is precisely what the name
suggests: it is a maximal matching of the smallest possible
cardinality. We can define a minimum maximal independent set,
etc., in an analogous manner.

1.2.3 Labellings and Partitions

We will often encounter functions of the form

f : V → {1,2, . . . , k}.

There are two interpretations that are often helpful:

(i) Function f assigns a label f (v) to each node v ∈ V .
Depending on the context, the labels can be interpreted
as colours, time slots, etc.

(ii) Function f is a partition of V . More specifically, f defines
a partition V = V1 ∪ V2 ∪ · · · ∪ Vk where Vi = f −1(i) =
{ v ∈ V : f (v) = i }.

Similarly, we can study a function of the form

f : E→ {1,2, . . . , k}
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and interpret it either as a labelling of edges or as a partition
of E.

Many graph problems are related to such functions. We say
that a function f : V → {1, 2, . . . , k} is

(a) a proper vertex colouring if f −1(i) is an independent set
for each i,

(b) a weak colouring if each non-isolated node u has a neigh-
bour v with f (u) 6= f (v),

(c) a domatic partition if f −1(i) is a dominating set for each i.

A function f : E→ {1, 2, . . . , k} is

(d) a proper edge colouring if f −1(i) is a matching for each i,

(e) an edge domatic partition if f −1(i) is an edge dominating
set for each i.

See Figure 1.6 for illustrations.
Usually, the term colouring refers to a proper vertex col-

ouring, and the term edge colouring refers to a proper edge
colouring. The value of k is the size of the colouring or the
number of colours. We will use the term k-colouring to refer
to a proper vertex colouring with k colours; the term k-edge
colouring is defined in an analogous manner.

A graph that admits a 2-colouring is a bipartite graph. Equi-
valently, a bipartite graph is a graph that does not have an odd
cycle.

Graph colouring is typically interpreted as a minimisation
problem. It is easy to find a proper vertex colouring or a proper
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Figure 1.6: Partition problems; see Section 1.2.3.
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edge colouring if we can use arbitrarily many colours; however,
it is difficult to find an optimal colouring that uses the smallest
possible number of colours.

On the other hand, domatic partitions are a maximisation
problem. It is trivial to find a domatic partition of size 1;
however, it is difficult to find an optimal domatic partition with
the largest possible number of disjoint dominating sets.

1.2.4 Factors and Factorisations

Let G = (V, E) be a graph, let X ⊆ E be a set of edges, and let
H = (U , X ) be the subgraph of G induced by X . We say that X
is a d-factor of G if U = V and degH(v) = d for each v ∈ V .

Equivalently, X is a d-factor if X induces a spanning d-
regular subgraph of G. Put otherwise, X is a d-factor if each
node v ∈ V is incident to exactly d edges of X .

A function f : E → {1,2, . . . , k} is a d-factorisation of G if
f −1(i) is a d-factor for each i. See Figure 1.7 for examples.

We make the following observations:

(a) A 1-factor is a maximum matching. If a 1-factor exists, a
maximum matching is a 1-factor.

(b) A 1-factorisation is an edge colouring.

(c) The subgraph induced by a 2-factor consists of disjoint
cycles.

A 1-factor is also known as a perfect matching.
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Figure 1.7: (a) A 1-factorisation of a 3-regular graph. (b) A
2-factorisation of a 4-regular graph.
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1.2.5 Approximations

So far we have encountered a number of maximisation prob-
lems and minimisation problems. More formally, the definition
of a maximisation problem consists of two parts: a set of feasible
solutions S and an objective function g : S → R. In a maximisa-
tion problem, the goal is to find a feasible solution X ∈ S that
maximises g(X ). A minimisation problem is analogous: the
goal is to find a feasible solution X ∈ S that minimises g(X ).

For example, the problem of finding a maximum matching
for a graph G is of this form. The set of feasible solutions S
consists of all matchings in G, and we simply define g(M) = |M |
for each matching M ∈ S .

As another example, the problem of finding an optimal
colouring is a minimisation problem. The set of feasible solu-
tions S consists of all proper vertex colourings, and g( f ) is the
number of colours in f ∈ S .

Often, it is infeasible or impossible to find an optimal solu-
tion; hence we resort to approximations. Given a maximisation
problem (S , g), we say that a solution X is an α-approximation
if X ∈ S , and we have αg(X )≥ g(Y ) for all Y ∈ S . That is, X
is a feasible solution, and the size of X is within factor α of the
optimum.

Similarly, if (S , g) is a minimisation problem, we say that
a solution X is an α-approximation if X ∈ S , and we have
g(X ) ≤ αg(Y ) for all Y ∈ S . That is, X is a feasible solution,
and the size of X is within factor α of the optimum.

Note that we follow the convention that the approximation
ratio α is always at least 1, both in the case of minimisation
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problems and maximisation problems. Other conventions are
also used in the literature.

1.2.6 Directed Graphs and Orientations

Unless otherwise mentioned, all graphs in this course are undir-
ected. However, we will occasionally need to refer to so-called
orientations, and hence we need to introduce some terminology
related to directed graphs.

A directed graph is a pair G = (V, E), where V is the set of
nodes and E is the set of directed edges. Each edge e ∈ E is a
pair of nodes, that is, e = (u, v) where u, v ∈ V . Put otherwise,
E ⊆ V × V .

Intuitively, an edge (u, v) is an “arrow” that points from
node u to node v; it is an outgoing edge for u and an incom-
ing edge for v. The outdegree of a node v ∈ V , in notation
outdegreeG(v), is the number of outgoing edges, and the in-
degree of the node, indegreeG(v), is the number of incoming
edges.

Now let G = (V, E) be a graph and let H = (V, E′) be a
directed graph with the same set of nodes. We say that H is an
orientation of G if the following holds:

(a) For each {u, v} ∈ E we have either (u, v) ∈ E′ or (v, u) ∈
E′, but not both.

(b) For each (u, v) ∈ E′ we have {u, v} ∈ E.

Put otherwise, in an orientation of G we have simply chosen
an arbitrary direction for each undirected edge of G. It follows
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that
indegreeH(v) + outdegreeH(v) = degG(v)

for all v ∈ V .

1.3 Exercises

Exercise 1.1 (independence and vertex covers). Let I ⊆ V and
define C = V \ I . Show that

(a) if I is an independent set then C is a vertex cover and
vice versa,

(b) if I is a maximal independent set then C is a minimal
vertex cover and vice versa,

(c) if I is a maximum independent set then C is a minimum
vertex cover and vice versa,

(d) it is possible that C is a 2-approximation of minimum
vertex cover but I is not a 2-approximation of maximum
independent set,

(e) it is possible that I is a 2-approximation of maximum
independent set but C is not a 2-approximation of min-
imum vertex cover.

Exercise 1.2 (matchings). Show that

(a) any maximal matching is a 2-approximation of a max-
imum matching,

(b) any maximal matching is a 2-approximation of a min-
imum maximal matching,
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(c) a maximal independent set is not necessarily a 2-approx-
imation of maximum independent set,

(d) a maximal independent set is not necessarily a 2-approx-
imation of minimum maximal independent set.

Exercise 1.3 (matchings and vertex covers). Let M be a max-
imal matching, and let C =

⋃

M , i.e., C consists of all endpoints
of matched edges. Show that

(a) C is a 2-approximation of a minimum vertex cover,

(b) C is not necessarily a 1.999-approximation of a minimum
vertex cover.

Would you be able to improve the approximation ratio if M was
a minimum maximal matching?

Exercise 1.4 (independence and domination). Show that

(a) a maximal independent set is a minimal dominating set,

(b) a minimal dominating set is not necessarily a maximal
independent set,

(c) a minimum maximal independent set is not necessarily a
minimum dominating set.

Exercise 1.5 (matchings and edge domination). Show that

(a) a maximal matching is a minimal edge dominating set,

(b) a minimal edge dominating set is not necessarily a max-
imal matching,
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(c) a minimum maximal matching is a minimum edge dom-
inating set,

(d) any maximal matching is a 2-approximation of a min-
imum edge dominating set.

Hint: Assume that D is an edge dominating set; show that
you can construct a maximal matching M with |M | ≤ |D|.

Exercise 1.6 (graph colourings and partitions). Show that

(a) a weak 2-colouring always exists,

(b) a domatic partition of size 2 does not necessarily exist,

(c) if a domatic partition of size 2 exists, then a weak 2-
colouring is a domatic partition of size 2,

(d) a weak 2-colouring is not necessarily a domatic partition
of size 2.

Show that there are 2-regular graphs with the following prop-
erties:

(e) any 3-colouring is a domatic partition of size 3,

(f) no 3-colouring is a domatic partition of size 3.

Assume that G is a graph of maximum degree ∆; show that

(g) there exists a (∆+ 1)-colouring,

(h) a ∆-colouring does not necessarily exist.

Exercise 1.7 (line graphs). Look up the definition of a line
graph. Whenever possible, use line graphs to explain
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(a) the connection between matchings and independent sets,

(b) the connection between dominating sets and edge dom-
inating sets,

(c) the connection between node colourings and edge col-
ourings.

Exercise 1.8 (isomorphism). Construct non-empty 3-regular
connected graphs G and H such that G and H have the same
number of nodes and G and H are not isomorphic.

Exercise 1.9 (Petersen 1891). Show that any 2d-regular graph
has a 2-factorisation.

Exercise 1.10 (orientations). Using the result of Exercise 1.9,
show that any 2d-regular graph G = (V, E) has an orientation
H = (V, E′) such that indegreeH(v) = outdegreeH(v) = d for
all v ∈ V .
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Chapter 2

Port-Numbering Model

2.1 Introduction

Now that we have introduced the essential graph-theoretic
concepts, we are ready to define what a “distributed algorithm”
is. In this chapter, we will study one variant of the theme:
distributed algorithm in the “port-numbering model”. The basic
idea is best explained through an example. Suppose that I claim
the following:

• A is a deterministic distributed algorithm that finds a
2-approximation of a minimum vertex cover in the port-
numbering model.

Informally, this entails the following:

(a) We can take any simple undirected graph G = (V, E).

(b) We can then put together a computer network N with
the same structure as G. A node v ∈ V corresponds to a
computer in N , and an edge {u, v} ∈ E corresponds to a
communication link between the computers u and v.

(c) More precisely, a node of degree d corresponds to a com-
puter with d communication ports that are labelled with
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numbers 1,2, . . . , d. Each port is connected to precisely
one neighbour.

(d) Each computer runs a copy of the same deterministic
algorithm A. All nodes are identical; initially they know
only their own degree (i.e., the number of communication
ports).

(e) All computers are started simultaneously, and they follow
algorithm A synchronously in parallel. In each synchron-
ous communication round, all computers in parallel

(1) send a message to each of their ports,

(2) wait while the messages are propagated along the
communication channels,

(3) receive a message from each of their ports, and

(4) update their own state.

(f) After each round, a computer can stop and announce its
local output: in this case the local output is either 0 or 1.

(g) We require that all nodes eventually stop — the running
time of the algorithm is the number of communication
rounds it takes until all nodes have stopped.

(h) We require that

C = { v ∈ V : computer v produced output 1 }

is a feasible vertex cover for graph G, and its size is at
most 2 times the size of a minimum vertex cover.
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Sections 2.2 and 2.3 below go through the effort of formalising
this idea. While at it, we also address the following issues:

(a) It is easy to encode a subset of nodes using local outputs
— but how should we encode, for example, a subset of
edges?

(b) Often it is useful to have not only local outputs but also
a local input for each computer. Then we could com-
pose algorithms: first, algorithm A1 solves a problem
Π1; then algorithm A2 uses the solution of Π1 to solve a
problem Π2.

(c) Often we will focus our attention to certain families of
graphs — it is too much to expect that an algorithm could
solve a problem in any undirected graph G.

2.2 Port-Numbered Network

A port-numbered network is a triple N = (V, P, p), where V is the
set of nodes, P is the set of ports, and p : P → P is a function
that specifies the connections between the ports. We make the
following assumptions:

(a) Each port is a pair (v, i) where v ∈ V and i ∈ {1, 2, . . . }.

(b) The connection function p is an involution, that is, for
any port x ∈ P we have p(p(x)) = x .

See Figures 2.1 and 2.2 for illustrations.
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a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 2.1: A port-numbered network N = (V, P, p). There are
four nodes, V = {a, b, c, d}; the degree of node a is 3, the
degrees of nodes b and c are 2, and the degree of node d is
1. The connection function p is illustrated with arrows — for
example, p(a, 3) = (d, 1) and conversely p(d, 1) = (a, 3). This
network is simple.

c, 3
c, 2
c, 1

a, 1
a, 2

b, 1
b, 2

d, 4
d, 3

d, 1
d, 2

Figure 2.2: A port-numbered network N = (V, P, p). There is a
loop at node a, as p(a, 1) = (a, 1), and another loop at node d,
as p(d, 3) = (d, 4). There are also multiple connections between
c and d. Hence the network is not simple.
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2.2.1 Terminology

If (v, i) ∈ P, we say that (v, i) is the port number i in node v.
The degree degN (v) of a node v ∈ V is the number of ports in v,
that is, degN (v) = |{ i ∈ N : (v, i) ∈ P }|.

Unless otherwise mentioned, we assume that the port num-
bers are consecutive: for each v ∈ V there are ports (v, 1), (v, 2),
. . . , (v, degN (v)) in P.

If (v, i) ∈ P, we use the shorthand notation p(v, i) for
p((v, i)). If p(u, i) = (v, j), we say that port (u, i) is connec-
ted to port (v, j); we also say that port (u, i) is connected to
node v, and that node u is connected to node v.

If p(v, i) = (v, j) for some j, we say that there is a loop at
v — note that we may have i = j or i 6= j. If p(u, i1) = (v, j1)
and p(u, i2) = (v, j2) for some u 6= v, i1 6= i2, and j1 6= j2, we
say that there are multiple connections between u and v. A
port-numbered network N = (V, P, p) is simple if there are no
loops or multiple connections.

2.2.2 Intuition

The intuitive idea behind the definition is that a simple port-
numbered network N is a model of a physical, real-world com-
munication network:

(a) each node v ∈ V is a physical device (e.g., a computer or
a router),

(b) node v has degN (v) communication ports, labelled with
integers 1, 2, . . . , degN (v),
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1
2
2

1
2
1 13

(a) (b)

Figure 2.3: (a) An alternative drawing of the simple port-
numbered network N from Figure 2.1. (b) The underlying
graph G of N .

(c) p(u, i) = (v, j) indicates that there is a cable that connects
the port number i in device u with the port number j in
device v.

2.2.3 Underlying Graph

For a simple port-numbered network N = (V, P, p) we define the
underlying graph G = (V, E) as follows: {u, v} ∈ E if and only
if u is connected to v in network N . Observe that degG(v) =
degN (v) for all v ∈ V . See Figure 2.3 for an illustration.

2.2.4 Encoding Input and Output

In a distributed system, nodes are the active elements: they can
read input and produce output. Hence we will heavily rely on
node labellings: we can directly associate information with each
node v ∈ V .

Assume that N = (V, P, p) is a simple port-numbered net-
work, and G = (V, E) is the underlying graph of N . We show
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1
2

2 1
2

1 13

(a) (b)

00

10

010 0

Figure 2.4: (a) A graph G = (V, E) and a matching M ⊆ E.
(b) A port-numbered network N ; graph G is the underlying
graph of N . The node labelling f : V → {0,1}∗ is an encoding
of matching M .

that a node labelling f : V → Y can be used to represent the
following graph-theoretic structures; see Figure 2.4 for an illus-
tration.

Node labelling g : V → X . Trivial: we can choose Y = X and
f = g.

Subset of nodes X ⊆ V . We can interpret a subset of nodes as
a node labelling g : V → {0,1}, where g is the indicator
function of the set X . That is, g(v) = 1 iff v ∈ X .

Edge labelling g : E→ X . For each node v, its label f (v) en-
codes the values g(e) for all edges e incident to v, in the
order of increasing port numbers. More precisely, if v
is a node of degree d, its label is a vector f (v) ∈ X d . If
(v, j) ∈ P and p(v, j) = (u, i), then element j of vector
f (v) is g({u, v}).
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Subset of edges X ⊆ E. We can interpret a subset of edges as
an edge labelling g : E→ {0, 1}.

Orientation H = (V, E′). For each node v, its label f (v) indic-
ates which of the edges incident to v are outgoing edges,
in the order of increasing port numbers.

It is trivial to compose the labellings. For example, we can
easily construct a node labelling that encodes both a subset of
nodes and a subset of edges.

Note that the above encoding is natural from the perspective
of distributed systems. For example, assume that we have used
a node labelling f : V → Y to encode a matching M ⊆ E. Now
the label f (v) of a node v ∈ V effectively describes M in the
immediate neighbourhood of v. In particular, f (v) indicates
whether v is matched, i.e., whether there is a node u such
that {u, v} ∈ M , and if this is the case, which of the ports is
connected to u.

2.2.5 Distributed Graph Problems

A distributed graph problem Π associates a set of solutions
Π(N) with each simple port-numbered network N = (V, P, p). A
solution f ∈ Π(N) is a node labelling f : V → Y for some set Y
of local outputs.

Using the encodings of Section 2.2.4, we can interpret all
of the following as distributed graph problems: independent
sets, vertex covers, dominating sets, matchings, edge covers,
edge dominating sets, colourings, edge colourings, domatic
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partitions, edge domatic partitions, factors, factorisations, ori-
entations, and any combinations of these.

To make the idea more clear, we will give some more de-
tailed examples.

(a) Vertex cover: f ∈ Π(N) if f encodes a vertex cover of the
underlying graph of N .

(b) Minimal vertex cover: f ∈ Π(N) if f encodes a minimal
vertex cover of the underlying graph of N .

(c) Minimum vertex cover: f ∈ Π(N) if f encodes a minimum
vertex cover of the underlying graph of N .

(d) 2-approximation of minimum vertex cover: f ∈ Π(N) if f
encodes a vertex cover C of the underlying graph of N ;
moreover, the size of C is at most two times the size of a
minimum vertex cover.

(e) Orientation: f ∈ Π(N) if f encodes an orientation of the
underlying graph of N .

(f) 2-colouring: f ∈ Π(N) if f encodes a 2-colouring of the
underlying graph of N . Note that we will have Π(N) =∅
if the underlying graph of N is not bipartite.

2.3 Distributed Algorithms in the
Port-Numbering Model

We proceed to give a formal definition of a distributed algorithm
in the port-numbering model. In essence, a distributed al-
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gorithm is a state machine. To run the algorithm on a certain
port-numbered network, we put a copy of the same state ma-
chine at each node of the network.

It should be noted that the formal definition of a distributed
algorithm plays a similar role as the definition of a Turing
machine in the study of non-distributed algorithms. A formally
rigorous foundation is necessary to study questions such as
computability and computational complexity. However, we do
not usually present algorithms as Turing machines, and the
same is the case here. Once we become more familiar with
distributed algorithms, we will use a higher-level pseudocode
to define algorithms and omit the tedious details of translating
the high-level description into a state machine.

2.3.1 State Machine

A distributed algorithm A is a state machine that consists of the
following components:

(i) InputA is the set of local inputs,

(ii) StatesA is the set of states,

(iii) OutputA ⊆ StatesA is the set of stopping states (local
outputs), and

(iv) MsgA is the set of possible messages.

Moreover, for each possible degree d ∈ N we have the following
functions:

(v) initA,d : InputA→ StatesA initialises the state machine,
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(vi) sendA,d : StatesA→Msgd
A constructs outgoing messages,

and

(vii) receiveA,d : StatesA×Msgd
A→ StatesA processes incoming

messages.

We require that receiveA,d(x , y) = x whenever x ∈ OutputA.
The idea is that a node that has already stopped and printed its
local output no longer changes its state.

2.3.2 Execution

Let A be a distributed algorithm, let N = (V, P, p) be a port-
numbered network, and let f : V → InputA be a labelling of the
nodes.

A state vector is a function x : V → StatesA. The execution
of A on (N , f ) is a sequence of state vectors x0, x1, . . . defined
recursively as follows.

The initial state vector x0 is defined by

x0(u) = initA,d( f (u)),

where u ∈ V and d = degN (u).
Now assume that we have defined state vector x t−1. Define

mt : P → MsgA as follows. Assume that (u, i) ∈ P, (v, j) =
p(u, i), and degN (v) = `. Let mt(u, i) be component j of the
vector sendA,`(x t−1(v)).

Intuitively, mt(u, i) is the message received by node u from
port number i on round t. Equivalently, it is the message sent
by node v to port number j on round t — recall that ports (u, i)
and (v, j) are connected.

35



For each node u ∈ V with d = degN (u), we define the
message vector

mt(u) =
�

mt(u, 1), mt(u, 2), . . . , mt(u, d)
�

.

Finally, we define the new state vector x t by

x t(u) = receiveA,d
�

x t−1(u), mt(u)
�

.

We say that algorithm A stops in time T if xT (u) ∈ OutputA
for each u ∈ V . We say that A stops if A stops in time T for some
finite T . If A stops in time T , we say that g = xT is the output
of A, and xT (u) is the local output of node u.

2.3.3 Solving Graph Problems

Now we will define precisely what it means if we say that a
distributed algorithm A solves a certain graph problem.

Let F be a family of simple undirected graphs. Let Π and
Π′ be distributed graph problems (see Section 2.2.5). We say
that distributed algorithm A solves problem Π on graph family F
given Π′ if the following holds: assuming that

(a) N = (V, P, p) is a simple port-numbered network,
(b) the underlying graph of N is in F , and
(c) the input f is in Π′(N),

the execution of algorithm A on (N , f ) stops and produces an
output g ∈ Π(N). If A stops in time T(|V |) for some function
T : N→ N, we say that A solves the problem in time T .

Obviously, a minimum requirement is that A is compatible
with the encodings of Π and Π′. That is, each f ∈ Π′(N) has to
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be a function of the form f : V → InputA, and each g ∈ Π(N)
has to be a function of the form g : V → OutputA.

Problem Π′ is often omitted. If A does not need the input f ,
we simply say that A solves problem Π on graph family F . More
precisely, in this case we provide a trivial input f (v) = 0 for
each v ∈ V .

In practice, we will often specify F , Π, Π′, and T implicitly.
Here are some examples of common parlance:

(a) Algorithm A finds a maximum matching in any path graph:
here F consists of all path graphs; Π′ is omitted; and Π
is the problem of finding a maximum matching.

(b) Algorithm A finds a maximal independent set in k-coloured
graphs in time k: here F consists of all graphs that admit
a k-colouring; Π′ is the problem of finding a k-colouring;
Π is the problem of finding a maximal independent set;
and T is the constant function T : n 7→ k.

2.4 Examples

In this section, we will give two examples of distributed al-
gorithms that solve distributed graph problems. We will give
an informal presentation of the algorithms — formalising the
algorithms as state machines is left as an exercise.

2.4.1 Maximal Matching in Two-Coloured Graphs

In this section we present a distributed algorithm BMM that
finds a maximal matching in a 2-coloured graph. That is, F
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is the family of bipartite graphs, we are given a 2-colouring
f : V → {1, 2}, and the algorithm will output an encoding of a
maximal matching M ⊆ E.

In what follows, we say that a node v ∈ V is white if f (v) =
1, and it is black if f (v) = 2. During the execution of the
algorithm, each node is in one of the states

{UR, MR(i), US, MS(i) },

which stand for “unmatched and running”, “matched and run-
ning”, “unmatched and stopped”, and “matched and stopped”,
respectively. As the names suggest, US and MS(i) are stopping
states. If the state of a node v is MS(i) then v is matched with
the neighbour that is connected to port i.

Initially, all nodes are in state UR. Each black node v main-
tains variables M(v) and X (v), which are initialised

M(v)←∅, X (v)← {1, 2, . . . , deg(v)}.

The algorithm is presented in Table 2.1; see Figure 2.5 for an
illustration.

The following invariant is useful in order to analyse the
algorithm.

Lemma 2.1. Assume that u is a white node, v is a black node,
and (u, i) = p(v, j). Then at least one of the following holds:

(a) element j is removed from X (v) before round 2i,
(b) at least one element is added to M(v) before round 2i.

Proof. Assume that we still have M(v) =∅ and j ∈ X (v) after
round 2i − 2. This implies that v is still in state UR, and u has
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rounds 1–2 rounds 3–4 rounds 5–6

Figure 2.5: Algorithm BMM; the illustration shows the al-
gorithm both from the perspective of the port-numbered net-
work N and from the perspective of the underlying graph G.
Arrows pointing right are proposals, and arrows pointing left are
acceptances. Wide grey edges have been added to matching M .
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Round 2k− 1, white nodes:

• State UR, k ≤ degN (v): Send ‘proposal’ to port (v, k).

• State UR, k > degN (v): Switch to state US.

• State MR(i): Send ‘matched’ to all ports.
Switch to state MS(i).

Round 2k− 1, black nodes:

• State UR: Read incoming messages.
If we receive ‘matched’ from port i, remove i from X (v).
If we receive ‘proposal’ from port i, add i to M(v).

Round 2k, black nodes:

• State UR, M(v) 6=∅: Let i =min M(v).
Send ‘accept’ to port (v, i). Switch to state MS(i).

• State UR, X (v) =∅: Switch to state US.

Round 2k, white nodes:

• State UR: Process incoming messages.
If we receive ‘accept’ from port i, switch to state MR(i).

Table 2.1: Algorithm BMM; here k = 1,2, . . . .
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not sent ‘matched’ to v. In particular, u is in state UR or MR(i)
after round 2i − 2. In the former case, u sends ‘proposal’ to v
on round 2i − 1, and j is added to M(v) on round 2i − 1. In
the latter case, u sends ‘matched’ to v on round 2i − 1, and j is
removed from X (v) on round 2i− 1.

Now it is easy to verify that the algorithm actually makes
some progress and eventually halts.

Lemma 2.2. Algorithm BMM stops in time 2∆+ 1, where ∆ is
the maximum degree of N.

Proof. A white node of degree d stops before or during round
2d + 1≤ 2∆+ 1.

Now let us consider a black node v. Assume that we still
have j ∈ X (v) on round 2∆. Let (u, i) = p(v, j); note that i ≤∆.
By Lemma 2.1, at least one element has been added to M(v)
before round 2∆. In particular, v stops before or during round
2∆.

Moreover, the output is correct.

Lemma 2.3. Algorithm BMM finds a maximal matching in any
two-coloured graph.

Proof. Let us first verify that the output correctly encodes a
matching. In particular, assume that u is a white node, v is
a black node, and p(u, i) = (v, j). We have to prove that u
stops in state MS(i) if and only if v stops in state MS( j). If u
stops in state MS(i), it has received an ‘accept’ from v, and v
stops in state MS( j). Conversely, if v stops in state MS( j), it has
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received a ‘proposal’ from u and it sends an ‘accept’ to u, after
which u stops in state MS(i).

Let us then verify that M is indeed maximal. If this was not
the case, there would be an unmatched white node u that is
connected to an unmatched black node v. However, Lemma 2.1
implies that at least one of them becomes matched before or
during round 2∆.

2.4.2 Vertex Covers

We will now give a distributed algorithm VC3 that finds a 3-ap-
proximation of a minimum vertex cover; we will use algorithm
BMM from the previous section as a building block.

Let N = (V, P, p) be a port-numbered network. We will
construct another port-numbered network N ′ = (V ′, P ′, p′) as
follows; see Figure 2.6 for an illustration. First, we double the
number of nodes — for each node v ∈ V we have two nodes v1
and v2 in V ′:

V ′ = { v1, v2 : v ∈ V },
P ′ = { (v1, i), (v2, i) : (v, i) ∈ P }.

Then we define the connections. If p(u, i) = (v, j), we set

p′(u1, i) = (v2, j),

p′(u2, i) = (v1, j).

With these definitions we have constructed a network N ′ such
that the underlying graph G′ = (V ′, E′) is bipartite. We can
define a 2-colouring f ′ : V ′→ {1,2} as follows:

f ′(v1) = 1 and f (v2) = 2 for each v ∈ V.
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Figure 2.6: Construction of the virtual network N ′ in algorithm
VC3.
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Nodes of colour 1 are called white and nodes of colour 2 are
called black.

Now N is our physical communication network, and N ′ is
merely a mathematical construction. However, the key obser-
vation is that we can use the physical network N to efficiently
simulate the execution of any distributed algorithm A on (N ′, f ′).
Each physical node v ∈ V simulates nodes v1 and v2 in N ′:

(a) If v1 sends a message m1 to port (v1, i) and v2 sends a
message m2 to port (v2, i) in the simulation, then v sends
the pair (m1, m2) to port (v, i) in the physical network.

(b) If v receives a pair (m1, m2) from port (v, i) in the physical
network, then v1 receives message m2 from port (v1, i)
in the simulation, and v2 receives message m1 from port
(v2, i) in the simulation.

Note that we have here reversed the messages: what
came from a white node is received by a black node and
vice versa.

In particular, we can take algorithm BMM of Section 2.4.1
and use the network N to simulate it on (N ′, f ′). Note that
network N is not necessarily bipartite and we do not have any
colouring of N ; hence we would not be able to apply algorithm
BMM on N .

Now we are ready to present algorithm VC3 that finds a
vertex cover:

(a) Simulate algorithm BMM in the virtual network N ′. Each
node v waits until both of its copies, v1 and v2, have
stopped.
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(b) Node v outputs 1 if at least one of its copies v1 or v2
becomes matched.

Clearly algorithm VC3 stops, as algorithm BMM stops.
Moreover, the running time is 2∆ + 1 rounds, where ∆ is
the maximum degree of N .

Let us now prove that the output is correct. To this end, let
G = (V, E) be the underlying graph of N , and let G′ = (V ′, E′)
be the underlying graph of N ′. Algorithm BMM outputs a
maximal matching M ′ ⊆ E′ for G′. Define the edge set M ⊆ E
as follows:

M =
�

{u, v} ∈ E : {u1, v2} ∈ M ′ or {u2, v1} ∈ M ′
	

. (2.1)

See Figure 2.7 for an illustration. Furthermore, let C ′ ⊆ V ′ be
the set of nodes that are incident to an edge of M ′ in G′, and
let C ⊆ V be the set of nodes that are incident to an edge of M
in G; equivalently, C is the set of nodes that output 1. We make
the following observations.

(a) Each node of C ′ is incident to precisely one edge of M ′.
(b) Each node of C is incident to one or two edges of M .
(c) Each edge of E′ is incident to at least one node of C ′.
(d) Each edge of E is incident to at least one node of C .

We are now ready to prove the main result of this section.

Lemma 2.4. Set C is a 3-approximation of a minimum vertex
cover of G.

Proof. First, observation (d) above already shows that C is a
vertex cover of G.
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Figure 2.7: Set M ⊆ E (left) and matching M ′ ⊆ E′ (right).
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(b)(a)
Figure 2.8: (a) In a cycle with n nodes, any vertex cover contains
at least n/2 nodes. (b) In a path with n nodes, any vertex cover
contains at least n/3 nodes.

To analyse the approximation ratio, let C∗ ⊆ V be a vertex
cover of G. By definition each edge of E is incident to at least
one node of C∗; in particular, each edge of M is incident to a
node of C∗. Therefore C∗ ∩ C is a vertex cover of the subgraph
H = (C , M).

By observation (b) above, graph H has maximum degree at
most 2. Set C consists of all nodes in H. We will then argue
that any vertex cover C∗ contains at least a fraction 1/3 of the
nodes in H; see Figure 2.8 for an example. Then it follows that
C is at most 3 times as large as a minimum vertex cover.
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To this end, let Hi = (Ci , Mi), i = 1, 2, . . . , k, be the connec-
ted components of H; each component is either a path or a
cycle. Now C∗i = C∗ ∩ Ci is a vertex cover of Hi .

A node of C∗i is incident to at most two edges of Mi . There-
fore

|C∗i | ≥ |Mi|/2.

If Hi is a cycle, we have |Ci|= |Mi| and

|C∗i | ≥ |Ci|/2.

If Hi is a path, we have |Mi| = |Ci| − 1. If |Ci| ≥ 3, it follows
that

|C∗i | ≥ |Ci|/3.

The only remaining case is a path with two nodes, in which
case trivially |C∗i | ≥ |Ci|/2.

In conclusion, we have |C∗i | ≥ |Ci|/3 for each component
Hi . It follows that

|C∗| ≥ |C∗ ∩ C |=
k
∑

i=1

|C∗i | ≥
k
∑

i=1

|Ci|/3= |C |/3.

In summary, VC3 finds a 3-approximation of a minimum
vertex cover in any graph G. Moreover, if the maximum degree
of G is small, the algorithm is fast: we only need O(∆) rounds
in a network of maximum degree ∆.
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2.5 Exercises

Exercise 2.1 (stopped nodes). In the formalism of this section,
a node that stops will repeatedly send messages to its neigh-
bours. Show that this detail is irrelevant, and we can always
re-write algorithms so that such messages are ignored. Put
otherwise, a node that stops can also stop sending messages.

More precisely, assume that A is a distributed algorithm that
solves problem Π on family F given Π′ in time T . Show that
there is another algorithm A′ such that (i) A′ solves problem
Π on family F given Π′ in time T + O(1), and (ii) in A′ the
state transitions never depend on the messages that are sent by
nodes that have stopped.

Exercise 2.2 (formalising BMM). Present algorithm BMM
from Section 2.4.1 in a formally precise manner, using the
definitions of Sections 2.2 and 2.3. Try to make MsgA as small
as possible.

Exercise 2.3 (formalising VC3). Present algorithm VC3 from
Section 2.4.2 in a formally precise manner, using the definitions
of Sections 2.2 and 2.3. Try to make both MsgA and StatesA as
small as possible.

Hint: For the purposes of algorithm VC3, it is sufficient to
know which nodes are matched in BMM — we do not need to
know with whom they are matched.

Exercise 2.4 (more than two colours). Design a distributed
algorithm that finds a maximal matching in k-coloured graphs.
You can assume that k is a known constant.
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Exercise 2.5 (analysis of VC3). Is the analysis of VC3 tight?
That is, is it possible to construct a network N such that VC3
outputs a vertex cover that is exactly 3 times as large as the
minimum vertex cover of the underlying graph of N?

Exercise 2.6 (implementation). Using your favourite program-
ming language, implement a simulator that lets you play with
distributed algorithms in the port-numbering model. Imple-
ment BMM and VC3 and try them out in the simulator.

Exercise 2.7 (composition). Assume that algorithm A1 solves
problem Π1 on family F given Π0 in time T1, and algorithm A2
solves problem Π2 on family F given Π1 in time T2.

Is it always possible to design an algorithm A that solves
problem Π2 on family F given Π0 in time O(T1+ T2)?

Hint: This exercise is not trivial. If T1 was a constant
function T1(n) = c, we could simply run A1, and then start A2
at time c, using the output of A1 as the input of A2. However, if
T1 is an arbitrary function of |V |, this strategy is not possible —
we do not know in advance when A1 will stop.
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Chapter 3

Impossibility Results

3.1 Introduction

In the previous chapter, we have seen examples of problems
that can be solved with a distributed algorithm in the port-
numbering model. However, there are many problems that
cannot be solved.

As a very simple example, let N = (V, P, p) be a port-
numbered network with two nodes, u and v, that are connected
to each other:

u, 1 v, 1

Assume that we are given a labelling f (u) = f (v) = 0. Now
let A be any distributed algorithm, and consider the execution
of A on (N , f ). As the local inputs of u and v are identical, we
will have x0(u) = x0(v) after the initialisation, that is, nodes u
and v have identical states before round 1. It follows that the
message sent by u to v in round 1 is the same as the message
sent by v to u in round 1. Therefore we will have x1(u) = x1(v),
that is, nodes u and v have identical states after round 1. By
induction, we have x t(u) = x t(v) for any round t. In particular,
if A stops in time T , we will have xT (u) = xT (v), i.e., both u
and v produce the same local output.
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This reasoning already shows that A cannot produce a
proper colouring, a maximal independent set, a minimum ver-
tex cover, etc. — in each of these cases nodes u and v would
have to produce distinct outputs. We generalise this observation
in Section 3.2, when we introduce a very useful graph-theoretic
tool, covering maps.

There are also many problems that can be solved with a
distributed algorithm, but it requires a lot of time. Techniques
that are useful in proving time lower bounds will be introduced
in Section 3.3.

3.2 Covering Maps

A covering map is a topological concept that finds applications
in many areas of mathematics, including graph theory. We
will focus on one special case: covering maps between port-
numbered networks.

3.2.1 Definition

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be port-numbered net-
works, and let φ : V → V ′. We say that φ is a covering map
from N to N ′ if the following holds:

(a) φ is a surjection: φ(V ) = V ′.

(b) φ preserves degrees: degN (v) = degN ′(φ(v))
for all v ∈ V .

(c) φ preserves connections and port numbers:
p(u, i) = (v, j) implies p′(φ(u), i) = (φ(v), j).
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See Figures 3.1–3.3 for examples.
We can also consider labelled networks, for example, net-

works with local inputs. Let f : V → X and f ′ : V ′ → X . We
say that φ is a covering map from (N , f ) to (N ′, f ′) if φ is a
covering map from N to N ′ and the following holds:

(d) φ preserves labels: f (v) = f ′(φ(v)) for all v ∈ V .

3.2.2 Covers and Executions

Now we will study covering maps from the perspective of dis-
tributed algorithms. The basic idea is that a covering map φ
from N to N ′ fools any distributed algorithm A: a node v in N
is indistinguishable from the node φ(v) in N ′.

Without further ado, we state the main result and prove it
— many applications and examples will follow.

Theorem 3.1. Assume that

(a) A is a distributed algorithm with X = InputA,

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are port-numbered
networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions, and

(d) φ : V → V ′ is a covering map from (N , f ) to (N ′, f ′).

Let

(e) x0, x1, . . . be the execution of A on (N , f ), and

(f) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).
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N:

N’:

a1, 3
a1, 2
a1, 1

b1, 1
b1, 2

c1, 1
c1, 2

d1, 1

a2, 3
a2, 2
a2, 1

b2, 1
b2, 2

c2, 1
c2, 2

d2, 1

a, 3
a, 2
a, 1

b, 1
b, 2

c, 1
c, 2

d, 1

Figure 3.1: There is a covering map φ from N to N ′ that maps
ai 7→ a, bi 7→ b, ci 7→ c, and di 7→ d for each i ∈ {1,2}.
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N:

N’:

v1, 1
v1, 2

v3, 1
v3, 2

v2, 1
v2, 2

v, 1
v, 2

Figure 3.2: There is a covering map φ from N to N ′ that maps
vi 7→ v for each i ∈ {1, 2,3}. Here N is a simple port-numbered
network but N ′ is not.

N:

N’: v, 1

v1, 1 v2, 1

Figure 3.3: There is a covering map φ from N to N ′ that maps
vi 7→ v for each i ∈ {1,2}. Again, N is a simple port-numbered
network but N ′ is not.
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Then for each t = 0,1, . . . and each v ∈ V we have x t(v) =
x ′t(φ(v)).

Proof. We will use the notation of Section 2.3.2; the symbols
with a prime refer to the execution of A on (N ′, f ′). In particular,
m′t(u

′, i) is the message received by u′ ∈ V ′ from port i in round
t in the execution of A on (N ′, f ′), and m′t(u

′) is the vector of
messages received by u′.

The proof is by induction on t. To prove the base case t = 0,
let v ∈ V , d = degN (v), and v′ = φ(v); we have

x ′0(v
′) = initA,d( f

′(v′)) = initA,d( f (v)) = x0(v).

For the inductive step, let (u, i) ∈ P, (v, j) = p(u, i), d =
degN (u), ` = degN (v), u′ = φ(u), and v′ = φ(v). Let us
first consider the messages sent by v and v′; by the inductive
assumption, these are equal:

sendA,`(x
′
t−1(v

′)) = sendA,`(x t−1(v)).

A covering map φ preserves connections and port numbers:
(u, i) = p(v, j) implies (u′, i) = p′(v′, j). Hence mt(u, i) is
component j of sendA,`(x t−1(v)), and m′t(u

′, i) is component
j of sendA,`(x ′t−1(v

′)). It follows that mt(u, i) = m′t(u
′, i) and

mt(u) = m′t(u
′). Therefore

x ′t(u
′) = receiveA,d

�

x ′t−1(u
′), m′t(u

′)
�

= receiveA,d
�

x t−1(u), mt(u)
�

= x t(u).

In particular, if the execution of A on (N , f ) stops in time
T , the execution of A on (N ′, f ′) stops in time T as well, and
vice versa. Moreover, φ preserves the local outputs: xT (v) =
x ′T (φ(v)) for all v ∈ V .
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3.2.3 Examples

We will give representative examples of negative results that
we can easily derive from Theorem 3.1. First, we will observe
that a distributed algorithm cannot break symmetry in a cycle
— unless we provide some symmetry-breaking information in
local inputs.

Lemma 3.2. Let G = (V, E) be a cycle graph, let A be a distributed
algorithm, and let f be a constant function f : V → {0}. Then
there is a simple port-numbered network N = (V, P, p) such that

(a) the underlying graph of N is G, and

(b) if A stops on (N , f ), the output is a constant function
g : V → {c} for some c.

Proof. Label the nodes V = { v1, v2, . . . , vn } along the cycle so
that the edges are

E =
�

{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}
	

.

Choose the port numbering p as follows:

p : (v1, 1) 7→ (v2, 2), (v2, 1) 7→ (v3, 2), . . . ,

(vn−1, 1) 7→ (vn, 2), (vn, 1) 7→ (v1, 2).

See Figure 3.2 for an illustration in the case n= 3.
Define another port-numbered network N ′ = (V ′, P ′, p′)

with V ′ = {v}, P ′ = {(v, 1), (v, 2)}, and p(v, 1) = (v, 2). Let
f ′ : V ′→ {0}. Define a function φ : V → V ′ by setting φ(vi) =
v for each i.
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Now we can verify that φ is a covering map from (N , f )
to (N ′, f ′). Assume that A stops on (N , f ) and produces an
output g. By Theorem 3.1, A also stops on (N ′, f ′) and produces
an output g ′. Let c = g ′(v). Now

g(vi) = g ′(φ(vi)) = g ′(v) = c

for all i.

In the above proof, we never assumed that the execution of
A on N ′ makes any sense — after all, N ′ is not even a simple
port-numbered network, and there is no underlying graph.
Algorithm A was never designed to be applied to such a strange
network with only one node. Nevertheless, the execution of
A on N ′ is formally well-defined, and Theorem 3.1 holds. We
do not really care what A outputs on N ′, but the existence of a
covering map can be used to prove that the output of A on N
has certain properties. It may be best to interpret the execution
of A on N ′ as a thought experiment, not as something that we
would actually try to do in practice.

Lemma 3.2 has many immediate corollaries.

Corollary 3.3. Let F be the family of cycle graphs. Then there is
no distributed algorithm that solves any of the following problems
on F :

(a) maximal independent set,
(b) 1.999-approximation of a minimum vertex cover,
(c) 2.999-approximation of a minimum dominating set,
(d) maximal matching,
(e) vertex colouring,
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(f) weak colouring,
(g) edge colouring.

Proof. In each of these cases, there is a graph G ∈ F such that
a constant function is not a feasible solution in the network N
that we constructed in Lemma 3.2.

For example, consider the case of dominating sets; other
cases are similar. Assume that G = (V, E) is a cycle with 3k
nodes. Then a minimum dominating set consists of k nodes
— it is sufficient to take every third node. Hence a 2.999-ap-
proximation of a minimum dominating set consists of at most
2.999k < 3k nodes. A solution D = V violates the approxima-
tion guarantee, as D has too many nodes, while D =∅ is not a
dominating set. Hence if A outputs a constant function, it can-
not produce a 2.999-approximation of a minimum dominating
set.

Lemma 3.4. There is no algorithm that finds a weak colouring
for any 3-regular graph.

Proof. Again, we are going to apply the standard technique:
pick a suitable 3-regular graph G, find a port-numbered network
N that has G as its underlying graph, find a smaller network N ′

such that we have a covering map φ from N to N ′, and apply
Theorem 3.1.

However, it is not immediately obvious which 3-regular
graph would be appropriate; hence we try the simplest possible
case first. Let G = (V, E) be the complete graph on four nodes:
V = { s, t, u, v }, and we have an edge between any pair of
nodes; see Figure 3.4. The graph is certainly 3-regular: each
node is adjacent to the other three nodes.
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X
Y

Y
X

X
s

X

t

uv

N:

N’:

s, 3
s, 2
s, 1

v, 3
v, 2
v, 1

u, 3
u, 2
u, 1

t, 3
t, 2
t, 1

G:

x, 3
x, 2
x, 1

Figure 3.4: Graph G is the complete graph on four nodes. The
edges of G can be partitioned into a 2-factor X and a 1-factor
Y . Network N has G as its underlying graph, and there is a
covering map φ from N to N ′
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Now it is easy to verify that the edges of G can be partitioned
into a 2-factor X and a 1-factor Y . The 2-factor consists of a
cycle and a 1-factor consists of disjoint edges. We can use the
factors to guide the selection of port numbers in N .

In the cycle induced by X , we can choose symmetric port
numbers using the same idea as what we had in the proof of
Lemma 3.2; one end of each edge is connected to port 1 while
the other end is connected to port 2. For the edges of the 1-
factor Y , we can assign port number 3 at each end. We have
constructed the port-numbered network N that is illustrated in
Figure 3.4.

Now we can verify that there is a covering map φ from N
to N ′, where N ′ is the network with one node illustrated in
Figure 3.4. Therefore in any algorithm A, if we do not have
any local inputs, all nodes of N will produce the same output.
However, a constant output is not a weak colouring of G.

In the above proof, we could have also partitioned the
edges of G into three 1-factors, and we could have used the
1-factorisation to guide the selection of port numbers. However,
the above technique is more general: there are 3-regular graphs
that do not admit a 1-factorisation but that can be partitioned
into a 1-factor and a 2-factor.

So far we have used only one covering map in our proofs;
the following lemma gives an example of the use of more than
one covering map.

Lemma 3.5. Let F = {G3, G4 }, where G3 is the cycle graph
with 3 nodes, and G4 is the cycle graph with 4 nodes. There is no
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N’:

N3: N4:

φ3 φ4

Figure 3.5: The structure of the proof of Lemma 3.5.

distributed algorithm that solves the following problem Π on F :
in Π(G3) all nodes output 3 and in Π(G4) all nodes output 4.

Proof. We again apply the construction of Lemma 3.2; for each
i ∈ {3, 4}, let Ni be the symmetric port-numbered network that
has Gi as the underlying graph.

Now it would be convenient if we could construct a covering
map from N4 to N3; however, this is not possible (see the
exercises). Therefore we proceed as follows. Construct a one-
node network N ′ as in the proof of Lemma 3.2, construct the
covering map φ3 from N3 to N ′, and construct the covering
map φ4 from N4 to N ′; see Figure 3.5. The local inputs are
assumed to be all zeroes.

Let A be a distributed algorithm, and let c be the output
of the only node of N ′. If we apply Theorem 3.1 to φ3, we
conclude that all nodes of N3 output c; if A solves Π on G3, we
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must have c = 3. However, if we apply Theorem 3.1 to φ4, we
learn that all nodes of N4 also output c = 3, and hence A cannot
solve Π on F .

We have learned that a distributed algorithm cannot determ-
ine the length of a cycle. In particular, a distributed algorithm
cannot determine if a graph is bipartite.

3.3 Local Neighbourhoods

Covering maps can be used to argue that a problem cannot be
solved at all. Now we will study a technique that can be used
to argue that a problem cannot be solved fast.

Some problems can be solved very quickly with a distributed
algorithm. For example, algorithm VC3 from Section 2.4.2 runs
in time O(∆), where ∆ is the maximum degree of the graph. If
we focus on a family of bounded-degree graphs, i.e., ∆= O(1),
this is a constant-time algorithm — the running time of the
algorithm is independent of the size of the graph.

3.3.1 An Introductory Example

However, some problems cannot be solved quickly with any dis-
tributed algorithm. As an introductory example, let F consist
of all path graphs, and let Π be the problem of finding a 2-edge
colouring.

1 21212

1 1212

63



With a little thought, we can design a distributed algorithm
A that solves Π on F . Informally, algorithm A proceeds as
follows. First, we find the midpoint of the graph. This is
possible if nodes of degree 1 generate a token that is forwarded
by nodes of degree 2. Eventually, the two tokens meet at the
midpoint of the graph. There are two cases:

(a) The midpoint is a node v, i.e., we have an even path.
Then we can use the port numbers of v to break sym-
metry: the edge connected to port i is labelled with
colour i. Then we can assign alternating colours to all
other edges, starting from v.

(b) The midpoint is an edge {u, v}, i.e., we have an odd path.
Then we can assign colour 1 to {u, v} and alternating
colours to all other edges, starting from both u and v.

The algorithm certainly finds a correct solution — in any
path graph, the edges will be properly coloured with colours
1 and 2. However, the running time of the algorithm is Θ(n),
where n is the number of nodes.

We will now argue that no algorithm can find a 2-edge
colouring in time o(n). To this end, assume that G is a path of
length 2r + 3, and let N be a simple port-numbered network
that has G as the underlying graph; choose the port numbers
as shown in Figure 3.6.

Now let u and v be the two nodes that are incident to the
midpoint of the path. Let us label the nodes in the radius-r
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1 2 1 2 1 2 1 2 1 2 1 2
uv

1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 1

v1 v2v–2 v–1

u1 u2u–2 u–1

v0

u0

Figure 3.6: Nodes u and v have isomorphic radius-r neighbour-
hoods in a path of length 2r + 3; in this illustration, r = 2.
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neighbourhoods of u and v as we have shown in Figure 3.6:

ballG(u, r) = {u−r , u−r+1, . . . , ur },
ballG(v, r) = { v−r , v−r+1, . . . , vr }.

In particular, v = v0 and u= u0.
Now assume that we have a distributed algorithm A, and

we apply it to N . Initially, we have

x0(ui) = x0(vi) for all −r ≤ i ≤ r.

It follows that the messages sent by ui and vi on round 1 are
identical for all −r ≤ i ≤ r. Therefore the messages received
by ui and vi on round 1 are identical for all −r + 1≤ i ≤ r − 1
(note that ur and vr may receive different messages). It follows
that after round 1 we have

x1(ui) = x1(vi) for all −r + 1≤ i ≤ r − 1.

By induction, after round t ≤ r we have

x t(ui) = x t(vi) for all −r + t ≤ i ≤ r − t.

In particular,

xr(u) = xr(u0) = xr(v0) = xr(v).

Hence if A stops in time r, both u and v produce the same
output. However, this contradicts with the definition of problem
Π. Therefore the running time of A has to be larger than r in a
graph with 2r + 4 nodes.

In what follows, we will formalise and generalise the ideas
that we used in this example.
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3.3.2 Definitions

Let N = (V, P, p) and N ′ = (V ′, P ′, p′) be simple port-numbered
networks, with the underlying graphs G = (V, E) and G′ =
(V ′, E′). Fix the local inputs f : V → Y and f ′ : V ′→ Y , a pair
of nodes v ∈ V and v′ ∈ V ′, and a radius r ∈ N. Define the
radius-r neighbourhoods

U = ballG(v, r), U ′ = ballG′(v
′, r).

We say that (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r
neighbourhoods if there is a bijectionψ: U → U ′ withψ(v) = v′

such that

(a) ψ preserves degrees: degN (v) = degN ′(ψ(v))
for all v ∈ U .

(b) ψ preserves connections and port numbers:
p(u, i) = (v, j) if and only if p′(ψ(u), i) = (ψ(v), j)
for all u, v ∈ U .

(c) ψ preserves local inputs: f (v) = f ′(ψ(v)) for all v ∈ U .

The function ψ is called an r-neighbourhood isomorphism from
(N , f , v) to (N ′, f ′, v′). See Figure 3.7 for an example.

3.3.3 Local Neighbourhoods and Executions

Theorem 3.6. Assume that

(a) A is a distributed algorithm with X = InputA,
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u v

Figure 3.7: Nodes u and v have isomorphic radius-2 neighbour-
hoods, provided that we choose the port numbers appropriately.
Therefore in any algorithm A the state of u equals the state of v
at time t = 0,1,2. However, at time t = 3,4, . . . this does not
necessarily hold.

(b) N = (V, P, p) and N ′ = (V ′, P ′, p′) are simple
port-numbered networks,

(c) f : V → X and f ′ : V ′→ X are arbitrary functions,

(d) v ∈ V and v′ ∈ V ′,

(e) (N , f , v) and (N ′, f ′, v′) have isomorphic radius-r
neighbourhoods.

Let

(f) x0, x1, . . . be the execution of A on (N , f ), and

(g) x ′0, x ′1, . . . be the execution of A on (N ′, f ′).

Then for each t = 0,1, . . . , r we have x t(v) = x ′t(v
′).

Proof. Let G and G′ be the underlying graphs of N and N ′,
respectively. We will prove the following stronger claim by
induction: for each t = 0,1, . . . , r, we have x t(u) = x ′t(ψ(u))
for all u ∈ ballG(v, r − t).
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To prove the base case t = 0, let u ∈ ballG(v, r), d =
degN (u), and u′ =ψ(u); we have

x ′0(u
′) = initA,d( f

′(u′)) = initA,d( f (u)) = x0(u).

For the inductive step, assume that t ≥ 1 and

u ∈ ballG(v, r − t).

Let u′ =ψ(u). By inductive assumption, we have

x ′t−1(u
′) = x t−1(u).

Now consider a port (u, i) ∈ P. Let (s, j) = p(u, i). We have
{s, u} ∈ E, and therefore

distG(s, v)≤ distG(s, u) + distG(u, v)≤ 1+ r − t.

Define s′ =ψ(s). By inductive assumption we have

x ′t−1(s
′) = x t−1(s).

The neighbourhood isomorphismψ preserves the port numbers:
(s′, j) = p′(u′, i). Hence all of the following are equal:

(a) the message sent by s to port j on round t,
(b) the message sent by s′ to port j on round t,
(c) the message received by u from port i on round t,
(d) the message received by u′ from port i on round t.

As the same holds for any port of u, we conclude that

x ′t(u
′) = x t(u).

We will often consider the case that N = N ′ but v 6= v′

when we apply Theorem 3.6; we have already seen an example
of this in Section 3.3.1.
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3.4 Exercises

We use the following definition in the exercises. A graph G is
homogeneous if there are port-numbered networks N and N ′

and a covering map φ from N to N ′ such that N is simple, the
underlying graph of N is G, and N ′ has only one node. For
example, Lemma 3.2 shows that all cycle graphs are homogen-
eous.

Exercise 3.1 (finding port numbers). Consider the graph G
and network N ′ illustrated in Figure 3.8. Find a simple port-
numbered network N such that N has G as the underlying
graph and there is a covering map from N to N ′.

Exercise 3.2 (homogeneity). Assume that G is homogeneous
and it contains a node with degree at least two. Give several
examples of graph problems that cannot be solved with any
distributed algorithm in any family of graphs that contains G.

Exercise 3.3 (4-regular and homogeneous). Show that the
graph illustrated in Figure 3.9 is homogeneous.

Hint: Apply the result of Exercise 1.9.

Exercise 3.4 (3-regular and homogeneous). Show that the
graph illustrated in Figure 3.8 is homogeneous.

Hint: Find a 1-factor.

Exercise 3.5 (even degrees). Show that any 2k-regular graph
is homogeneous, for any positive integer k.

Exercise 3.6 (complete graphs). Show that any complete graph
is homogeneous.
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b, 3
b, 2
b, 1

c, 3
c, 2
c, 1

d, 3
d, 2
d, 1

a, 3
a, 2
a, 1

N’:

G:

Figure 3.8: Graph G and network N ′ for Exercises 3.1 and 3.4.
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Figure 3.9: Graph for Exercise 3.3.

Hint: Show that if we have a complete graph with an even
number of nodes, there is a 1-factorisation.

Exercise 3.7 (path graphs). In this exercise, the graph family
F consists of path graphs.

(a) Show that it is possible to find a maximum matching in
time 3n+O(1).

(b) Show that it is not possible to find a maximum matching
in time n/3+O(1).

(c) Show that it is not possible to find a 2-colouring.

(d) Show that it is not possible to find a weak 2-colouring.

(e) Is it possible to find a minimum vertex cover? If yes, how
fast?

(f) Is it possible to find a minimum dominating set? If yes,
how fast?

(g) Is it possible to find a minimum edge dominating set? If
yes, how fast?

(h) How fast is it possible to find a 2-approximation of a
minimum vertex cover?
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(i) How fast is it possible to find a 2-approximation of a
minimum dominating set?

Exercise 3.8 (path graphs with auxiliary information). In this
exercise, the graph family F consists of path graphs.

(a) Assume that we are given a 4-colouring. Show that it is
possible to find a 3-colouring in time 1.

(b) Assume that we are given a 4-colouring. Show that it is
not possible to find a 3-colouring in time 0.

(c) Assume that we are given a 4-colouring. Show that it is
possible to find a 2-colouring in time 3n+O(1).

(d) Assume that we are given a 4-colouring. Show that it is
not possible to find a 2-colouring in time n/3+O(1).

(e) Assume that we are given a 4-colouring. How fast is it
possible to find a weak 2-colouring?

(f) Assume that we are given an orientation. Show that it is
possible to find a 2-colouring in time 3n+O(1).

(g) Assume that we are given an orientation. Show that it is
not possible to find a 2-colouring in time n/3+O(1).

Exercise 3.9 (combining techniques). Consider the graphs G1
and G2 illustrated in Figure 3.10. Show that there are simple
port-numbered networks N1 and N2 such that Ni has Gi as
the underlying graph, and in any distributed algorithm with
running time 2 the output of v1 in N1 equals the output of v2
in N2.
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v1 v2

G1 G2

Figure 3.10: Graphs for Exercise 3.9.

Hint: We need to combine the results of Theorems 3.1 and
3.6. For i = 1,2, construct a network N ′i and a covering map
φi from N ′i to Ni. Let v′i ∈ φ

−1
i (vi). Show that v′1 and v′2 have

isomorphic radius-2 neighbourhoods; hence v′1 and v′2 produce
the same output. Then use the covering maps to argue that v1
and v2 also produce the same outputs. In the construction of
N ′1, you will need to eliminate the 3-cycle; otherwise v′1 and v′2
cannot have isomorphic neighbourhoods.

Exercise 3.10 (3-regular and not homogeneous). Consider the
graph G illustrated in Figure 3.11.

(a) Show that G is not homogeneous.

(b) Present a distributed algorithm A with the following prop-
erty: if N is a simple port-numbered network that has G
as the underlying graph, and we execute A on N , then A
stops and produces an output where at least one node
outputs 0 and at least one node outputs 1.

(c) Find a simple port-numbered network N that has G as
the underlying graph, a port-numbered network N ′, and
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Figure 3.11: Graph G for Exercise 3.10.

a covering map φ from N to N ′ such that N ′ has the
smallest possible number of nodes.

Hint: Show that if a 3-regular graph is homogeneous, then
it has a 1-factor. Show that G does not have any 1-factor.

Exercise 3.11 (covers with covers). What is the connection
between covering maps and algorithm VC3 of Section 2.4.2?

Exercise 3.12 (covers and connectivity). Assume that N =
(V, P, p) and N ′ = (V ′, P ′, p′) are simple port-numbered networks
such that there is a covering map φ from N to N ′. Let G be the
underlying graph of network N , and let G′ be the underlying
graph of network N ′.

(a) Is it possible that G is connected and G′ is not connected?

(b) Is it possible that G is not connected and G′ is connected?

Exercise 3.13 (k-fold covers). Assume that N = (V, P, p) and
N ′ = (V ′, P ′, p′) are simple port-numbered networks, assume
that the underlying graphs of N and N ′ are connected, and
assume that φ : V → V ′ is a covering map from N to N ′.
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Prove that there exists a positive integer k such that the
following holds: |V | = k|V ′| and for each node v′ ∈ V ′ we have
|φ−1(v′)|= k.

Show that the claim does not necessarily hold if the under-
lying graphs are not connected.

Exercise 3.14 (isomorphisms). Construct port-numbered net-
works N1 = (V1, P1, p1) and N2 = (V2, P2, p2) such that |V1| =
|V2|, both N1 and N2 are simple, the underlying graphs of N1
and N2 are connected, the underlying graphs of N1 and N2 are
not isomorphic, and the following holds:

(a) There is a port-numbered network N , a covering map φ1
from N1 to N , and a covering map φ2 from N2 to N .

(b) There is a port-numbered network N ′, a covering map
φ′1 from N ′ to N1, and a covering map φ′2 from N ′ to N2.

Exercise 3.15 (3-regular graphs). Is it possible to construct
connected 3-regular graphs G = (V, E) and G′ = (V ′, E′) with
|V | = |V ′| such that the following holds: if N and N ′ are simple
port-numbered networks that have G and G′ as their underlying
graphs, then there is no covering map from N to N ′?
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Chapter 4

Combinatorial
Optimisation

4.1 Introduction

In this section, we will have a closer look at two optimisation
problems: vertex covers and edge dominating sets.

In Section 2.4.2 we have already seen that it is possible
to find a 3-approximation of a minimum vertex cover with a
distributed algorithm. In Section 4.2, we will present a better
algorithm that achieves the approximation factor of 2. Recall
that this is optimal: Corollary 3.3 shows that it is not possible
to find a 1.999-approximation with any distributed algorithm.

Once we have presented the vertex cover algorithm, we will
turn our attention to the edge dominating set problem. This is
the focus of the exercises in Section 4.3. Among others, we will
design an algorithm that finds a 4-approximation of a minimum
edge dominating set.

Throughout this chapter, we will design algorithms for
bounded-degree graphs: we show that for each value of ∆,
we can design an algorithm A∆ that solves the problem in any
graph of maximum degree at most ∆. The general case is left
as an exercise.
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4.2 Vertex Cover

In Exercise 1.3 we saw that if we are given a maximal match-
ing, it is easy to find a 2-approximation of a minimum vertex
cover. Unfortunately, Corollary 3.3 shows that we cannot find a
maximal matching with a distributed algorithm.

In this section we will study so-called maximal edge pack-
ings. Maximal edge packings are closely related to maximal
matchings — in particular, given a maximal edge packing, it
is easy to find a 2-approximation of a minimum vertex cover.
However, there is one crucial difference: while it is impossible
to find maximal matchings with distributed algorithms, there is
a distributed algorithm MEP that is able to find maximal edge
packings.

To design algorithm MEP, we first introduce the concept
of a half-saturating edge packing in Section 4.2.4. We design a
distributed algorithm HSEP that finds a half-saturating edge
packing. Then we use HSEP as a subroutine in algorithm MEP.
Finally, algorithm VC2 uses algorithm MEP as a subroutine to
find a 2-approximation of a minimum vertex cover.

4.2.1 Edge Packings

Let G = (V, E) be a graph and let f : E → [0,1] be a function
that assigns a real number f (e) to each edge e ∈ E. We define
the shorthand notation

f [v] =
∑

e∈E: v∈e

f (e).
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That is, f [v] is the sum of values f (e) over all edges e that are
incident to v.

We say that f is an edge packing if f [v]≤ 1 for all v ∈ V . A
node v ∈ V is saturated if f [v] = 1, and an edge e = {u, v} ∈ E
is saturated if at least one of the nodes u and v is saturated.
An edge packing f is maximal if all edges are saturated — see
Figures 4.1 and 4.2 for examples.

4.2.2 Properties

The following facts are easy to verify:

(a) The constant function f : e 7→ 0 is an edge packing. How-
ever, it is not a maximal edge packing unless E =∅.

(b) If G is a d-regular graph, then the constant function
f : e 7→ 1/d is a maximal edge packing. We will have
f [v] = 1 for all nodes, that is, all nodes are saturated.

(c) Let M ⊆ E be a subset of edges and let f : E→ {0,1} be
the indicator function of M , that is, f (e) = 1 if and only
if e ∈ M . Now f is an edge packing if and only if M is a
matching. Moreover, f is a maximal edge packing if and
only if M is a maximal matching. A node v is saturated if
and only if it is incident to an edge of M .

(d) Assume that f is an edge packing and f is not maximal.
Then there is an edge e0 = {u, v} ∈ E such that neither u
nor v is saturated. Let

ε=min
�

1− f [u], 1− f [v]
	

.
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Figure 4.1: Maximal edge packings. Saturated nodes have been
highlighted.
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Figure 4.2: Maximal edge packings. Saturated nodes have been
highlighted.
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We have ε > 0. Define the function

g(e) =

(

f (e) + ε if e = e0,

f (e) otherwise.

Now g is also an edge packing, and edge e0 is saturated
in g.

We will need the following technical lemma shortly.

Lemma 4.1. Let G = (V, E) be a graph, let f : E→ [0,1] be an
edge packing, and let X ⊆ V be a subset of nodes. Then

∑

v∈X

f [v] =
∑

e∈E

f (e) |e ∩ X |.

Proof. By definition, we have
∑

v∈X

f [v] =
∑

v∈X

∑

e∈E: v∈e

f (e).

Now it is easy to verify that in the double sum, each edge e ∈ E
is counted precisely |e ∩ X | times.

4.2.3 Edge Packings and Vertex Covers

Let G = (V, E) be a graph, and let f be a maximal edge packing
in G. Let C ⊆ V consist of all saturated nodes.

Lemma 4.2. Set C is a vertex cover.

Proof. Let e ∈ E. By assumption, f is maximal, and therefore e
is saturated, i.e., at least one endpoint of e is in C .
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Lemma 4.3. Set C is a 2-approximation of a minimum vertex
cover.

Proof. Let C∗ be a minimum vertex cover; we will prove that
|C | ≤ 2|C∗|. By definition, we have f [v] = 1 for all v ∈ C .
Therefore

|C |=
∑

v∈C

f [v].

By Lemma 4.1, we have
∑

v∈C

f [v] =
∑

e∈E

f (e) |e ∩ C |.

As C contains at most two endpoints of each edge and C∗

contains at least one endpoint of each edge, we have
∑

e∈E

f (e) |e ∩ C | ≤ 2
∑

e∈E

f (e) |e ∩ C∗|.

Now we can apply Lemma 4.1 again to obtain

2
∑

e∈E

f (e) |e ∩ C∗|= 2
∑

v∈C∗
f [v].

Finally, as f is an edge packing, we have f [v] ≤ 1, which
implies

2
∑

v∈C∗
f [v]≤ 2|C∗|.

Informally, we have shown that maximal edge packings
are as useful as maximal matching from the perspective of
the vertex cover problem: both yield a 2-approximation of a
minimum vertex cover.
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Moreover, it also appears that maximal edge packings could
be easier to find in a distributed setting. After all, we know that
we cannot find a maximal matching in a cycle, while it is trivial
to find a maximal edge packing in a cycle — set f (e) = 1/2 for
each edge e.

In the following sections, we show that this is indeed the
case: there is a distributed algorithm that finds a maximal edge
packing in any graph. One such algorithm is a recursive scheme
that is based on what we call half-saturating edge packings.

4.2.4 Half-Saturating Edge Packings

Let G = (V, E) be a graph and let f : E → [0,1] be an edge
packing. We say that f is half-saturating if all of the following
hold:

(a) f (e) ∈ {0, 1/2, 1} for each e ∈ E,

(b) f [v] = 0 implies that f [u] = 1 for all neighbours u of v,

(c) f [v] = 1/2 implies that f [u] = 1 for at least one neigh-
bour u of v.

Note that in a half-saturating edge packing we have f [v] ∈
{0, 1/2, 1} for each node v ∈ V ; see Figure 4.3 for an example.

The definition of a half-saturating edge packing may sound
artificial and pointless. However, we will soon see that (i) it is
easy to find half-saturating edge packings, and (ii) if we have
an algorithm A that finds a half-saturating edge packing, we can
find a maximal edge packing by a recursive application of A.
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Figure 4.3: Graph G and a half-saturating edge packing f .

85



Half-saturating edge packings are not necessarily maximal
edge packings. However, unsaturated edges have very specific
properties.

Lemma 4.4. If f : E→ [0,1] is a half-saturating edge packing,
and an edge e = {u, v} ∈ E is not saturated, then we have
f [u] = f [v] = 1/2.

Proof. If we had f [u] = 1 or f [v] = 1, edge e would be
saturated. If we had f [u] = 0, the definition of a half-saturated
edge packing would imply f [v] = 1 and vice versa. Hence the
only remaining case is f [u] = f [v] = 1/2.

Motivated by the above lemma, let us focus on the subgraph
G f induced by the unsaturated edges. More formally, define

G f = (Vf , E f ),

E f =
�

{u, v} ∈ E : f [u] = f [v] = 1/2
	

,

Vf =
⋃

E f .

Now E f is the set of unsaturated edges and G f is the subgraph
of G induced by E f ; see Figure 4.4 for an illustration.

We will now make two observations: (i) the maximum
degree of G f is strictly smaller than the maximum degree of G,
and (ii) if we can find a maximal edge packing for the subgraph
G f , we can easily construct a maximal edge packing for the
original graph G.

Lemma 4.5. If E f is non-empty, the maximum degree of G f is
strictly smaller than the maximum degree of G.

86



0.5

0.00.5

0.0
0.0

1.0

0.0
0.0

0.0
0.0

0.0
0.0

0.5

0.5

0.0

f[v] = 0
f[v] = 1/2
f[v] = 1

Figure 4.4: Subgraph G f induced by the unsaturated edges;
cf. Figure 4.3.
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Proof. Let u ∈ Vf . Then we have f [u] = 1/2. By the definition
of a half-saturating edge packing, there is an edge e = {u, v} ∈ E
with f [v] = 1. That is, e /∈ E f . Hence the degree of u in G f is
strictly smaller than the degree of u in G. In particular, if the
maximum degree of G is at most ∆, the maximum degree of
G f is at most ∆− 1.

Lemma 4.6. Assume that g : E f → [0,1] is a maximal edge
packing for G f . Define the function h: E→ [0, 1] by

h(e) =

(

f (e) + g(e)/2 if e ∈ E f ,

f (e) otherwise.

Now h is a maximal edge packing for G.

Proof. Let us first show that h is indeed an edge packing. Con-
sider a node v ∈ V . If v /∈ Vf , then v is not incident to any edge
of E f , and we have

h[v] = f [v]≤ 1.

Otherwise v ∈ Vf , in which case f [v] = 1/2. We have

h[v] = f [v] + g[v]/2= 1/2+ g[v]/2≤ 1/2+ 1/2= 1.

Now let us prove that h is maximal. To this end, let e ∈ E.
There are two cases:

(a) If e /∈ E f , then e is saturated by f in G. That is, there is
an endpoint v ∈ e with f [v] = 1, which implies v /∈ Vf
and h[v] = f [v] = 1. Hence e is saturated by h in G.
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(b) If e ∈ E f , then e is saturated by g in G f . That is, there
is an endpoint v ∈ e with g[v] = 1. Moreover, v ∈
Vf , which implies f [v] = 1/2. We have h[v] = f [v] +
g[v]/2= 1/2+ 1/2= 1. Hence e is saturated by h in G.

In conclusion, h is a maximal edge packing for G.

4.2.5 Finding Half-Saturating Edge Packings

Now we present algorithm HSEP that finds a half-saturating
edge packing in any graph. It turns out that we are already
familiar with all the key ingredients — in essence, algorithm
HSEP uses the same idea as algorithm VC3 from Section 2.4.2.

Let N = (V, P, p) be a port-numbered network. We con-
struct a virtual port-numbered network N ′ = (V ′, P ′, p′) and a
2-colouring precisely as we did in Section 2.4.2. Let G = (V, E)
be the underlying graph of N , and let G′ = (V ′, E′) be the un-
derlying graph of N ′. Recall that we used the symbols v1 ∈ V ′

and v2 ∈ V ′ to refer to the two virtual copies of a node v ∈ V .
Algorithm HSEP first simulates the execution of BMM on

N ′ in order to find a maximal matching M ′ for G′. Given a
maximal matching M ′, we construct a maximal edge packing
f ′ : E′→ [0, 1] for G′: we set f ′(e′) = 1 if e′ ∈ M ′ and f ′(e′) =
0 otherwise. Finally, we use the maximal edge packing f ′ to
construct an edge packing f : E→ [0,1] for G as follows:

f ({u, v}) =
f ′({u1, v2}) + f ′({u2, v1})

2
.

Algorithm HSEP outputs f and stops. See Figure 4.5 for an
illustration.
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G’:

M’:

f:

v1

v2

v

Figure 4.5: Algorithm HSEP. Note that f is a half-saturating
edge packing for G, but it is not a maximal edge packing.

Let us now prove that the output f is a half-saturating edge
packing for G. It is straightforward to verify that

2 f [u] =
∑

v: {u,v}∈E

f ′({u1, v2}) +
∑

v: {u,v}∈E

f ′({u2, v1})

= f ′[u1] + f ′[u2].

Now we can make the following observations; recall that f ′ is
a maximal edge packing for G′.

(a) For each node v ∈ V , we have f ′[v1] + f ′[v2] ≤ 1+ 1
which implies f [v]≤ 1.

(b) By construction, we have f (e) ∈ {0, 1/2, 1}.
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(c) Assume that f [v] = 0, and let u be a neighbour of v in
G. Then f ′[v1] = f ′[v2] = 0, i.e., neither v1 nor v2 are
saturated. In graph G′, node u2 is a neighbour of v1 and
u1 is a neighbour of v2. As f ′ is maximal, both u2 and u1
have to be saturated. That is, f ′[u2] = f ′[u1] = 1, which
implies f [u] = 1.

(d) Assume that f [v] = 1/2. Then one of the virtual copies
of v is saturated; both cases are symmetric, so w.l.o.g. we
will assume that f ′[v1] = 1 and f ′[v2] = 0. It follows
that there is a neighbour u of v in G such that

f ′({u1, v2}) = 0,

f ′({u2, v1}) = 1.

By definition, we have f ′[u2] = 1. By the maximality of
f ′, node u1 has to be saturated, as v2 is not saturated. In
summary, f ′[u2] = f ′[u1] = 1, which implies f [u] = 1.

We conclude that f is a half-saturating edge packing for G.
Hence algorithm HSEP works correctly. By Lemma 2.2 the
running time of the algorithm is at most 2∆+ 1 rounds in a
graph of maximum degree at most ∆.

4.2.6 Finding Maximal Edge Packings

Now we are ready to present algorithm MEP∆ that finds a
maximal edge packing h for any graph G = (V, E) of maximum
degree at most ∆. The algorithm has a recursive structure, and
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its running time is

T (∆) =
∆
∑

i=1

2(i+ 1) = ∆(∆+ 3)

communication rounds.
Let us first assume that ∆≤ 1. The case of ∆= 0 is trivial,

as there are no edges in the graph. For the case of ∆ = 1,
algorithm MEP1 returns the maximal edge packing

h: e 7→ 1.

Clearly this can be done in T (1) rounds.
Now assume that ∆> 1, and assume that we have already

defined MEP∆−1. Algorithm MEP∆ proceeds as follows.

(a) We use 2∆ + 1 rounds to find a half-saturating edge
packing f with algorithm HSEP. Now each node v ∈ V
knows f (e) for each edge e incident to v; in particular, v
knows the value f [v].

(b) We use 1 round to exchange the values f [v]. Now each
node v knows the value f [u] for each neighbour u. In
particular, node v knows which of its incident edges are
saturated — put otherwise, v knows which of its incident
edges are in the subgraph G f = (Vf , E f ).

(c) Next we have the recursive step. By Lemma 4.5, the
maximum degree of G f is at most ∆ − 1. Hence we
can simulate the execution of MEP∆−1 in the subgraph
G f = (Vf , E f ). After T (∆−1) rounds, algorithm MEP∆−1
outputs a maximal edge packing g for G f .
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(d) Now f is a half-saturating edge packing for G, and g
is a maximal edge packing for the subgraph G f . Each
node knows the values of f and g for each incident edge.
We use Lemma 4.6 to construct a maximal edge packing
h= f + g/2 for G; this only requires local computation.

In summary, the algorithm takes 2∆+1+1+ T (∆−1) = T (∆)
rounds; the correctness of the algorithm follows from Lemmas
4.5 and 4.6.

Now it is easy to design algorithm VC2∆ that finds a 2-
approximation of a minimum vertex cover in any graph of
maximum degree at most ∆: we first run MEP∆, and then
each node outputs 1 if it is saturated. The correctness of the
algorithm follows from Lemma 4.3.

4.3 Exercises

Exercise 4.1 (dominating sets). Let ∆ ∈ {2,3, . . . }, let ε > 0,
and let F consist of all graphs of maximum degree at most ∆.
Show that it is possible to find a (∆+ 1)-approximation of a
minimum dominating set in constant time in family F . Show
that it is not possible to find a (∆+ 1− ε)-approximation.

Hint: For the lower bound, use the result of Exercise 3.6.

Exercise 4.2 (implementation). In Exercise 2.6, we implemen-
ted a simulator and some simple distributed algorithms, in-
cluding algorithm VC3. Now implement algorithm VC2 from
Section 4.2, and compare its performance with VC3. Try out
both algorithms with the instance from Exercise 2.5.
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Exercise 4.3 (general case). Design a distributed algorithm
that finds a 2-approximation of a minimum vertex cover in any
graph. In particular, you cannot assume that there is a known
upper bound ∆ on the maximum degree of the graph.

Hint: The edge packing algorithm of Section 4.2.6 has the
following high-level structure: run algorithm HSEP, remove
saturated edges, and repeat. A node can stop as soon as all in-
cident edges become saturated. In essence, we have a situation
that we already studied in Exercise 2.7: our algorithm consist
of several phases, and the output of phase i is needed as the
input of phase i+ 1.

Exercise 4.4 (centralised algorithms). In this chapter, we have
seen an efficient distributed algorithm that finds a 2-approxim-
ation of a minimum-size vertex cover. What is known about
efficient centralised approximation algorithms for the vertex
cover problem?

∗ ∗ ∗

In the following exercises, we will study distributed approxima-
tion algorithms for the edge dominating set problem. We will
first show that the problem is easy to approximate within factor
4 in general graphs. Then we will have a look at some special
cases, and derive tight upper and lower bounds for the approx-
imation ratio. We use the abbreviation MEDS for a minimum
edge dominating set.

Exercise 4.5 (general case). Design a distributed algorithm
that finds a 4-approximation of MEDS.
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Hint: Use the idea of Section 2.4.2. Show that the edge set
M ⊆ E defined in (2.1) is a 4-approximation of MEDS. To this
end, consider an optimal solution D∗ and show that each edge
of D∗ is adjacent to at most 4 edges of M .

Exercise 4.6 (2-regular). Show that it is possible to find a 3-
approximation of MEDS in 2-regular graphs, in constant time.
Show that it is not possible to find a 2.999-approximation of
MEDS in 2-regular graphs.

Exercise 4.7 (4-regular, upper bound). Show that it is possible
to find a 3.5-approximation of MEDS in 4-regular graphs, in
constant time.

Hint: Consider an algorithm that selects all edges that have
port number 1 in at least one end. Derive an upper bound on
the size of the solution and a lower bound on the size of an
optimal solution, as a function of |V |.

Exercise 4.8 (4-regular, lower bound). Show that it is not
possible to find a 3.499-approximation of MEDS in 4-regular
graphs.

Hint: Use the construction of Exercise 3.3.

Exercise 4.9 (3-regular, lower bound). Show that it is not
possible to find a 2.499-approximation of MEDS in 3-regular
graphs.

Hint: Use the construction of Exercise 3.1.

Exercise 4.10 (3-regular, upper bound). Show that it is pos-
sible to find a 2.5-approximation of MEDS in 3-regular graphs,
in constant time.
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Hint: Let G = (V, E) be a 3-regular graph. We say that a set
D ⊆ E is good if it satisfies the following properties:

(a) D is an edge cover for G,

(b) the subgraph induced by D does not contain a path of
length 3.

Put otherwise, D induces a spanning subgraph that consists of
node-disjoint stars. Prove that

(a) any good set D is a 2.5-approximation of MEDS,

(b) there is a distributed algorithm that finds a good set D.

The distributed algorithm has to exploit the port numbers of
the edges. One possible approach is this: First, use the port
numbers to find nine matchings, M1, M2, . . . , M9, such that each
node is incident to an edge in at least one of the sets Mi; do not
worry if some edges are present in more than one matching.
Then construct an edge cover D by greedily adding edges from
the sets Mi; in step i = 1,2, . . . , 9 you can consider all edges
of Mi in parallel. Finally, eliminate paths of length three by
removing redundant edges in order to make D a good set;
again, in step i = 1, 2, . . . , 9 you can consider all edges of Mi in
parallel.
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Chapter 5

Unique Identifiers

5.1 Introduction

So far we have studied deterministic distributed algorithms
in port-numbered networks. Now we will introduce another
model of distributed computing: deterministic distributed al-
gorithms in networks with unique identifiers.

In the model of unique identifiers, we assume that we are
given a node labelling id: V → N such that each node v has
a unique label id(v); see Figure 5.1 for an example. We will
assume that the labels are reasonably small — in an n-node
network, the labels are O(log n)-bit integers.

As such, the model does not seem to be a major deviation
from what we have studied so far. We have already encountered
various extensions of the port-numbering model — for example,
we have studied distributed algorithms that assume that we are
given a colouring of the nodes or an orientation of the edges.

However, once we have unique identifiers, we can no longer
apply techniques based on covering graphs (see Section 3.2)
to prove impossibility results. It turns out that any computable
graph problem on connected graphs can be solved if we are
given unique identifiers. Hence we are no longer interested in
what can be solved; the key question is what can be solved fast.
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Figure 5.1: A network with unique identifiers.
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5.2 Networks with Unique Identifiers

There are plenty of examples of real-world networks with glob-
ally unique identifiers: public IPv4 and IPv6 addresses are
globally unique identifiers of Internet hosts, devices connected
to an Ethernet network have globally unique MAC addresses,
mobile phones have their IMEI numbers, etc.

The common theme is that the identifiers are (supposed
to be) globally unique, and the numbers can be interpreted as
natural numbers. Moreover, the numbers are relatively small
but not as small as possible: in a network with millions of
devices we may have allocated a space of billions of possible
identifiers. In particular, there is no guarantee that a device
with identifier “1” exists in the network at any given time.

We will now give the formal definition that aims at captur-
ing these properties of real-world networks.

5.2.1 Definitions

Throughout this chapter, fix a constant c > 1. Unique identifiers
for a port-numbered network N = (V, P, p) is an injection

id: V → {1, 2, . . . , |V |c}.

That is, each node v ∈ V is labelled with a unique integer, and
the labels are assumed to be relatively small (in comparison
with the number of nodes in network N).

Formally, unique identifiers can be interpreted as a graph
problem Π′, where each solution id ∈ Π′(N) is an assignment
of unique identifiers for network N . If a distributed algorithm
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A solves a problem Π on a family F given Π′, we say that A
solves Π on F given unique identifiers, or equivalently, A solves
Π on F in the model of unique identifiers.

5.2.2 Nodes and Their Names

For the sake of convenience, when we discuss networks with
unique identifiers, we will assume that

v = id(v) for all v ∈ V.

Put otherwise, we assume that the set V is a subset of natural
numbers, and max V ≤ |V |c .

5.2.3 Gathering Everything

In the model of unique identifiers, if the underlying graph
G = (V, E) is connected, all nodes can learn everything about G
in time O(diam(G)). In this section, we will present algorithm
Gather that accomplishes this.

In algorithm Gather, each node v ∈ V will construct sets
V (v, r) and E(v, r), where r = 1, 2, . . . . For all v ∈ V and r ≥ 1,
these sets will satisfy

V (v, r) = ballG(v, r), (5.1)

E(v, r) =
�

{s, t} : s ∈ ballG(v, r), t ∈ ballG(v, r−1)
	

. (5.2)

Now define the graph

G(v, r) = (V (v, r), E(v, r)). (5.3)
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Figure 5.2: Subgraph G(v, r) defined in (5.3), for v = 14 and
r = 2.
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See Figure 5.2 for an illustration.
The following properties are straightforward corollaries of

(5.1)–(5.3).

(a) Graph G(v, r) is a subgraph of G(v, r + 1), which is a
subgraph of G.

(b) If G is a connected graph, and r ≥ diam(G) + 1, we have
G(v, r) = G.

(c) More generally, if Gv is the connected component of G
that contains v, and r ≥ diam(Gv)+1, we have G(v, r) =
Gv .

(d) For a sufficiently large r, we have G(v, r) = G(v, r + 1).

(e) If G(v, r) = G(v, r + 1), we will also have G(v, r + 1) =
G(v, r + 2).

(f) Graph G(v, r) for r > 1 can be constructed recursively as
follows:

V (v, r) =
⋃

u∈V (v,1)

V (u, r − 1), (5.4)

E(v, r) =
⋃

u∈V (v,1)

E(u, r − 1). (5.5)

Algorithm Gather maintains the following invariant: after
round r ≥ 1, each node v ∈ V has constructed graph G(v, r).
The execution of Gather proceeds as follows:
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(a) In round 1, each node u ∈ V sends its identity u to each
of its ports. Hence after round 1, each node v ∈ V knows
its own identity and the identities of its neighbours. Put
otherwise, v knows precisely G(v, 1).

(b) In round r > 1, each node u ∈ V sends G(u, r−1) to each
of its ports. Hence after round r, each node v ∈ V knows
G(u, r − 1) for all u ∈ V (v, 1). Now v can reconstruct
G(v, r) using (5.4) and (5.5).

(c) A node v ∈ V can stop once it detects that the graph
G(v, r) no longer changes.

It is straightforward to extend Gather so that we can dis-
cover not only the underlying graph G = (V, E) but also the
original port-numbered network N = (V, P, p).

5.2.4 Solving Everything

Let F be a family of connected graphs, and let Π be a dis-
tributed graph problem. Assume that there is a deterministic
centralised (non-distributed) algorithm A′ that solves Π on F .
For example, A′ can be a simple brute-force algorithm — we
are not interested in the running time of algorithm A′.

Now there is a simple distributed algorithm A that solves
Π on F in the model of unique identifiers. Let N = (V, P, p) be
a port-numbered network with the underlying graph G ∈ F .
Algorithm A proceeds as follows.

(a) All nodes discover N using algorithm Gather from Sec-
tion 5.2.3.
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(b) All nodes use the centralised algorithm A′ to find a solu-
tion f ∈ Π(N). From the perspective of algorithm A, this
is merely a state transition; it is a local step that requires
no communication at all, and hence takes 0 communica-
tion rounds.

(c) Finally, each node v ∈ V switches to state f (v) and stops.

Clearly, the running time of the algorithm is O(diam(G)).
It is essential that all nodes have the same canonical repres-

entation of network N (for example, V , P, and p are represen-
ted as lists that are ordered lexicographically by node identifiers
and port numbers), and that all nodes use the same determin-
istic algorithm A′ to solve Π. This way we are guaranteed that
all nodes have locally computed the same solution f , and hence
the outputs f (v) are globally consistent.

5.2.5 Focus on Complexity

The above discussion highlights the striking difference between
the port-numbering model and the model of unique identifiers.
While we saw in Section 3.2 plenty of examples of seemingly
simple graph problems that cannot be solved at all in the port-
numbering model, we have learned that with the help of unique
identifiers all computable graph problems become solvable.

Hence our focus shifts from computability to computational
complexity. While it is trivial to determine if a problem can
be solved in the model of unique identifiers, we would like
to know which problems can be solved quickly. In particular,
we would like to learn which problems can be solved in time
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that is much smaller than diam(G). One such problem is graph
colouring.

5.3 Graph Colouring

Let G = (V, E) be a graph with unique identifiers. We will use
the shorthand notation χ = |V |c , that is, the unique identifiers
are integers from {1, 2, . . . ,χ}.

The unique identifiers form a proper vertex colouring with
χ colours: certainly adjacent nodes have distinct identifiers if
the identifiers are globally unique. Hence, in a sense, we have
already solved the graph colouring problem — however, the
number of colours χ is far too large for our purposes.

Our focus is therefore on colour reduction: given a graph
colouring f : V → {1, 2, . . . , x}with a large number x of colours,
the goal is to find a new graph colouring g : V → {1,2, . . . , y}
with a smaller number y < x of colours.

5.3.1 Greedy Colour Reduction

Let x ∈ N. There is a simple algorithm Greedy that reduces the
number of colours from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph. The running
time of the algorithm is one communication round.

The algorithm proceeds as follows; here f is the x-colouring
that we are given as input and g is the y-colouring that we
produce as output. See Figure 5.3 for an illustration.
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(a) In the first communication round, each node v ∈ V sends
its colour f (v) to each of its neighbours.

(b) Now each node v ∈ V knows the set

C(v) = {i : there is a neighbour u of v with f (u) = i}.

We say that a node is active if f (v)>max C(v); otherwise
it is passive. That is, the colours of the active nodes are
local maxima. Let

C̄(v) = {1,2, . . . } \ C(v)

be the set of free colours in the neighbourhood of v.

(c) A node v ∈ V outputs

g(v) =

(

f (v) if v is passive,

min C̄(v) if v is active.

Informally, a node whose colour is a local maximum re-colours
itself with the first available free colour.

Lemma 5.1. Algorithm Greedy reduces the number of colours
from x to

y =max{x − 1,∆+ 1},

where ∆ is the maximum degree of the graph.

Proof. Let us first prove that g(v) ∈ {1,2, . . . , y} for all v ∈ V .
As f is a proper colouring, we cannot have f (v) = max C(v).
Hence there are only two possibilities.
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Figure 5.3: Greedy colour reduction. The active nodes have
been highlighted. In this example, each active node can choose
1 as its new colour. Note that in the original colouring f , the
largest colour was 99, while in the new colouring, the largest
colour is strictly smaller than 99 — we successfully reduced the
number of colours in the graph.
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(a) f (v)<max C(v). Now v is passive, and it is adjacent to
a node u such that f (v)< f (u). We have

g(v) = f (v)≤ f (u)− 1≤ x − 1≤ y.

(b) f (v)>max C(v). Now v is active, and we have

g(v) =min C̄(v).

There is at least one value i ∈ {1,2, . . . , |C(v)|+ 1} with
i /∈ C(v); hence

min C̄(v)≤ |C(v)|+ 1≤ degG(v) + 1≤∆+ 1≤ y.

Next we will show that g is a proper vertex colouring of G.
Let {u, v} ∈ E. If both u and v are passive, we have

g(u) = f (u) 6= f (v) = g(v).

Otherwise, w.l.o.g., assume that u is active. Then we must have
f (u)> f (v). It follows that f (u) ∈ C(v) and f (v)≤max C(v);
therefore v is passive. Now g(u) /∈ C(u) while g(v) = f (v) ∈
C(u); we have g(u) 6= g(v).

A key observation in understanding the algorithm is that
the set of active nodes forms an independent set. Therefore
all active nodes can pick their new colours simultaneously in
parallel, without any risk of choosing colours that might conflict
with each other.

Note that algorithm Greedy does not need to know the
number of colours x or the maximum degree ∆; we only used

108



them in the analysis. We can simply take any graph, blindly
apply algorithm Greedy, and we are guaranteed to reduce the
number of colours by one — provided that the number of
colours was larger than ∆+ 1.

In particular, we can apply algorithm Greedy repeatedly un-
til we get stuck, at which point we have a (∆+1)-colouring of G
— we will formalise and generalise this idea in Exercise 5.3.

In principle, we could use this strategy in the model of
unique identifiers to find a (∆ + 1)-colouring of any graph.
However, such an algorithm would be extremely slow. In the
worst case, we may have a long path of nodes, with increasing
identifiers (colours) along the path, and in such a graph the
running time of the greedy strategy would be linear in |V |: in
each iteration, only one of the nodes is a local maximum.

In the next sections, we will develop an algorithm that is
much faster — at least in low-degree graphs.

5.3.2 Directed Pseudoforests

We will first study fast colour reduction algorithms in a seem-
ingly simple special case: we are given a pseudoforest with a
particular orientation. Once we have solved the special case,
we turn our attention to the more general case of colouring
bounded-degree graphs.

A directed pseudoforest is a directed graph G = (V, E) such
that each node v ∈ V has outdegreeG(v)≤ 1; see Figure 5.4 for
an example. We make the following observations:
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(a) Let H be an undirected graph, and let G be an orienta-
tion of H. If G is a directed pseudoforest, then H is a
pseudoforest.

(b) Let H be a pseudoforest. There exists an orientation G of
H such that G is a directed pseudoforest.

(c) An orientation of a pseudoforest is not necessarily a dir-
ected pseudoforest.

If (u, v) ∈ E, we say that v is a successor of u and u is a prede-
cessor of v. By definition, in a directed pseudoforest each node
has at most one successor.

5.3.3 Greedy Colouring in Pseudoforests

We will soon see that we can do colour reduction in directed
pseudoforests quickly. However, let us first show that we can
find a colouring with a very small number of colours with a
modified version of algorithm Greedy.

Let G = (V, E) be a directed pseudoforest, and let

f : V → {1, 2, . . . , x}

be a proper vertex colouring of G, for some x ≥ 4. We design
a distributed algorithm DPGreedy that reduces the number of
colours from x to x − 1 in two communication rounds.

First, for each node v ∈ V , define s(v) as follows:

(a) If outdegreeG(v) = 1, let u be the successor of v, and let
s(v) = f (u).
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Figure 5.4: A directed pseudoforest with a colouring f .
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(b) Otherwise, if f (v)> 1, let s(v) = 1.

(c) Otherwise s(v) = 2.

By construction, we have s(v) 6= f (v). Note that we can com-
pute the values s(v) for all nodes v ∈ V with a simple distrib-
uted algorithm in one communication round.

We will now prove that the values s(v) form a proper x-
colouring of G. Moreover, we show that each node is adjacent
to only two different colours in colouring s.

Lemma 5.2. Function s is an x-colouring of G.

Proof. By construction, we have s(v) ∈ {1,2, . . . , x}.
Now let (u, v) ∈ E. We need to show that s(u) 6= s(v). To

see this, observe that v is a successor of u. Hence

s(u) = f (v) 6= s(v).

Lemma 5.3. Define

C(v) = {i : there is a neighbour u of v with s(u) = i}.

We have |C(v)| ≤ 2 for each node v ∈ V .

Proof. For each predecessor u of v, we have s(u) = f (v). That
is, all predecessors of v have the same colour. Hence C(v)
consists of at most two different values: the common colour of
the predecessors of v (if any), and the colour of the successor
of v (if any).
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Now we apply algorithm Greedy to colouring s; see Fig-
ure 5.6. Observe that each active node v will choose a colour
g(v) = min C̄(v) ∈ {1,2,3}, while each passive node v will
output its old colour g(v) = s(v). In particular, if the number
of colours in f was x ≥ 4, then the number of colours in g is at
most x − 1.

Let us summarise the above observations. We have designed
algorithm DPGreedy that reduces the number of colours from
x ≥ 4 to x − 1 in directed pseudoforests in 2 communication
rounds:

(a) We are given an x-colouring f (Figure 5.4).

(b) In one communication round, given f we construct an-
other x-colouring s, which has the property that each
node is adjacent to at most two different colour classes
(Figure 5.5).

(c) In one communication round, given s we construct an
(x − 1)-colouring g using algorithm Greedy (Figure 5.6).

In particular, we can reduce the number of colours from any
number x ≥ 3 to 3 in 2(x − 3) rounds by iterating the above
steps.

Figure 5.7 demonstrates that the additional step of con-
structing colouring s is necessary.

5.3.4 Fast Colouring in Pseudoforests

So far we have only seen algorithms that reduce the number
of colours by one in each iteration. This is by far too slow if,
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Figure 5.7: (a) If we tried to apply algorithm Greedy directly
in any given colouring f , the active nodes would not be able
to pick new colours from the set {1,2,3}. (b) In colouring s,
algorithm Greedy will always find a new colour from the set
{1, 2,3}.
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for example, we are given a colouring that is formed by 128-bit
IPv6 addresses. In this section we will present an algorithm
that is much faster.

In particular, we present algorithm DPBit that reduces the
number of colours from 2x to 2x in one communication round,
in any directed pseudoforest. We will assume that x ≥ 1 is a
known constant.

Before presenting algorithm DPBit, we will give a practical
example of its performance. Assume that the initial colouring is
derived from 128-bit unique identifiers, that is, the number of
colours is 2128. If we iterate algorithm DPBit, we can reduce
the number of colours as follows:

2128→ 2 · 128= 28,

28→ 2 · 8= 24,

24→ 2 · 4= 23,

23→ 2 · 3= 6.

That is, given a 2128-colouring, in only 4 communication rounds,
we can find a 6-colouring. We cannot reduce the number of
colours below 6 with DPBit; however, once we have reached
such a low number of colours, we can resort to DPGreedy,
which is able to reduce the number of colours from 6 to 3 in 6
communication rounds. In summary, we can reduce the number
of colours from 2128 to 3 in only 4+ 6 = 10 rounds, in any
directed pseudoforest.

Let us now present algorithm DPBit. We assume that we
are given a proper vertex colouring

f : V → {1, 2, . . . , 2x}
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of a directed pseudoforest G = (V, E). We will use the values
s(v) defined in Section 5.3.3 — recall that f (v) 6= s(v) for each
node v, and if u is the successor of v, we have s(v) = f (u).

The key idea is that each node compares the binary en-
codings of the values s(v) and f (v). More precisely, if j ∈
{1,2, . . . , 2x} is a colour, let us use 〈 j〉 to denote the binary
encoding of j− 1; this is always a binary string of length x . For
example, if x = 3, we have

〈1〉= 000, 〈2〉= 001, . . . , 〈8〉= 111.

If i ∈ {0, 1, . . . , x − 1}, we use the notation 〈 j〉i to refer to bit i
of the binary string 〈 j〉, counting from the lowest-order bit. For
example, 〈2〉0 = 1 and 〈2〉1 = 0.

In algorithm DPBit, each node first finds out the values
s(v) and f (v)— this takes only one communication round —
and then compares the binary strings 〈s(v)〉 and 〈 f (v)〉. As
s(v) 6= f (v), there is at least one bit in these strings that differs.
Let

i(v) =min{i : 〈 f (v)〉i 6= 〈s(v)〉i}

be the index of the first bit that differs, and let

b(v) = 〈 f (v)〉i(v)

be the value of the bit that differs. Note that 0 ≤ i(v) ≤ x − 1
and 0≤ b(v)≤ 1.

The key observation is that the pairs
�

i(v), b(v)
�

form a
proper colouring of G.

Lemma 5.4. Let (u, v) ∈ E. We have i(u) 6= i(v) or b(u) 6= b(v).
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Proof. If i(u) 6= i(v), the claim is trivial. Otherwise i(u) = i(v).
As v is the successor of u, we have s(u) = f (v). Hence

b(v) = 〈 f (v)〉i(v) = 〈s(u)〉i(u),

and by the definition of i(u),

b(u) = 〈 f (u)〉i(u) 6= 〈s(u)〉i(u).

In summary, b(u) 6= b(v).

We can now encode the pair
�

i(v), b(v)
�

as a colour

g(v) = 2i(v) + b(v) + 1.

Algorithm DPBit outputs the value g(v).
Note that if we have g(u) = g(v) for two nodes u and v,

this implies b(u) = b(v) and i(u) = i(v). Hence Lemma 5.4
implies that g is a proper vertex colouring of G. Moreover, we
have 1≤ g(v)≤ 2x , and hence g is a 2x-colouring of G.

In summary, we have designed algorithm DPBit that re-
duces the number of colours from 2x to 2x in one communic-
ation round — given a 2x -colouring f , the algorithm outputs
a 2x-colouring g. Communication is only needed in order to
discover the value s(v) for each node v; the derivation of the
values i(v), b(v), and g(v) only needs local computation.

5.3.5 Fast Colouring in General Graphs

In this section, we will present algorithm Colour that reduces
the number of colours from any number x to∆+1 in any graph
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of maximum degree at most ∆ much faster than an iterated
application of algorithm Greedy. Throughout this section, we
will assume that the values of x and ∆ are known to all nodes.

Let A be an algorithm that reduces the number of colours in
a directed pseudoforest from x to 3 in time T (x). For example,
we can let A be the combination of the iterated DPBit (reduces
the number of colours from any x to 6) followed by the iterated
DPGreedy (reduces the number of colours from 6 to 3). As we
will see in Exercise 5.4, the running time of A is then T(x) =
O(log∗ x).

Algorithm Colour uses A as a subroutine, and the running
time of Colour will be O(∆2) + T(x). For example, with the
above choice of A, the running time of Colour is O(∆2+ log∗ x).

Let G = (V, E) be a graph of maximum degree at most ∆,
and let f : V → {1,2, . . . , x} be an x-colouring of G. Let N
be a port-numbered network with G as the underlying graph.
Algorithm Colour constructs a (∆ + 1)-colouring g of G as
follows.

Preliminaries. For each node v and each port number i, node
v sends the pair ( f (v), i) to port i. This way a node u learns
the following information about each node v that is adjacent
to u: what is the old colour of v, which port of u is connected
to v, and which port of v is connected to u. This step requires
one communication round.

Orientation. We construct an orientation G′ = (V, E′) of G
as follows: we have (u, v) ∈ E′ if and only if {u, v} ∈ E and
f (u) < f (v). That is, we use the old colours of the nodes to

120



74

54

49

6411

28

8558
71

27

16

34

82

57

23

91

72

99

3

81 68
87

63

19

8959

8

45

77

14

52
3162

50

795

98

97
30

90
95

94

Figure 5.8: Orientation G′ derived from the old colours — in
this example, the old colours were unique identifiers.

orient the edges from a smaller colour to a larger colour; see
Figure 5.8.

In the distributed algorithm, each node only needs to know
the orientation of its incident edges. This step requires zero
communication rounds.

Partition in Pseudoforests. For each i = 1, 2, . . . ,∆, we con-
struct a subgraph Gi = (V, Ei) of G′ as follows: we have
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Figure 5.9: Subgraph Gi of G′. Each node has outdegree at most
one.

(u, v) ∈ Ei if and only if (u, v) ∈ E′ and v is connected to
port number i of u in N . See Figure 5.9.

Observe that the sets E1, E2, . . . , E∆ form a partition of E′:
for each directed edge e ∈ E′ there is precisely one i such that
e ∈ Ei . Also note that for each node u ∈ V and for each index i
there is at most one neighbour v such that (u, v) ∈ Ei . It follows
that the outdegree of any node v in Gi = (V, Ei) is at most one,
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and therefore Gi is a directed pseudoforest. Function f is an
x-colouring of Gi for all i.

In the distributed algorithm, each node only needs to know
which of its incident edges are in which subset Ei. This step
requires zero communication rounds.

Parallel Colouring of Pseudoforests. For each i, we use al-
gorithm A to construct a 3-colouring gi of Gi .

In the distributed algorithm, each node v ∈ V needs to
know the value gi(v) for each i. This step takes only T(x)
rounds: we can simulate the execution of A in parallel for all
subgraphs Gi. In the simulation, each node has ∆ different
roles, one for each subgraph Gi .

Merging Colourings. For each j = 0,1, . . . ,∆, define

E′j =
j
⋃

i=1

Ei

and G′j = (V, E′j). Note that G′0 is a graph without any edges,
each G′j is a subgraph of G′, and G′∆ = G′.

We will construct a sequence of colourings g ′0, g ′1, . . . , g ′∆
such that g ′j is a (∆+ 1)-colouring of the subgraph G′j . Then it
follows that we can output g = g ′∆, which is a (∆+1)-colouring
of G′ and hence also a (∆+1)-colouring of the original graph G.

Our construction is recursive. The base case of j = 0 is
trivial: we can choose g ′0(v) = 1 for all v ∈ V , and this is
certainly a proper (∆+ 1)-colouring of G′0.
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Now assume that we have already constructed a (∆+ 1)-
colouring g ′j−1 of G′j−1. Recall that g j is a 3-colouring of G j;
see Figure 5.10. Define a function h j as follows:

h j(v) = (∆+ 1)(g j(v)− 1) + g ′j−1(v).

Observe that h j is a proper 3(∆+1)-colouring of G′j . To see this,
consider an edge (u, v) ∈ E′j. If (u, v) ∈ E j, we have g j(u) 6=
g j(v), which implies h j(u) 6= h j(v). Otherwise (u, v) ∈ E′j−1,
and we have g ′j−1(u) 6= g ′j−1(v), which implies h j(u) 6= h j(v).

Now we use 2(∆ + 1) iterations of Greedy to reduce the
number of colours from 3(∆+ 1) to ∆+ 1. This way we can
construct a proper (∆+ 1)-colouring g ′j of G′j in time O(∆).

After ∆ phases, we have eventually constructed colouring
g = g ′∆; the total running time is O(∆2), as each phase takes
O(∆) communication rounds.

5.4 Exercises

Exercise 5.1 (counting). The counting problem Π is defined
as follows: if N = (V, P, p) is a port-numbered network, then
g ∈ Π(N) if and only if g(v) = |V | for all v ∈ V . That is, in the
counting problem each node has to output the value |V |, i.e., it
has to indicate how many nodes there are in the network.

Let F consist of all cycle graphs, and let F ′ consist of all
graphs of maximum degree 2.

(a) Prove that the counting problem cannot be solved on F
in the port-numbering model.
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(b) Design an algorithm that solves the counting problem
on F in the model of unique identifiers in time O(|V |).
Present the algorithm in a formally precise manner, using
the definitions of Sections 2.2 and 2.3.

(c) Prove that the counting problem cannot be solved in time
o(|V |) on F in the model of unique identifiers.

(d) Prove that the counting problem cannot be solved on F ′

in the model of unique identifiers.

Exercise 5.2 (leader election). The leader election problem Π is
defined as follows: if N = (V, P, p) is a port-numbered network,
then g ∈ Π(N) if and only if there is precisely one node u ∈ V
such that

g(v) =

(

1 if v = u,

0 otherwise.

Let F consist of all connected graphs.

(a) Prove that the leader election problem cannot be solved
on F in the port-numbering model.

(b) Design an algorithm that solves the leader election prob-
lem on F in the model of unique identifiers.

Exercise 5.3 (iterated greedy). Design a colour reduction al-
gorithm A with the following properties: given any graph
G = (V, E) and any proper vertex colouring f , algorithm A
outputs a proper vertex colouring g such that for each node
v ∈ V we have g(v)≤ degG(v) + 1.

Let ∆ be the maximum degree of G, let n = |V | be the
number of nodes in G, and let x be the number of colours in
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colouring f . The running time of A should be at most

min{n, x}+O(1).

Note that the algorithm does not know n, x , or ∆. Also note
that we may have either x ≤ n or x ≥ n.

Hint: Adapt the basic idea of algorithm Greedy — find local
maxima and choose appropriate colours for them — but pay
attention to the stopping conditions and low-degree nodes. One
possible strategy is this: a node becomes active if its current
colour is a local maximum among those neighbours that have
not yet stopped; once a node becomes active, it selects an
appropriate colour and stops.

Exercise 5.4 (log-star). The iterated logarithm of x , in notation
log∗ x , is defined recursively as follows:

log∗(x) =

(

0 if x ≤ 1,

1+ log∗(log2 x) otherwise.

This is a function that grows extremely slowly; for example

log∗ 2= 1, log∗ 16= 3, log∗ 1010 = 5,

log∗ 3= 2, log∗ 17= 4, log∗ 10100 = 5,

log∗ 4= 2, log∗ 65536= 4, log∗ 101000 = 5,

log∗ 5= 3, log∗ 65537= 5, log∗ 1010000 = 5, . . .

Prove that algorithm DPBit can be used to reduce the num-
ber of colours from x to 6 in log∗ x communication rounds in
any directed pseudoforest, for any x ≥ 6. You can assume that
the value of x is known in advance.

Hint: Consider the following cases separately:
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(i) log∗ x ≤ 2,
(ii) log∗ x = 3,

(iii) log∗ x ≥ 4.

In case (iii), prove that after log∗(x)− 3 iterations of DPBit,
the number of colours is at most 64.

Exercise 5.5 (numeral systems). Algorithm DPBit is based on
the idea of identifying a digit that differs in the binary encod-
ings of the colours. Generalise the idea: design an analogous
algorithm that finds a digit that differs in the base-k encodings
of the colours, for an arbitrary k, and analyse the running time
of the algorithm (cf. Exercise 5.4). Is the special case of k = 2
the best possible choice?

Exercise 5.6 (from bits to sets). Algorithm DPBit can reduce
the number of colours from 2x to 2x in one round in any
directed pseudoforest, for any positive integer x . For example,
we can reduce the number of colours as follows:

2128→ 256→ 16→ 8→ 6.

One of the problems is that an iterated application of the al-
gorithm slows down and eventually “gets stuck” at x = 3, i.e.,
at six colours.

In this exercise we will design a distributed algorithm
DPSet that reduces the number of colours from

h(x) =
�

2x

x

�
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to 2x in one round, for any positive integer x . For example, we
can reduce the number of colours as follows:

184756→ 20→ 6→ 4.

Here

184756= h(10),

2 · 10= 20= h(3),

2 · 3= 6= h(2).

In particular, algorithm DPSet does not get stuck at six colours;
we can use the same algorithm to reduce the number of colours
to four. Moreover, at least in this case the algorithm seems
to be much more efficient — algorithm DPSet can reduce the
number of colours from 184756 to 6 in two rounds, while
algorithm DPBit requires at three rounds to achieve the same
reduction.

The basic structure of algorithm DPSet follows algorithm
DPBit — in particular, we use one communication round to
compute the values s(v) for all nodes v ∈ V . However, the
technique for choosing the new colour is different: as the name
suggests, we will not interpret colours as bit strings but as sets.

To this end, let H(x) consist of all subsets

X ⊆ {1, 2, . . . , 2x}

with |X |= x . There are precisely h(x) such subsets, and hence
we can find a bijection

L : {1,2, . . . , h(x)} → H(x).
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We have f (v) 6= s(v). Hence L( f (v)) 6= L(s(v)). As both
L( f (v)) and L(s(v)) are subsets of size x , it follows that

L( f (v)) \ L(s(v)) 6=∅.

We choose the new colour g(v) of a node v ∈ V as follows:

g(v) =min
�

L( f (v)) \ L(s(v))
�

.

Prove that DPSet works correctly. In particular, show that
g : V → {1,2, . . . , 2x} is a proper graph colouring of the direc-
ted pseudoforest G.

Analyse the running time of DPSet and compare it with
DPBit. Is DPSet always faster? Can you prove a general result
analogous to the claim of Exercise 5.4?

Exercise 5.7 (cycles). Let F consist of cycle graphs. Design a
fast distributed algorithm that finds a 1.1-approximation of a
minimum vertex cover on F in the model of unique identifiers.

Hint: Solve small problem instances by brute force and
focus on the case of long cycles. In a long cycle, use a graph
colouring algorithm to find a 3-colouring, and then use the
3-colouring to construct a maximal independent set. Observe
that a maximal independent set partitions the cycle into short
fragments (with 2–3 nodes in each fragment).

Apply the same approach recursively: interpret each frag-
ment as a “supernode” and partition the cycle that is formed by
the supernodes into short fragments, etc. Eventually, you have
partitioned the original cycle into long fragments, with dozens
of nodes in each fragment.
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Find an optimal vertex cover within each fragment. Make
sure that the solution is feasible near the boundaries, and prove
that you are able to achieve the required approximation ratio.

Exercise 5.8 (applications). Let ∆ be a known constant, and
let F be the family of graphs of maximum degree at most
∆. Design fast distributed algorithms that solve the following
problems on F in the model of unique identifiers.

(a) Maximal independent set.

(b) Maximal matching.

(c) Edge colouring with O(∆) colours.

Hint: You can either use algorithm Colour as a subroutine,
or you can modify the basic idea of Colour slightly to solve
these problems.

Exercise 5.9 (distance-2 colouring). Let G = (V, E) be a graph.
A distance-2 colouring with k colours is a function f : V →
{1, 2, . . . , k} with the following property:

distG(u, v)≤ 2 implies f (u) 6= f (v) for all nodes u 6= v.

Let ∆ be a known constant, and let F be the family of
graphs of maximum degree at most ∆. Design a fast distributed
algorithm that finds a distance-2 colouring with O(∆2) colours
for any graph G ∈ F in the model of unique identifiers.

Hint: Given a graph G ∈ F , construct a virtual graph
G2 = (V, E′) as follows: {u, v} ∈ E′ if u 6= v and distG(u, v)≤ 2.
Prove that the maximum degree of G2 is O(∆2). Simulate a
fast graph colouring algorithm on G2.
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Exercise 5.10 (dominating set approximation). Let ∆ be a
known constant, and letF be the family of graphs of maximum
degree at most ∆. Design an algorithm that finds an O(log∆)-
approximation of a minimum dominating set onF in the model
of unique identifiers.

Hint: First, design (or look up) a greedy centralised al-
gorithm achieves an approximation ratio of O(log∆) on F .
The following idea will work: repeatedly pick a node that dom-
inates as many new nodes as possible — here a node v ∈ V is
said to dominate all nodes in ballG(v, 1). For more details, see
a textbook on approximation algorithms, e.g., Vazirani [28].

Second, show that you can simulate the centralised greedy
algorithm in a distributed setting. Use the algorithm of Ex-
ercise 5.9 to construct a distance-2 colouring. Prove that the
following strategy is a faithful simulation of the centralised
greedy algorithm:

– For each possible value i =∆+ 1,∆, . . . , 2, 1:

– For each colour j = 1,2, . . . , O(∆2):

– Pick all nodes v ∈ V that are of colour j and
that dominate i new nodes.

The key observation is that if u, v ∈ V are two distinct nodes
of the same colour, then the set of nodes dominated by u and
the set of nodes dominated by v are disjoint. Hence it does
not matter whether the greedy algorithm picks u before v or v
before u, provided that both of them are equally good from the
perspective of the number of new nodes that they dominate.
Indeed, we can equally well pick both u and v simultaneously
in parallel.
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Chapter 6

Ramsey Theory

6.1 Introduction

As a running example in this chapter, we will use the following
task: find a 3-colouring of a directed cycle in the model of
unique identifiers.

In a directed cycle, we assume that we are given a graph
G = (V, E) that is an orientation of a cycle graph. In particular,
we assume that each node v ∈ V has

outdegreeG(v) = indegreeG(v) = 1,

that is, there is precisely one incoming edge and one outgoing
edge. Without loss of generality, we will assume that the in-
coming edge is connected to port number 1 and the outgoing
edge is connected to port number 2 in each node — if this was
not the case, each node could renumber its ports locally. See
Figure 6.1 for an illustration.

Clearly, directed cycles are a special case of directed pseudo-
forests, and we already know how to find a 3-colouring of a
directed pseudoforest in the model of unique identifiers. In-
deed, there are several possible strategies.

• The greedy algorithm is simple but slow; in the case of
directed cycles, it requires Ω(n) rounds in the worst case.
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Figure 6.1: A directed cycle with unique identifiers.

• Algorithm DPBit is much faster — as we saw in Exer-
cise 5.4, algorithm DPBit finds a 6-colouring in O(log∗ n)
rounds, and we can then use the greedy algorithm to
reduce the number of colours from 6 to 3 in constant
time.

• Algorithm DPBit is in no way unique, and there are
many alternative strategies that we can use to 3-colour
a directed pseudoforest. Exercises 5.5 and 5.6 explore
some possible ideas.

Moreover, directed cycles are a simple special case of directed
pseudoforests, and whenever we have an algorithm that finds
a 3-colouring in any directed pseudoforest, we can construct
a slightly faster algorithm that finds a 3-colouring in direc-
ted cycles — for example, we can easily speed up algorithm
DPGreedy by a factor of two in directed cycles, as the construc-
tion of intermediate colouring s becomes unnecessary.
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However, no matter what combination of algorithm ideas
we use, it appears that the worst-case running time of the
algorithm is always Ω(log∗ n). That is, the running time slightly
increases as the number of nodes n increases.

In this chapter we will prove that this is indeed necessary.
We show that there is no O(1)-time algorithm that 3-colours
any directed cycle in the model of unique identifiers. Our
proof uses Ramsey’s theorem, which is a fundamental result in
combinatorics.

6.2 Ramsey’s Theorem

Let Y be a finite set. We say that X is a k-subset of Y if X ⊆ Y
and |X |= k. We use the notation

Y (k) = {X ⊆ Y : |X |= k}

for the collection of all k-subsets of Y .

6.2.1 Monochromatic Subsets

A c-labelling of Y (k) is an arbitrary function

f : Y (k)→ {1, 2, . . . , c}.

Fix some Y , k, c, and f , where f is a c-labelling of Y (k). We
say that

(a) X ⊆ Y is monochromatic in f if f (A) = f (B) for all
A, B ∈ X (k),
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f : Y (2)→ {1,2, 3}

{1, 2} 7→ 1 {2,4} 7→ 1
{1, 3} 7→ 1 {2,5} 7→ 2
{1, 4} 7→ 2 {3,4} 7→ 3
{1, 5} 7→ 1 {3,5} 7→ 3
{2, 3} 7→ 2 {4,5} 7→ 3

Figure 6.2: In this example, Y = {1, 2, 3, 4, 5}. Function f is a 3-
labelling of Y (2). Set {1, 2, 3, 5} is almost monochromatic but not
monochromatic in f . Set {3, 4, 5} is both almost monochromatic
and monochromatic in f .

(b) X ⊆ Y is almost monochromatic in f if f (A) = f (B) for
all A, B ∈ X (k) with min(A) =min(B).

See Figure 6.2 for examples. Monochromatic subsets are a
central concept in Ramsey theory, while almost monochromatic
subsets are a technical definition that we will use in the proof.

6.2.2 Ramsey Numbers

For all positive integers c, n, and k, we define the numbers
Rc(n; k) and R̄c(n; k) as follows.

(a) Rc(n; k) is the smallest natural number N such that the
following holds: for any set Y with at least N elements,
and for any c-labelling f of Y (k), there is an n-subset
of Y that is monochromatic in f . If no such N exists,
Rc(n; k) =∞.
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(b) R̄c(n; k) is the smallest natural number N such that the
following holds: for any set Y with at least N elements,
and for any c-labelling f of Y (k), there is an n-subset of
Y that is almost monochromatic in f . If no such N exists,
R̄c(n; k) =∞.

Numbers Rc(n; k) are called Ramsey numbers, and Ramsey’s
theorem shows that they are always finite.

Theorem 6.1 (Ramsey’s theorem). Numbers Rc(n; k) are finite
for all positive integers c, n, and k.

We will prove Theorem 6.1 in Section 6.2.4; let us first have
a look at an application.

6.2.3 An Application

In the case of k = 2, Ramsey’s theorem can be used to derive
various graph-theoretic results. As a simple application, we can
use Ramsey’s theorem to prove that sufficiently large graphs
necessarily contain large cliques or large independent sets.

Let G = (V, E) be a graph. Recall that an independent set
is a subset X ⊆ V such that {u, v} /∈ E for all {u, v} ∈ X (2). A
complementary concept is a clique: it is a subset X ⊆ V such
that {u, v} ∈ E for all {u, v} ∈ X (2).

Lemma 6.2. For any natural number n there is a natural number
N such that the following holds: if G = (V, E) is a graph with
at least N nodes, then G contains a clique with n nodes or an
independent set with n nodes.
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Proof. Choose an integer N ≥ R2(n; 2); by Theorem 6.1, such
an N exists.

Now if G = (V, E) is any graph with at least N nodes, we
can define a 2-labelling f of V (2) as follows:

f ({u, v}) =

(

1 if {u, v} ∈ E,

2 if {u, v} /∈ E.

By the definition of Ramsey numbers, if |V | ≥ N , there is
an n-subset X ⊆ V that is monochromatic in f . If X ⊆ V is
monochromatic, we have one of the following cases:

(a) we have f ({u, v}) = 1 for all {u, v} ∈ X (2); therefore X is
a clique,

(b) we have f ({u, v}) = 2 for all {u, v} ∈ X (2); therefore X is
an independent set.

6.2.4 Proof

Let us now prove Theorem 6.1. Throughout this section, let
c be fixed. We will show that Rc(n; k) is finite for all n and k.
The proof outline is as follows:

(a) Lemma 6.3: Rc(n; 1) is finite for all n.

(b) Corollary 6.7: if Rc(n; k−1) is finite for all n, then Rc(n; k)
is finite for all n.

Here we will use the following auxiliary results:

(i) Lemma 6.5 — if Rc(n; k− 1) is finite for all n, then
R̄c(n; k) is finite for all n.
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(ii) Lemma 6.6 — if R̄c(n; k) is finite for all n, then
Rc(n; k) is finite for all n.

(c) Now by induction on k, it follows that Rc(n; k) is finite
for all n and k.

The base case of k = 1 is, in essence, equal to the familiar
pigeonhole principle.

Lemma 6.3. Ramsey number Rc(n; 1) is finite for all n.

Proof. Let N = c(n−1)+1. We can use the pigeonhole principle
to show that Rc(n; 1)≤ N .

Let Y be a set with at least N elements, and let f be a
c-labelling of Y (1). In essence, we have c boxes, labelled with
{1, 2, . . . , c}, and function f places each element of Y into one
of these boxes. As there are N elements, there is a box that
contains at least

dN/ce= n

elements. These elements form a monochromatic subset.

Let us now study the case of k > 1. We begin with a
technical lemma.

Lemma 6.4. Let n and k be integers, n > k > 1. If M =
R̄c(n− 1; k) and Rc(M ; k− 1) are finite, then R̄c(n; k) is finite.

Proof. Define
N = 1+ Rc(M ; k− 1).

We will prove that R̄c(n; k)≤ N .
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Let Y be a set with N elements; w.l.o.g., we can assume that
Y = {1,2, . . . , N}. Let f be any c-labelling of Y (k). We need to
show that there is an almost monochromatic n-subset W ⊆ Y .

To this end, let Y2 = {2,3, . . . , N}, and define a c-labelling
f2 of Y (k−1)

2 as follows; see Figure 6.3 for an illustration:

f2(A) = f ({1} ∪ A) for each A∈ Y (k−1)
2 .

Now f2 is a c-labelling of Y (k−1)
2 , and Y2 contains

N − 1= Rc(M ; k− 1)

elements. Hence, by the definition of Ramsey numbers, there is
an M -subset X2 ⊆ Y2 that is monochromatic in f2.

Function f is a c-labelling of Y (k), and X2 ⊆ Y . Hence
by restriction f defines a c-labelling of X (k)2 . Set X2 contains
M = R̄c(n−1; k) elements. Therefore there is an (n−1)-subset
W2 ⊆ X2 that is almost monochromatic in f .

To conclude the proof, let W = {1} ∪W2. By construction,
W contains n elements. Moreover, W is almost monochromatic
in f . To see this, assume that A, B ⊆W are k-subsets such that
min(A) = min(B). We need to show that f (A) = f (B). There
are two cases:

(a) We have min(A) = min(B) = 1. Let A2 = A \ {1} and
B2 = B \ {1}. Now A2 and B2 are (k − 1)-subsets of
X2. Set X2 was monochromatic in f2, and hence f (A) =
f2(A2) = f2(B2) = f (B).

(b) Otherwise 1 /∈ A and 1 /∈ B. Now A and B are k-subsets
of W2. Set W2 was almost monochromatic in f , and we
have min(A) =min(B), which implies f (A) = f (B).
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…{4,5,7} � 1 {5,6,7} � 1

{2,3,7} � 1

{1,5,6} � 1

{1,2,4} � 1

{2,4,6} � 1

{1,2,5} � 1

{1,4,6} � 2

{2,3,6} � 1

{1,2,6} � 2

{1,6,7} � 2

…
{2,4,5} � 2

{1,4,5} � 1
{1,3,6} � 1{1,3,5} � 1

{1,3,4} � 1
{1,3,7} � 1

{2,3,5} � 1
{1,5,7} � 1

{2,4,7} � 2

{1,4,7} � 1

{2,3,4} � 2

{1,2,3} � 1
{1,2,7} � 1

{4,5,6} � 2

{5,6} � 1

{3,6} � 1 {3,7} � 1
{3,4} � 1{2,6} � 2

{6,7} � 2
{4,6} � 2
{5,7} � 1

{2,5} � 1{2,4} � 1
{2,7} � 1

{4,7} � 1{4,5} � 1

{2,3} � 1

{3,5} � 1

f2 :

f :

X2 = {2,3,4,5,7}, monochromatic in  f2
W2 = {2,4,5,7}, almost monochromatic in  f

W = {1,2,4,5,7}, almost monochromatic in  f

Figure 6.3: The proof of Lemma 6.4, for the case of c = 2, k = 3,
and n = 5, assuming completely fictional values M = 5 and
N = 7.
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Lemma 6.5. Let k > 1 be an integer. If Rc(n; k− 1) is finite for
all n, then R̄c(n; k) is finite for all n.

Proof. The proof is by induction on n.
The base case of n ≤ k is trivial: a set with n elements

has at most one subset with k elements, and hence it is almost
monochromatic and monochromatic.

Now let n> k. Inductively assume that R̄c(n−1; k) is finite.
Recall that in the statement of this lemma, we assumed that
Rc(M ; k − 1) is finite for any M ; in particular, it is finite for
M = R̄c(n − 1; k). Hence we can apply Lemma 6.4, which
implies that R̄c(n; k) is finite.

Lemma 6.6. Let k > 1 be an integer. If R̄c(n; k) is finite for all
n, then Rc(n; k) is finite for all n.

Proof. Let M = Rc(n; 1). By Lemma 6.3, M is finite. By assump-
tion, R̄c(M ; k) is also finite. We will show that

Rc(n; k)≤ R̄c(M ; k).

Let Y be a set with N = R̄c(M ; k) elements, and let f
be any c-labelling of Y (k). We need to show that there is a
monochromatic n-subset W ⊆ Y .

By definition, there is an almost monochromatic M -subset
X ⊆ Y . Hence we can define a c-labelling g of X (1) such that

g({min(A)}) = f (A)

for each k-subset A⊆ X ; see Figure 6.4. As X is a subset with
M = Rc(n; 1) elements, we can find an n-subset W ⊆ X that is
monochromatic in g.
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f g

{1,2} 7→ 1 {1} 7→ 1
{1,3} 7→ 1
{1,4} 7→ 1

{2,3} 7→ 3 {2} 7→ 3
{2,4} 7→ 3

{3,4} 7→ 2 {3} 7→ 2

{4} 7→ 1

Figure 6.4: The proof of Lemma 6.6. In this example, c = 3,
k = 2, and X = {1,2,3,4} is almost monochromatic in f . We
define a c-labelling g of X (1) such that g({min(A)}) = f (A) for
all A∈ X (2). Note that the choice of g(4) is arbitrary.

Now we claim that W is also monochromatic in f . To
see this, let A and B be k-subsets of W . Let x = min(A) and
y =min(B). We have x , y ∈W and

f (A) = g({x}) = g({y}) = f (B).

Lemmas 6.5 and 6.6 have the following corollary.

Corollary 6.7. Let k > 1 be an integer. If Rc(n; k− 1) is finite
for all n, then Rc(n; k) is finite for all n.

Now Ramsey’s theorem follows by induction on k: the base
case is Lemma 6.3, and the inductive step is Corollary 6.7.
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6.3 Speed Limits

We will now use Ramsey’s theorem to prove that directed cycles
cannot be 3-coloured in constant time.

Theorem 6.8. Assume that A is a distributed algorithm for the
model of unique identifiers. Assume that there is a constant T ∈ N
such that A stops in time T in any directed cycle G = (V, E), and
outputs a labelling g : V → {1, 2, 3}. Then there exists a directed
cycle G such that if we execute A on G, the output of A is not a
proper vertex colouring of G.

To prove Theorem 6.8, let n = 2T + 2, k = 2T + 1, and
c = 3. By Ramsey’s theorem, Rc(n; k) is finite. Choose any
N ≥ Rc(n; k).

We will construct a directed cycle G = (V, E) with N nodes.
In our construction, the set of nodes is V = {1,2, . . . , N}. This
is also the set of unique identifiers in our cycle; recall that we
follow the convention that the unique identifier of a node v ∈ V
is v.

With the set of nodes fixed, we proceed to define the set of
edges. In essence, we only need to specify in which order the
nodes are placed along the cycle.

6.3.1 Subsets and Cycles

For each subset X ⊆ V , we define a directed cycle GX = (V, EX )
as follows; see Figure 6.5. Let ` = |X |. Label the nodes by
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1
4

2

5
6 3

Figure 6.5: Construction of GX . Here N = 6 and X = {2,4}.

x1, x2, . . . , xN such that

X = { x1, x2, . . . , x` },
V \ X = { x`+1, x`+1, . . . , xN },

x1 < x2 < · · ·< x`,

x`+1 < x`+1 < · · ·< xN .

Then choose the edges

EX = { (x i , x i+1) : 1≤ i < N } ∪ { (xN , x1) }.

Informally, GX is constructed as follows: first take all nodes
of X , in the order of increasing identifiers, and then take all
other nodes, again in the order of increasing identifiers.

6.3.2 Labelling

If B ⊆ V is a k-subset, then we define that the internal node i(B)
is the median of the set B. Put otherwise, i(B) is the unique
node in B that is not among the T smallest nodes of B, nor
among the T largest nodes of B.
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We will use algorithm A to construct a c-labelling f of V (k)

as follows. For each k-subsets B ⊆ V , we construct the cycle
GB, execute A on GB, and define that f (B) is the output of node
i(B) in GB. See Figure 6.6 for an illustration.

6.3.3 Monochromatic Subsets

We have constructed a certain c-labelling f . As N is sufficiently
large, there exists an n-subset X ⊆ V that is monochromatic
in f . Let us label the nodes of X by

X = {x0, x1, . . . , xk},

where x0 < x1 < · · ·< xk. Let

B = {x0, x1, . . . , xk−1},
C = {x1, x2, . . . , xk}.

See Figure 6.6 for an illustration.
Sets B and C are k-subsets of X , and their internal nodes

are i(B) = xT and i(C) = xT+1. As X is monochromatic, we
have f (B) = f (C). Therefore we know that the output of xT in
GB equals the output of xT+1 in GC .

Moreover, node xT has isomorphic radius-T neighbour-
hoods in GB and GX ; in both graphs, the radius-T neighbour-
hood of node xT is a directed path, along which we have the
nodes x0, x1, . . . , xk−1 in this order. Hence by Theorem 3.6, the
output of xT in GB equals the output of xT in GX .

A similar argument shows that the output of xT+1 in GC
equals the output of xT+1 in GX . In summary, the output of xT
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4
21

7
3

5

6
8

9

10

5
42

9
1

7

3
6

8

10

5

4
2

9

1

7
3

6

8

10

GB

GC

GX

f(B)

f(C)

f(B)

f(C)

Figure 6.6: In this example, N = 10 and T = 2. Let B =
{1,2,4,5,7 }, C = {2,4,5,7,9 }, and X = {1,2,4,5,7,9 }. The
label f (B) is defined as follows: we construct GB, execute al-
gorithm A, and take the output of the internal node i(B) = 4.
Similarly, the label f (C) is the output of node i(C) = 5 in GC .
As the local neighbourhoods are identical, the output of node 4
in GX is also f (B), and the output of node 5 in GX is also f (C).
If X is monochromatic in f , we have f (B) = f (C).

147



in GX equals f (B), which equals f (C), which equals the output
of xT+1 in GX .

We have shown that in the directed cycle GX , there are two
adjacent nodes, xT and xT+1, that produce the same output.
Hence A does not output a proper vertex colouring in GX .

6.4 Exercises

Exercise 6.1. Prove that Rc(n; 1) = c(n− 1) + 1.
Hint: The proof of Lemma 6.3 shows that

Rc(n; 1)≤ c(n− 1) + 1.

You need to show that

Rc(n; 1)> c(n− 1).

Exercise 6.2. Prove that R2(3; 2) = 6.

Exercise 6.3. Prove that it is not possible to find a proper
vertex colouring with at most 100 colours in any directed cycle
in constant time.

Hint: You can modify the proof of Theorem 6.8. Alternat-
ively, you can show that if you could find a 100-colouring in
constant time, you could also find a 3-colouring in constant
time.

Exercise 6.4. Prove that it is not possible to find a maximal
independent set in any directed cycle in constant time.

Hint: Assume that algorithm A finds an independent set
in time T in any directed cycle. Follow the basic idea of the
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proof of Theorem 6.8. Choose n = 2T + 3, k = 2T + 1, and
c = 2. Show that you can construct a cycle in which a node and
both of its neighbours produce the same output. Argue that if
the output is a valid independent set, it cannot be a maximal
independent set.

Exercise 6.5. Prove that it is not possible to find a maximal
matching in any directed cycle in constant time.

Exercise 6.6. Prove that it is not possible to find a 100-approx-
imation of a maximum independent set in any directed cycle in
constant time.

Hint: You will need several applications of Ramsey’s the-
orem. First, choose a (very large) space of unique identifiers.
Then apply Ramsey’s theorem to find a large monochromatic
subset, remove the set, and repeat. This way you have parti-
tioned almost all identifiers into monochromatic subsets. Each
monochromatic subset is used to construct a fragment of the
cycle.
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Chapter 7

What Next?

7.1 Other Stuff Exists

Distributed computing is a vast topic. We conclude this course
by mentioning perspectives that we have not covered; we also
provide pointers to more in-depth information.

7.1.1 Models of Computing

Many models of distributed computing can be seen as exten-
sions of the models that we have studied. The following exten-
sions are familiar from the context of classical computational
complexity and Turing machines.

Randomised algorithms. Each node has access to a stream of
random bits. A good example is Luby’s [17] randomised
algorithm for finding a maximal independent set — the
algorithm uses the random bits for symmetry breaking.

Nondeterministic algorithms. It is sufficient that there exists
a proof that can be verified efficiently in a distributed
setting; we do not need to construct the proof. This
research direction was introduced by Korman et al. [15].
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7.1.2 Variants

There are many variants of the model that we described.

Asynchronous systems. Computers do not necessarily oper-
ate in a synchronous manner. In particular, the propaga-
tion delays of the messages may vary.

Message passing vs. shared memory. Our model of comput-
ing can be seen as a message-passing system: nodes send
messages (data packets) to each other. A commonly stud-
ied alternative is a system with shared memory: each
node has a shared register, and the nodes can communic-
ate with each other by reading and writing the shared
registers.

The above aspects were irrelevant for our purposes, as we
were only interested in the number of communication rounds;
for example, asynchronous systems can be “synchronised” effi-
ciently [5]. However, if we consider other complexity measures
or fault tolerance, such details become important.

Our model of computing is primarily intended to capture
the specifics of wired networks — communication links can
be seen as cables that connect the computers. There are also
numerous models that are designed with wireless networks in
mind. A simple graph is no longer an appropriate model: a
single radio transmission can be received by multiple nodes,
and multiple simultaneous radio transmissions can interfere
with each other. Radio propagation is closely connected with
physical distances; hence in the context of wireless networks
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one often makes assumptions about physical locations of the
nodes.

7.1.3 Complexity Measures

For us, the main complexity measure has been the number of
synchronous communication rounds. Naturally, other possibilit-
ies exist.

Space. How many bits of memory do we need per node?

Number of messages. How many messages do we need to
send in total?

Message size. We did not limit the size of a message. However,
it is common to assume that the size of each message is
O(log n) bits; how many communication rounds do we
need in that case?

7.1.4 Fault Tolerance and Dynamics

Fault tolerance in general is an important topic in any large-
scale distributed system. In the theory of distributed com-
puting, fault tolerance has been studied from many different
and complementary perspectives, of which we mention three
representative examples.

Dynamic networks. Nodes can join and leave; edges can be
removed and added. The system is expected to correct
the output quickly after each change.
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Byzantine failures. A fraction of nodes can be malicious and
they may try to actively disturb the algorithm. Never-
theless, non-malicious nodes must be able to produce a
correct output.

Self-stabilising systems. The initial state of each node can
be arbitrary — an adversary may have corrupted the
memory of each node. Nevertheless, the system must
eventually recover and produce a correct output. Note
that a self-stabilising system can never stop; all nodes
have to keep communicating with each other indefinitely.
See Dolev’s [11] textbook for more information.

7.1.5 Problems

In this course we have studied input/output problems: we are
given an input, we expect the system to do some computation,
and eventually the system has to produce a correct output.

We assumed that the input is equal to the structure of
the communication graph. This is not the only possibility: in
general, one can solve arbitrary input/output problems in a
distributed manner.

However, there are also many problems that are not in-
put/output problems. In the context of distributed algorithms,
there are also problems that are related to controlling an auton-
omous entity. Often we will use the metaphor of robot navig-
ation: the graph is a map of an environment, and we need to
control “robots” that navigate in the graph — however, instead
of a physical robot, we can equally well study a logical entity
such as a data packet or a token that is routed throughout a
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network. Some examples of robot navigation tasks include the
following.

Graph exploration. A robot needs to visit all nodes of a graph.

Rendezvous. There are two robots who need to meet each
other at a single node.

7.2 Further Reading

Nancy Lynch’s textbook [18] provides an excellent overview of
the field of distributed algorithms. Diestel’s book [10] is a good
source for graph-theoretic background, and Vazirani’s book [28]
provides further information on approximation algorithms from
the perspective of non-distributed computing.

For more online material on distributed algorithms, see the
following web page:

Principles of Distributed Computing,
Distributed Computing Group, ETH Zurich

http://dcg.ethz.ch/lectures/podc_allstars/

7.3 Bibliographic Notes

Many parts of this course have been directly influenced by
numerous papers and textbooks; here is a brief summary of the
key references.
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Graph-theoretic Foundations. The connection between min-
imum maximal matchings and minimum edge dominating sets
(Exercise 1.5) is due to Allan and Laskar [1] and Yannakakis
and Gavril [30], and the connection between maximal edge
packings and approximations of vertex covers (Lemma 4.3) was
identified by Bar-Yehuda and Even [6]. The connection between
maximal matchings and approximations of vertex covers (Exer-
cise 1.3) is commonly attributed to Gavril and Yannakakis (see,
e.g., Papadimitriou and Steiglitz [22]). Exercise 1.9 is a 120-
year-old result due to Petersen [23]. The definition of a weak
colouring is from Naor and Stockmeyer [19]. Ramsey’s the-
orem dates back to 1930s [26]; our proof follows Nešeťril [20],
and the notation is from Radziszowski [25].

Model of Computing. The model of computing that we use
throughout this course — running time equals the number of
synchronous communication rounds — is from Linial’s [16]
seminal paper, while the concept of a port numbering is from
Angluin’s [2] work.

Algorithms. Algorithm DPBit is based on the idea originally
introduced by Cole and Vishkin [8] and further refined by
Goldberg et al. [13]. The idea of algorithm DPSet is from Naor
and Stockmeyer [19]. Algorithm Colour is from Goldberg et
al. [13] and Panconesi and Rizzi [21]. Algorithm BMM is due
to Hańćkowiak et al. [14]. Algorithm of Exercise 5.10 is from
Friedman and Kogan [12].
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Lower Bounds. The use of covering maps in the context of
distributed algorithm was introduced by Angluin [2], and local
neighbourhoods were studied by, among others, by Linial [16].
The general idea of Exercise 3.10 can be traced back to Yama-
shita and Kameda [29], while the specific construction in Fig-
ure 3.11 is from Bondy and Murty’s textbook [7, Figure 5.10].
Lower bounds on graph colouring in the model of unique iden-
tifiers are from Linial’s seminal work [16]; our presentation
in Section 6.3 uses an alternative proof based on Ramsey’s
theorem, following, e.g., Naor and Stockmeyer [19] and Czy-
grinow et al. [9]. In particular, the idea of Exercise 6.6 is from
Czygrinow et al. [9].

Local Work. Recent work by our research group is represen-
ted in algorithms VC3 [24] and VC2 [3]. Many exercises are
also inspired by our work, including Exercises 3.1 and 3.3 [27],
Exercise 3.6 [4], Exercise 4.1 [4], and Exercises 4.5–4.10 [27].
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Index

Notation

|X | the number of elements in set X

f −1(y) preimage of y , i.e., f −1(y) = { x : f (x) = y }

degG(v) degree of node v in graph G

distG(u, v) distance between nodes u and v in G

ballG(v, r) nodes that are within distance r from v in G

diam(G) diameter of graph G

N the set of natural numbers, {0,1, 2, . . . }

R the set of real numbers

[a, b] set {x ∈ R : a ≤ x ≤ b}

Y (k) the collection of all k-subsets of Y

Rc(n; k) Ramsey numbers

Symbols

These conventions are usually followed in the choice of symbols.

α approximation factor

φ covering map, φ : V → V ′
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ψ local isomorphism, ψ: ballG(v, r)→ ballH(u, r)

∆ maximum degree; an upper bound of the
maximum degree

Π graph problem

F graph family

S set of feasible solutions

id unique identifiers

A distributed algorithm

C vertex cover C ⊆ V , edge cover C ⊆ E

D dominating set D ⊆ V , edge dominating set
D ⊆ E

E set of edges

G, H graphs, G = (V, E)

I independent set I ⊆ V

M matching M ⊆ E

N port-numbered network, N = (V, P, p)

P set of ports

T running time (number of rounds)

U subset of nodes

V set of nodes

c, d natural numbers

e edges, elements of E

f , g, h functions
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i, j, k,` natural numbers

mt message

n number of nodes, n= |V |

p connection function, involution p : P → P

r natural numbers

s, t, u, v nodes, elements of V

t time step (round), t = 0,1, . . . , T

w walk

x t state

Algorithms

BMM maximal matching in 2-coloured graphs,
Section 2.4.1.

Colour fast colour reduction in bounded-degree graphs,
Section 5.3.5.

DPBit fast colour reduction in directed pseudoforests,
Section 5.3.4.

DPGreedy greedy colour reduction in directed
pseudoforests, Section 5.3.3.

DPSet fast colour reduction in directed pseudoforests,
Exercise 5.6.

Gather gathering information in port-numbered graphs,
Section 5.2.3.
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Greedy greedy colour reduction, Section 5.3.1.

HSEP half-saturating edge packings, Section 4.2.5.

MEP maximal edge packings, Section 4.2.6.

VC2 2-approximation of minimum vertex cover,
Section 4.2.6.

VC3 3-approximation of minimum vertex cover,
Section 2.4.2.
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