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Abstract In this work, we use algebraic methods for

studying distance computation and subgraph detection

tasks in the congested clique model. Specifically, we

adapt parallel matrix multiplication implementations

to the congested clique, obtaining an O(n1−2/ω) round

matrix multiplication algorithm, where ω < 2.3728639

is the exponent of matrix multiplication. In conjunction

with known techniques from centralised algorithmics,

this gives significant improvements over previous best

upper bounds in the congested clique model. The high-

light results include:

1. triangle and 4-cycle counting in O(n0.158) rounds,
improving upon the O(n1/3) algorithm of Dolev et al

[DISC 2012],
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2. a (1+o(1))-approximation of all-pairs shortest paths

in O(n0.158) rounds, improving upon the Õ(n1/2)-

round (2 + o(1))-approximation algorithm given by

Nanongkai [STOC 2014], and

3. computing the girth in O(n0.158) rounds, which is

the first non-trivial solution in this model.

In addition, we present a novel constant-round combi-

natorial algorithm for detecting 4-cycles.
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1 Introduction

Algebraic methods have become a recurrent tool in

centralised algorithmics, employing a wide range of tech-

niques (e.g., [10–16, 21–23, 27, 29, 30, 45, 46, 53, 61,

74, 75]). In this paper, we bring techniques from the

algebraic toolbox to the aid of distributed computing,

by leveraging fast matrix multiplication in the congested

clique model.

In the congested clique model, the n nodes of a graph

G communicate by exchanging messages of O(log n) size

in a fully-connected synchronous network; initially, each

node is aware of its neighbours in G. In comparison with

the traditional CONGEST model [63], the key difference

is that a pair of nodes can communicate directly even if

they are not adjacent in graph G. The congested clique

model masks away the effect of distances on the compu-

tation and focuses on the limited bandwidth. As such, it

has been recently gaining increasing attention [25, 26, 36–

38, 49, 52, 54, 60, 62], in an attempt to understand the

relative computational power of distributed computing

models.



Running time

Problem This work Prior work

matrix multiplication (semiring) O(n1/3) —
matrix multiplication (ring) O(n0.158) O(n0.373) [26]

triangle counting O(n0.158) O(n1/3/ logn) [25]
4-cycle detection O(1) O(n1/2/ logn) [25]
4-cycle counting O(n0.158) O(n1/2/ logn) [25]
k-cycle detection 2O(k)n0.158 O(n1−2/k/ logn) [25]
girth O(n0.158) —

all-pairs shortest paths O(n1/3 logn) —
· weighted diameter U O(Un0.158) —
· (1 + o(1))-approximation O(n0.158) —

· undirected, (2 + o(1))-approximation Õ(n1/2) [60]
· undirected, unweighted O(n0.158) —

Table 1 Our results versus prior work, for the currently best known bound ω < 2.3729 [48]; Õ notation hides polylogarithmic
factors.

The key insight of this paper is that matrix mul-

tiplication algorithms from parallel computing can be

adapted to obtain an O(n1−2/ω) round matrix mul-

tiplication algorithm in the congested clique, where

ω < 2.3728639 is the matrix multiplication exponent [48].

Combining this with well-known centralised techniques

allows us to use fast matrix multiplication to solve vari-

ous combinatorial problems, directly giving O(n0.158)-
time algorithms in the congested clique for many classi-

cal graph problems. Indeed, while most of the techniques

we use in this work are known beforehand, their com-

bination gives significant improvements over the best

previously known upper bounds. Table 1 contains a sum-

mary of our results, which we overview in more details

in what follows.

1.1 Matrix Multiplication on a Congested Clique

As a basic primitive, we consider the computation of

the product P = ST of two n × n matrices S and

T on a congested clique of n nodes. We will tacitly

assume that the matrices are initially distributed so

that node v has row v of both S and T , and each

node will receive row v of P in the end. Recall that

the matrix multiplication exponent ω is defined as the
infimum over σ such that product of two n×n matrices

can be computed with O(nσ) arithmetic operations;

it is known that 2 ≤ ω < 2.3728639 [48], and it is

conjectured, though not unanimously, that ω = 2.

Theorem 1. The product of two n× n matrices can be

computed in a congested clique of n nodes in O(n1/3)

rounds over semirings. Over rings, this product can be

computed in O(n1−2/ω+ε) rounds for any constant ε > 0.

Theorem 1 follows by adapting known parallel ma-

trix multiplication algorithms for semirings [1, 57] and

rings [7, 55, 58, 73] to the clique model, via the routing

technique of Lenzen [49]. In fact, with little extra work

one can show that the resulting algorithm is also obliv-

ious, that is, the communication pattern is predefined

and does not depend on the input matrices. Hence, the

oblivious routing technique of Dolev et al [25] suffices for

implementing these matrix multiplication algorithms.

The above addresses matrices whose entries can be
encoded with O(log n) bits, which is sufficient for deal-

ing with integers of absolute value at most nO(1). In

general, if b bits are sufficient to encode matrix entries,

the bounds above hold with a multiplicative factor of

db/ log ne; for example, working with integers with abso-

lute value at most 2n
ε

merely incurs a factor nε overhead

in running times.

Distributed matrix multiplication exponent. Analogously

with the matrix multiplication exponent, we denote by

ρ the exponent of matrix multiplication in the congested

clique model, that is, the infimum over all values σ such

that there exists a matrix multiplication algorithm in

the congested clique running in O(nσ) rounds. In this

notation, Theorem 1 gives us

ρ ≤ 1− 2/ω < 0.15715 ;

prior to this work, it was known that ρ ≤ ω − 2 [26].

For the rest of this paper, we will – analogously with

the convention in centralised algorithmics – slightly

abuse this notation by writing nρ for the complexity

of matrix multiplication in the congested clique. This

hides factors up to O(nε) resulting from the fact that

the exponent ρ is defined as infimum of an infinite set.

Lower bounds for matrix multiplication. The matrix mul-

tiplication results are optimal in the sense that for any

sequential matrix multiplication implementation, any
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scheme for simulating that implementation in the con-

gested clique cannot give a faster algorithm than the con-

struction underlying Theorem 1; this follows from known

results for parallel matrix multiplication [2, 8, 42, 72].

Moreover, we note that for the broadcast congested clique

model, where each node is required to send the same

message to all nodes in any given round, recent lower

bounds [39] imply that matrix multiplication cannot be

done faster than Ω̃(n) rounds.

1.2 Applications in Subgraph Detection

Cycle detection and counting. Our first application of

fast matrix multiplication is to the problems of triangle

counting [43] and 4-cycle counting.

Corollary 2. For directed and undirected graphs, the

number of triangles and 4-cycles can be computed in

O(nρ) rounds.

For ρ ≤ 1− 2/ω, this is an improvement upon the

previously best known O(n1/3)-round triangle detection

algorithm of Dolev et al [25] and an O(nω−2+ε)-round

algorithm of Drucker et al [26]. Indeed, we disprove

the conjecture of Dolev et al [25] that any determinis-
tic oblivious algorithm for detecting triangles requires

Ω̃(n1/3) rounds.

When only detection of cycles is required, we observe

that combining the fast distributed matrix multiplica-

tion with the well-known technique of colour-coding [5]

allows us to detect k-cycles in Õ(nρ) rounds for any
constant k. This improves upon the subgraph detection

algorithm of Dolev et al [25], which requires Õ(n1−2/k)

rounds for detecting subgraphs of k nodes. However, we

do not improve upon the algorithm of Dolev et al for

general subgraph detection.

Theorem 3. For directed and undirected graphs, the
existence of k-cycles can be detected in 2O(k)nρ log n

rounds.

For the specific case of k = 4, we provide a novel

algorithm that does not use matrix multiplication and

detects 4-cycles in O(1) rounds on undirected graphs.

Theorem 4. For undirected graphs, the existence of
4-cycles can be detected in O(1) rounds.

Girth. The cycle detection methods can also be adapted

to find the lenght of the shortest cycle, that is, the girth

of a graph. For undirected graphs, we leverage a known

trade-off between the girth and the number of edges of

the graph [56]. Roughly, we detect short cycles fast, and

if they do not exist then the graph must have sufficiently

few edges to be learned by all nodes. For directed graphs,

we adapt a simpler method of Itai and Rodeh [43].

Theorem 5. For directed and undirected unweighted

graphs, the girth can be computed in Õ(nρ) rounds.

As far as we are aware, these are the first algorithms

to compute the girth in this setting.

1.3 Applications in Distance Computation

Shortest paths. The all-pairs shortest paths problem

(APSP) likewise admits algorithms based on matrix

multiplication. The basic idea is to compute the nth

power of the input graph’s weight matrix over the min-

plus semiring, by iteratively computing squares of the
matrix [28, 33, 59].

Corollary 6. For directed graphs with edge weights in

{0,±1, . . . ,±M} and for undirected graphs with edge
weights in {0, 1, . . . ,M}, all-pairs shortest paths can be

computed in O(n1/3 log ndlogM/ log ne) communication

rounds.

We can leverage fast ring matrix multiplication to

improve upon the above result; however, the use of ring

matrix multiplication necessitates some trade-offs or

extra assumptions. For example, for unweighted and

undirected graphs, it is possible to recover the exact

shortest paths from powers of the adjacency matrix over

the Boolean semiring [68].

Corollary 7. For undirected, unweighted graphs, all-

pairs shortest paths can be computed in Õ(nρ) rounds.

For small integer weights, we use the well-known idea

of embedding a min-plus semiring matrix product into

a matrix product over a ring; this gives a multiplicative

factor to the running time proportional to the maxi-

mum distance between two nodes, that is, the weighted

diameter.

Corollary 8. For directed and undirected graphs with

positive integer edge weights and weighted diameter

U , all-pairs shortest paths can be computed in Õ(Unρ)

rounds.

While this corollary is only relevant for graphs of

small weighted diameter, the same idea can be com-

bined with weight rounding [60, 66, 79] to obtain a fast

approximate APSP algorithm without such limitations.

Theorem 9. For directed and undirected graphs with

edge weights in {0, 1, . . . , 2no(1)}, all-pairs shortest paths

can be (1 + o(1))-approximated in O(nρ+o(1)) rounds.

For comparison, the previously best known combi-

natorial algorithm for APSP on the congested clique

gives a (2 + o(1))-approximation in Õ(n1/2) rounds on

undirected graphs with positive weights [60].
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1.4 Additional Related Work

Computing distances in graphs, such as the diameter,

all-pairs shortest paths (APSP), and single-source short-

est paths (SSSP) are fundamental problems in most

computational settings. The reason for this lies in the

abundance of applications of such computations, evi-

dent also by the huge amount of research dedicated to

it [19, 20, 31, 34, 35, 70, 71, 76, 78–80].

In particular, computing graph distances is vital for

many distributed applications and, as such, has been

widely studied in the CONGEST model of computa-

tion [63], where n processors located in n distinct nodes

of a graph G communicate over the graph edges us-

ing O(log n)-bit messages. Specifically, many algorithms

and lower bounds were given for computing and ap-

proximating graph distances in this setting [24, 32, 40,

41, 47, 50, 51, 60, 64, 65]. Some lower bounds apply

even for graphs of small diameter; however, these lower

bound constructions boil down to graphs that contain

bottleneck edges limiting the amount of information that

can be exchanged between different parts of the graph

quickly.

The intuition that the congested clique model would
abstract away distances and bottlenecks and bring to

light only the congestion challenge has proven inaccu-

rate. Indeed, a number of tasks have been shown to

admit sub-logarithmic or even constant-round solutions,

exceeding by far what is possible in the CONGEST

model with only low diameter. The pioneering work of
Lotker et al [54] shows that a minimum spanning tree

(MST) can be computed in O(log log n) rounds, which

was recently improved to O(log log log n) by Hegeman
et al [38]. Hegeman et al [37] show how to construct a 3-

ruling set, with applications to maximal independent set

and an approximation of the MST in certain families of
graphs; sorting and routing have been recently addressed

by various authors [49, 52, 62]. A connection between

the congested clique model and the MapReduce model is

discussed by Hegeman and Pemmaraju [36], where algo-

rithms are given for colouring problems. On top of these

positive results, Drucker et al [26] recently proved that

essentially any non-trivial unconditional lower bound

for an explicit function on the congested clique would

imply novel circuit complexity lower bounds.

The same work also points out the connection be-

tween fast matrix multiplication algorithms and triangle

detection in the congested clique. Their construction

yields an O(nω−2+ε) round algorithm for matrix multi-

plication over rings in the congested clique model, giving

also the same running bound for triangle detection; if

ω = 2, this gives ρ = 0, matching our result. However,

with the currently best known centralised matrix multi-

plication algorithm, the running time of the resulting

triangle detection algorithm is O(n0.3729) rounds, still

slower than the combinatorial triangle detection of Dolev

et al [25], and if ω > 2, the solution presented in this

paper is faster.

2 Matrix Multiplication Algorithms

In this section, we consider computing the product P =

ST of two n× n matrices S = (Sij) and T = (Tij) on

the congested clique with n nodes. For convenience, we

tacitly assume that nodes v ∈ V are identified with

{1, 2, . . . , n}, and use nodes v ∈ V to directly index the

matrices. The local input in the matrix multiplication

task for each node v ∈ V is the row v of both S and T ,

and at the end of the computation each node v ∈ V will

output the row v of P . However, we note that the exact

distribution of the input and output is not important,

as we can re-arrange the entries in constant rounds as

long as each node has O(n) entries [49]. Furthermore,

we assume that the matrix entries and any intermediate

result can be transmitted in a single message of size

O(log n) bits; for example, this holds when S and T

consist of integers of absolute value at most nO(1).

Theorem 1. The product of two n× n matrices can be

computed in a congested clique of n nodes in O(n1/3)

rounds over semirings. Over rings, this product can be

computed in O(n1−2/ω+ε) rounds for any constant ε > 0.

Theorem 1 follows directly by simulating known par-

allel matrix multiplication algorithms in the congested

clique model using a result of Lenzen [49]. Lenzen dis-

cusses simulation of the bulk-synchronous parallel (BSP)

model, which we can use to obtain Theorem 1 as a

corollary from known BSP matrix multiplication re-

sults [57, 58, 73]. However, essentially the same matrix

multiplication algorithms have been widely studied in

various parallel computation models, and the routing

scheme underlying the aforementioned simulation re-

sult allows also simulation of these other models on the

congested clique:

1. The first part of Theorem 1 is based on the so-called

parallel 3D matrix multiplication algorithm [1, 57],

essentially a parallel implementation of the school-

book matrix multiplication; alternatively, the same

algorithm can be obtained by slightly modifying the

triangle counting algorithm of Dolev et al [25].

2. The second part uses a scheme that allows one to

adapt any bilinear matrix multiplication algorithm

into a fast parallel matrix multiplication algorithm [7,

55, 58, 73].
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A more detailed examination in fact shows that the

matrix multiplication algorithms are oblivious, that is,

the communication pattern is pre-defined and only the

content of the messages depends on the input. This fur-

ther allows us to use the static routing scheme of Dolev

et al [25], resulting in simpler algorithms with smaller

constant factors in the running time.

The obliviousness of the algorithm also means that

the messages consist solely of encodings of matrix entries

and intermediate results. Thus, the matrix multiplica-

tion algorithms can be used in settings where either the

edge bandwidth or the encoding size of the values is

not necessarily Θ(log n). Specifically, given B bits of

bandwidth per edge per round and b bits required for

the encoding of the values, bounds of Theorem 1 hold

with multiplicative factor of db/Be, as we can transmit

a single b-bit value sequentially in db/Be messages.

To account for all the details, and to provide an

easy access for readers not familiar with the parallel
computing literature, we present the congested clique

versions of these algorithms in full detail in Sections 2.1

and 2.2.

2.1 Semiring matrix multiplication

Preliminaries. For convenience, let us assume that the

number of nodes is such that n1/3 is an integer. We

view each node v ∈ V as a three-tuple v1v2v3 where

v1, v2, v3 ∈ [n1/3]; for concreteness, we may think that
v1v2v3 is the representation of v as a three-digit number

in base n1/3.

For a matrix S and index sets U,W ⊆ V , use the

notation S[U,W ] to refer to the submatrix obtained

by taking all rows u with u ∈ U and columns w with

w ∈W . To easily refer to specific subsets of indices, we

use ∗ as a wild-card in this notation; specifically, we use

notation x∗∗ = {v : v1 = x}, ∗x∗ = {v : v2 = x} and

∗∗x = {v : v3 = x}. Finally, in conjunction with this

notation, we use the shorthand ∗ to denote the whole

index set V and v to refer to a singleton set {v}. See

Figure 1.

Overview. The distributed implementation of the school-

book matrix multiplication we present is known as the

3D algorithm. To illustrate why, we note that the school-

book matrix multiplication involves n3 element-wise

multiplications of the form

SuvTvw , u, v, w ∈ V ,

which can be viewed as points in the cube V × V × V .

To split the element-wise multiplications equally among

the nodes, we partition this cube into n subcubes of size

V

V

v

S
S[x⇤⇤, y⇤⇤]

S[v, ⇤]

S[v, y⇤⇤]

x⇤⇤

y⇤⇤

Fig. 1 Semiring matrix multiplication: partitioning scheme
for matrix entries.

n2/3 × n2/3 × n2/3. Specifically, each node v is assigned

the subcube v1∗∗ × v2∗∗ × v3∗∗, corresponding to the

multiplication task

S[v1∗∗, v2∗∗]T [v2∗∗, v3∗∗] .

Algorithm description. The algorithm computes n× n
intermediate matrices P (w) = S[∗, w∗∗]T [w∗∗, ∗] for

w ∈ [n1/3], so that each node v computes the block

P (v2)[v1∗∗, v3∗∗] = S[v1∗∗, v2∗∗]T [v2∗∗, v3∗∗] .

Specifically, this is done as follows.

Step 1: Distributing the entries. Each v ∈ V sends, for

each node u ∈ v1∗∗, the submatrix S[v, u2∗∗] to

node u, and for each node w ∈ ∗v2∗, the submatrix

T [v, w3∗∗] to w. Each such submatrix has size n2/3

and there are 2n2/3 recipients, for a total of 2n4/3

messages per node.

Dually, each node v ∈ V receives the submatrix

S[v1∗∗, v2∗∗] and the submatrix T [v2∗∗, v3∗∗]. In

particular, the submatrix S[u, v2∗∗] is received from

the node u for u ∈ v1∗∗, and similarly the submatrix

T [w, v3∗∗] is received from the node w ∈ ∗v2∗. In

total, each node receives 2n4/3 messages.

Step 2: Multiplication. Each node v ∈ V computes the

product of S[v1∗∗, v2∗∗] and T [v2∗∗, v3∗∗] to get the

n2/3 × n2/3 product matrix P (v2)[v1∗∗, v3∗∗].
Step 3: Distributing the products. Each node v ∈ V

sends submatrix P (v2)[u, v3∗∗] to each node u ∈ v1∗∗.
Each such submatrix has size n2/3 and there are n2/3

recipients, for a total of n4/3 messages per node.

Dually, each node v ∈ V receives the submatrices

P (w)[v, ∗] for each w ∈ [n1/3]. In particular, the

submatrix P (u2)[v, u3∗∗] is received from the node

u ∈ v1∗∗. The total number of received messages is

n4/3 per node.
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Step 4: Assembling the product. Each node v ∈ V com-

putes the submatrix P [v, ∗] =
∑
w∈[n1/3] P

(w)[v, ∗]
of the product P = ST .

Analysis. The maximal number of messages sent or

received in one of the above steps is O(n4/3). Moreover,

the communication pattern clearly does not depend on

the input matrices, so the algorithm can be implemented

in an oblivious way on the congested clique using the

routing scheme of Dolev et al [25, Lemma 1]; the running

time is O(n1/3) rounds.

2.2 Fast Matrix Multiplication

Bilinear matrix multiplication. Consider a bilinear algo-

rithm multiplying two d×d matrices using m < d3 scalar

multiplications, such as the Strassen algorithm [69]. Such

an algorithm computes the matrix product P = ST by

first computing m linear combinations of entries of both

matrices,

Ŝ(w) =
∑

(i,j)∈[d]2
αijwSij , and

T̂ (w) =
∑

(i,j)∈[d]2
βijwTij

(1)

for each w ∈ [m], then computing the products P̂ (w) =

Ŝ(w)T̂ (w) for w ∈ [m], and finally obtaining P as

Pij =
∑
w∈[m]

λijwP̂
(w) , for (i, j) ∈ [d]2, (2)

where αijw, βijw and λijw are scalar constants that

define the algorithm, and the other elements are scalars

depending on the input matrices. In this section we show
that any bilinear matrix multiplication algorithm can

be efficiently translated to the congested clique model.

Lemma 10. Let R be a ring, and assume there exists a
family of bilinear matrix multiplication algorithms that

can compute product of n× n matrices with O(nσ) mul-

tiplications. Then matrix multiplication over R can be

computed in the congested clique in O
(
n1−2/σdb/ log ne

)
rounds, where b is the number of bits required for encod-

ing a single element of R.

In particular for integers, rationals and their exten-

sions, it is known that for any constant ε > 0 there is a

bilinear algorithm for matrix multiplication that uses

O(nω+ε) multiplications [17]; thus, the second part of

Theorem 1 follows from the above lemma.

Preliminaries. Let us fix a bilinear algorithm that com-

putes the product of d× d matrices using m(d) = O(dσ)

scalar multiplications for any d, where 2 ≤ σ ≤ 3. To

multiply two n× n matrices on a congested clique of n

nodes, fix d so that m(d) = n, assuming for convenience

that n is such that this is possible. Note that we have

d = O(n1/σ).

Similarly with the semiring matrix multiplication, we

view each node v as three-tuple v1v2v3, where we assume

that v1 ∈ [d], v2 ∈ [n1/2] and v3 ∈ [n1/2/d]; one can

draw an analogy with the semiring matrix multiplication
algorithm, where a similar three-tuple presentation was

considered as a base n1/3 representation of v, and view

v1v2v3 as a mixed-radix representation of the integer v.

This induces a partitioning of the input matrices S

and T into a two-level grid of submatrices; using the

same wild-card notation as before, S is partitioned into

a d × d grid of n/d × n/d submatrices S[i∗∗, j∗∗] for

(i, j) ∈ [d]2, and each of these submatrices is further

partitioned into an n1/2 × n1/2 grid of n1/2/d× n1/2/d
submatrices S[ix∗, jy∗] for x, y ∈ [n1/2]. The other input

matrix T is partitioned similarly; see Figure 2.

Finally, we give each node v ∈ V a unique secondary

label `(v) = x1x2 ∈ [n1/2]2; again, for concreteness we

assume that x1x2 is the representation of v in base-n1/2

system, so this label can be computed from v directly.

Overview. The basic idea of the fast distributed matrix

multiplication is that we view the matrices S and T

as d× d matrices S′ and T ′ over the ring of n/d× n/d
matrices, where

S′ij = S[i∗∗, j∗∗] , T ′ij = T [i∗∗, j∗∗]

for i, j ∈ [d], which allows us to use (1) and (2) to

compute the matrix product using the fixed bilinear

algorithm; specifically, this reduces the n × n matrix

product into n instances of n1−1/σ×n1−1/σ matrix prod-

ucts, each of which is given to a different node. For the
linear combination steps, we use a partitioning scheme

where each node v with secondary label `(v) = x1x2 is

responsible for a specific n1/2/d× n1/2/d submatrix of

the matrices involved in the computation.

Algorithm description. The algorithm computes the ma-

trix product P = ST as follows.

Step 1: Distributing the entries. Each v ∈ V sends, for

x2 ∈ [n1/2], the two submatrices S[v, ∗x2∗] and

T [v, ∗x2∗] to the node u with label `(u) = v2x2.

Each submatrix has n1/2 entries and there are n1/2

recipients each receiving two submatrices, for a total

of 2n messages per node.

Dually, each node u with label `(u) = x1x2 re-

ceives the submatrices S[v, ∗x2∗] and T [v, ∗x2∗] from
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V

V

v

S

i⇤⇤

j⇤⇤

S[i⇤⇤, j⇤⇤]

V

V

S

S

S[ix⇤, jy⇤]

jy⇤

ix⇤

⇤x⇤

⇤y⇤

S[⇤x⇤, ⇤y⇤]

Fig. 2 Fast matrix multiplication: partitioning schemes for matrix entries.

the nodes v = v1v2v3 with v2 = x1. In particular,

node u now has the submatrices S[∗x1∗, ∗x2∗] and

T [∗x1∗, ∗x2∗]. The total number of received messages

is 2n per node.

Step 2: Linear combination of entries. Each node v ∈
V with label `(v) = x1x2 computes for w ∈ V the

n1/2/d× n1/2/d matrices

Ŝ(w)[x1∗, x2∗] =
∑

(i,j)∈[d]2
αijwS[ix1∗, jx2∗] ,

T̂ (w)[x1∗, x2∗] =
∑

(i,j)∈[d]2
βijwT [ix1∗, jx2∗] .

The computation is performed entirely locally.

Step 3: Distributing the combinations. Each node v ∈
V with label `(v) = x1x2 sends, for w ∈ V , the sub-

matrices Ŝ(w)[x1∗, x2∗] and T̂ (w)[x1∗, x2∗] to node

w. Each submatrix has (n1/2/d)2 = O(n1−2/σ) en-

tries and there are n recipients each receiving two

submatrices, for a total of O(n2−2/σ) messages per

node.

Dually, each node w ∈ V receives the submatrices

Ŝ(w)[x1∗, x2∗] and T̂ (w)[x1∗, x2∗] from node v ∈ V

with label `(v) = x1x2. Node u now has the ma-

trices Ŝ(w) and T̂ (w). The total number of received

messages is O(n2−2/σ) per node.

Step 4: Multiplication. Each node w ∈ V computes the

product P̂ (w) = Ŝ(w)T̂ (w). The computation is per-

formed entirely locally.

Step 5: Distributing the products. Each w ∈ V sends,

for x1, x2 ∈ [n1/2], the submatrix P̂ (w)[x1∗, x2∗] to

node v ∈ V with label x1x2. Each submatrix has

(n1/2/d)2 = O(n1−2/σ) entries and there are n recip-

ients, for a total of O(n2−2/σ) messages sent by each

node.

Dually, each node v with label `(v) = x1x2 receives

the submatrix P̂ (w)[x1∗, x2∗] from each node w ∈ V .

The total number of received messages is O(n2−2/σ)

per node.

Step 6: Linear combination of products. Each node v ∈
V with label `(v) = x1x2 computes for i, j ∈ [d] the

linear combination

P [ix1∗, jx2∗] =
∑
w∈V

λijwP̂
(w)[x1∗, x2∗] .
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Node v ∈ V now has the submatrix P [∗x1∗, ∗x2∗].
The computation is performed entirely locally.

Step 7: Assembling the product. Each node v ∈ V with

label `(v) = x1x2 sends, for each node u ∈ V with

u2 = x1, the submatrix P [u, ∗x2∗] to the node u.

Each submatrix has n1/2 entries and there are n1/2

recipients, for a total of n messages sent by each

node.

Dually, each node u ∈ V receives the submatrix

P [u, ∗x2∗] from the node v with label `(v) = u2x2.

Node u now has the row P [u, ∗] of the product matrix
P . The total number of received messages is n per

node.

Analysis. The maximal number of messages sent or

received by a node in the above steps is O(n2−2/σ).

Moreover, the communication pattern clearly does not

depend on the input matrices, so the algorithm can be

implemented in an oblivious way on the congested clique

using the routing scheme of Dolev et al [25, Lemma 1];

the running time is O(n1−2/σ) rounds.

3 Upper Bounds

3.1 Subgraph Detection and Counting

We start by giving algorithms for various subgraph de-

tection and counting problems in the congested clique.

In subgraph detection problems, we have a fixed target

graph H, and the task is to decide whether there is a

subgraph of the input graph G = (V,E) that is isomor-

phic to H. The local input for node v ∈ V consists of

the identities of the incident edges, and the local output

for all nodes is either 0 or 1 depending on whether a

desired subgraph exists. In subgraph counting the task

is to count the number of subgraphs of G isomorphic
to H, and each node is required to output this number

when the algorithm terminates.

The subgraph detection and counting algorithms we

present are mainly based on applying the fast matrix

multiplication to the adjacency matrix A of a graph

G = (V,E), defined as

Auv =

{
1 if (u, v) ∈ E ,
0 if (u, v) /∈ E ,

where we assume that edges {u, v} ∈ E are oriented

both ways for undirected graphs.

Counting triangles and 4-cycles. For counting triangles,

that is, 3-cycles, we use a technique first observed by

Itai and Rodeh [43]. That is, in an undirected graph

with adjacency matrix A, the number of triangles is

known to be 1
6 tr(A3), where the trace tr(S) of a matrix

S is the sum of its diagonal entries Suu. Similarly, for

directed graphs, the number of triangles is 1
3 tr(A3).

Alon et al [6] generalise the above formula to count-

ing undirected and directed k-cycles for small k. For

example, the number of 4-cycles in an undirected graph

is given by

1

8

[
tr(A4)−

∑
v∈V

(
2(deg(v))2 − deg(v)

)]
.

Likewise, if G is a loopless directed graph and we denote

for v ∈ V by δ(v) the number of nodes u ∈ V such
that {(u, v), (v, u)} ⊆ E, then the number of directed

4-cycles in G is

1

4

[
tr(A4)−

∑
v∈V

(
2(δ(v))2 − δ(v)

)]
.

Combining these observations with Theorem 1, we im-
mediately obtain Corollary 2:

Corollary 2. For directed and undirected graphs, the

number of triangles and 4-cycles can be computed in

O(nρ) rounds.

We note that similar trace formulas exist for counting

k-cycles for k ∈ {5, 6, 7}, requiring only computation

of small powers of A and local information. We omit

the detailed discussion of these in the context of the

congested clique; see Alon et al [6] for details.

Detecting k-cycles. For detection of k-cycles we leverage

the colour-coding techniques of Alon et al [5] in addition

to the matrix multiplication. Again, the distributed

algorithm is a straightforward adaptation of a centralised

one.

Fix a constant k ∈ N. Let c : V → [k] be a labelling

(or colouring) of the nodes by k colours, such that node

v knows its colour c(v); it should be stressed here that

the colouring need not be a proper colouring in the

sense of the graph colouring problem. As a first step,

we consider the problem of finding a colourful k-cycle,

that is, a k-cycle such that each colour occurs exactly

once on the cycle. We present the details assuming that

the graph G is directed, but the technique works in an

identical way for undirected graphs.

Lemma 11. Given a graph G = (V,E) and a colour-

ing c : V → [k], a colourful k-cycle can be detected in

O
(
3knρ

)
rounds.

Proof. For each subset of colours X ⊆ [k], let C(X) be

a Boolean matrix such that C
(X)
uv = 1 if there is a path

of length |X| − 1 from u to v containing exactly one

node of each colour from X, and C
(X)
uv = 0 otherwise.
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For a singleton set {i} ⊆ [k], the matrix C({i}) contains

1 only on the main diagonal, and only for nodes v with

c(v) = i; hence, node v can locally compute the row v

of the matrix from its colour. For a non-singleton colour

set X, we have that

C(X) =
∨
Y⊆X

|Y |=d|X|/2e

C(Y )AC(X\Y ) , (3)

where the products are computed over the Boolean

semiring and ∨ denotes element-wise logical or. Thus,

we can compute C(X) for all X ⊆ [k] by applying (3)

recursively; there is a colourful k-cycle in G if and only

if there is a pair of nodes u, v ∈ V such that C
([k])
uv = 1

and (v, u) ∈ E.

To leverage fast matrix multiplication, we simply

perform the operations stated in (3) over the ring Z and

observe that an entry of the resulting matrix is non-zero

if and only if the corresponding entry of C(X) is non-zero.

The application of (3) needs two matrix multiplications

for each pair (Y,X) with Y ⊆ [k] and |Y | = d|X| /2e =

dk/2e. The number of such pairs is bounded by 3k; to
see this, note that the set {(Y,X) : Y ⊆ X ⊆ [k]} can

be identified with the set {0, 1, 2}k of trinary strings

of length k via the bijection w1w2 . . . wk 7→ ({i : wi =

0}, {i : wi ≤ 1}), and the set {0, 1, 2}k has size exactly

3k. Thus, the total number of matrix multiplications

used is at most O(3k).

We can now use Lemma 11 to prove Theorem 3;

while we cannot directly construct a suitable colouring

from scratch for an uncoloured graph, we can try an

exponential in k number of colourings to find a suitable
one.

Theorem 3. For directed and undirected graphs, the

existence of k-cycles can be detected in 2O(k)nρ log n

rounds.

Proof. To apply Lemma 11, we first have to obtain a

colouring c : V → [k] that assigns each colour once to

at least one k-cycle in G, assuming that one exists. If

we pick a colour c(v) ∈ [k] for each node uniformly at

random, then for any k-cycle C in G, the probability

that C is colourful in the colouring c is k!/kk > e−k.

Thus, by picking ek log n uniformly random colourings

and applying Lemma 11 to each of them, we find a

k-cycle with high probability if one exists.

This algorithm can also be derandomised using stan-

dard techniques. A k-perfect family of hash functions

H is a collection of functions h : V → [k] such that for

each U ⊆ V with |U | = k, there is at least one h ∈ H
such that h assigns a distinct colour to each node in U .

There are known constructions that give such families

H with |H| = 2O(k) log n and these can be efficiently

constructed [5]; thus, it suffices to take such an H and

apply Lemma 11 for each colouring h ∈ H.

Detecting 4-cycles. We have seen how to count 4-cycles

with the help of matrix multiplication in O(nρ) rounds.

We now show how to detect 4-cycles in O(1) rounds; this

situation is analogous with the centralised setting, where

the fastest known triangle detection algorithm runs in

O(nω) time, while 4-cycles can be detected in O(n2)

time [67]. Indeed, our distributed 4-cycle detection is

inspired by the centralised algorithm, based on the ob-

servation that sufficiently dense graphs necessarily have

a 4-cycle; however, taking advantage of this observation

requires more effort in the distributed setting.

Like the centralised O(n2) algorithm, our algorithm

does not make direct use of matrix multiplication al-

gorithms. However, the key part of the algorithm can

be interpreted as an efficient routine for sparse matrix

multiplication, under a specific definition of sparseness.

Let

P (X,Y, Z) =
{

(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z,
{x, y} ∈ E, {y, z} ∈ E

}
consist of all distinct 2-walks (paths of length 2) from

X through Y to Z. We will use again the shorthand

notation v for {v} and ∗ for V ; for example, P (x, ∗, ∗)
consists of all walks of length 2 from node x. There

exists a 4-cycle if and only if |P (x, ∗, z)| ≥ 2 for some

x 6= z.

On a high level, the algorithm proceeds as follows.

1. Each node x computes |P (x, ∗, ∗)|. If |P (x, ∗, ∗)| ≥
2n− 1, then there has to be some z 6= x such that

|P (x, ∗, z)| ≥ 2, which implies that there exists a

4-cycle, and the algorithm stops.

2. Otherwise, each node x finds P (x, ∗, ∗) and checks

if there exists some z 6= x such that |P (x, ∗, z)| ≥ 2.

The first phase is easy to implement in O(1) rounds. The

key idea is that if the algorithm does not stop in the first

phase, then the total volume of P (∗, ∗, ∗) is sufficiently

small so that we can afford to gather P (x, ∗, ∗) for each

node x in O(1) rounds.

We now present the algorithm in more detail. We

write N(x) for the neighbours of node x. To implement

the first phase, it is sufficient for each node y to broadcast

deg(y) = |N(y)| to all other nodes; we have

|P (x, ∗, ∗)| =
∑

y∈N(x)

deg(y).

Now let us explain the second phase. Each node

y is already aware of N(y) and hence it can construct
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P (∗, y, ∗) = N(y)×{y}×N(y). Our goal is to distribute

the set of all 2-walks⋃
y

P (∗, y, ∗) = P (∗, ∗, ∗) =
⋃
x

P (x, ∗, ∗)

so that each node x will know P (x, ∗, ∗).
In the second phase, we have∑

y

deg(y)2 =
∑
y

|P (∗, y, ∗)| =
∑
x

|P (x, ∗, ∗)| < 2n2.

Using this bound, we obtain the following lemma.

Lemma 12. There exist sets A(y) ⊆ V and B(y) ⊆ V
for each y ∈ V such that the following holds:

– |A(y)| = |B(y)| ≥ deg(y)/8 for all y ∈ V , and

– the tiles A(y)×B(y) and A(x)×B(x) are disjoint

subsets of the square V × V for y 6= x.

Moreover, such sets can be constructed in O(1) rounds
in the congested clique model so that all nodes know the

sets A(y) and B(y) for all y ∈ V .

Proof. Let f(y) be deg(y)/4 rounded down to the near-

est power of 2, and let k be n rounded down to the

nearest power of 2; note that we have
∑
y f(y)2 ≤∑

deg(y)2/16 < n2/8 < k2. The idea is to now show

that we can pack tiles of dimensions f(y) × f(y) for

y ∈ V inside a square of dimensions k × k without any

overlap. This can be done using the following iterative

procedure for i = 1, 2, . . . :

– Assume that before step i, we have partitioned the

square in sub-squares of dimensions k/2i−1×k/2i−1,

and each sub-square is either completely full or com-

pletely empty. In particular, this is trivially true for

i = 1, as the only sub-square is the whole [k]× [k].

– During step i, we divide each sub-square into 4 parts,

and place all tiles of dimensions f(y) = k/2i to

the new empty subsquares. There are sufficiently

many new sub-squares, as all empty spaces are in

the k/2i × k/2i sub-squares, so running out of space

would imply
∑
y f(y)2 > k2.

– After step i, we have partitioned the square in sub-

squares of dimensions k/2i × k/2i, and each sub-

square is either completely full or completely empty.

The process terminates when all the tiles have been

assigned; this way we have allocated disjoint tiles A(y)×
B(y) ⊆ [k] × [k] ⊆ V × V for each y, with |A(y)| =

|B(y)| = f(y) ≥ deg(y)/8.

To implement this in the congested clique model, it

is sufficient that each y broadcasts deg(y) to all other

nodes, and then all nodes follow the above procedure to

compute the sets A(y) and B(y) locally.

V

V B(y)

A(y)
P(–, y, –)

W(y, b)

W(b)

b
…

P(–, –, –)

Fig. 3 4-cycle detection: how P (∗, ∗, ∗) is partitioned among
the nodes.

Now we will use the tiles A(y)×B(y) to implement

the second phase of 4-cycle detection. Since |A(y)| =
|B(y)| ≥ deg(y)/8, we can for each y ∈ V partition the

neighbourhood N(y) into |A(y)| = |B(y)| sets of size at

most 8. For convenience, let us fix a such partition, and

label the sets in the partition with members of both

A(y) and B(y) to obtain two set families:

– The sets NA(y, a) for a ∈ A(y), which form a parti-

tion of N(y) with |NA(y, a)| ≤ 8.

– The sets NB(y, b) for b ∈ B(y), which form a parti-

tion of N(y) with |NB(y, b)| ≤ 8.

Note that we can assume that A(y) and B(y) are globally

known by Lemma 12. Hence we can assume that a node

can compute NA(y, a) and NB(y, b) if it knows N(y).

With this notation, the algorithm proceeds as follows

(see Figure 3):

1. For all y ∈ V and a ∈ A(y), node y sends NA(y, a)

to a.

This step can be implemented in O(1) rounds.

2. For each y and each pair (a, b) ∈ A(y)×B(y), node

a sends NA(y, a) to b.

Note that for each (a, b) there is at most one y such

that (a, b) ∈ A(y)×B(y); hence over each edge we

send only O(1) words. Therefore this step can be

implemented in O(1) rounds.

3. At this point, each b ∈ V has received a copy of N(y)

for all y with b ∈ B(y). Node b computes

W (y, b) = N(y)× {y} ×NB(y, b) ,

W (b) =
⋃

y:b∈B(y)

W (y, b) .

This is local computation; it takes 0 rounds.
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We now give a lemma that captures the key properties

of the algorithm.

Lemma 13. The sets W (b) form a partition of the set

P (∗, ∗, ∗). Moreover, for each b we have |W (b)| = O(n).

Proof. For the first claim, observe that the sets P (∗, y, ∗)
for y ∈ V form a partition of P (∗, ∗, ∗), the sets W (y, b)
for b ∈ B(y) form a partition of P (∗, y, ∗), and each set

W (y, b) is part of exactly one W (b).

For the second claim, let Y consist of all y ∈ V with

b ∈ B(y). As the tiles A(y) × B(y) are disjoint for all

y ∈ Y , and all y ∈ Y have the common value b ∈ B(y),

it has to hold that the sets A(y) are disjoint subsets of

V for all y ∈ Y . Therefore∑
y∈Y
|N(y)| =

∑
y∈Y

deg(y) ≤
∑
y∈Y

8|A(y)| ≤ 8|V | = 8n.

With |NB(y)| ≤ 8 we get

|W (b)| =
∑
y∈Y
|W (y, b)| ≤ 8

∑
y∈Y
|N(y)| ≤ 64n.

Now we are almost done: we have distributed the
elements of P (∗, ∗, ∗) evenly among V so that each node

only holds O(n) elements. Finally, we use the dynamic

routing scheme [49] to gather P (x, ∗, ∗) at each node

x ∈ V ; here each node needs to send O(n) words and

receive O(n) words, and the running time is therefore

O(1) rounds. In conclusion, we can implement both

phases of 4-cycle detection in O(1) rounds.

Theorem 4. For undirected graphs, the existence of

4-cycles can be detected in O(1) rounds.

3.2 Girth

Undirected girth. Recall that the girth g of an undi-

rected unweighted graph G = (V,E) is the length of the

shortest cycle in G. To compute the girth in the con-

gested clique model, we leverage the fast cycle detection

algorithm and the following lemma giving a trade-off

between the girth and the number of edges. A similar

approach of bounding from above the number of edges of

a graph that contains no copies of some given subgraph
was taken by Drucker et al [26].

Lemma 14 ([56, pp. 362–363]). A graph with girth g

has at most n1+1/b(g−1)/2c + n edges.

If the graph is dense, then by the above lemma it

must have small girth and we can use fast cycle detection

to compute it; otherwise, the graph is sparse and we

can learn the complete graph structure.

Theorem 15. For undirected graphs, the girth can be

computed in Õ(nρ) rounds (or in no(1) rounds, if ρ = 0).

Proof. Assume for now that ρ > 0, and fix ` = d2 +

2/ρe. Each node collects the degrees of all nodes and

computes the total number of edges. If there are at

most n1+1/b`/2c + n = O(n1+ρ) edges, we can collect

full information about the graph structure at all nodes

in O(nρ) rounds using an algorithm of Dolev et al [25],

and each node can then compute the girth locally.

Otherwise, by Lemma 14, the graph has girth at

most `. Thus, for k = 3, 4, . . . , `, we try to find a k-cycle

using Theorem 3, in ` · 2O(`)nρ log n = Õ(nρ) rounds.
When such a cycle is found for some k, we stop and

return k as the girth.

Finally, if ρ = 0, we pick ` = log log n, and both

cases take no(1) rounds.

Directed girth. For a directed graph, the girth is defined

as the length of the shortest directed cycle; the main

difference is that directed girth can be 1 or 2. While

the trade-off of Lemma 14 cannot be used for directed

graphs, we can use a simpler technique of Itai and Rodeh

[43].

Let G = (V,E) be a directed graph; we can assume

that there are no self-loops in G, as otherwise girth is
1 and we can detect this with local computation. Let

B(i) be a Boolean matrix defined by setting B
(i)
uv = 1 if

there is a path of length ` from u to v for 1 ≤ ` ≤ i,

and B
(i)
uv = 0 otherwise. Clearly, we have that B(1) = A.

Moreover, if i = j + k, we have

B(i) =
(
B(j)B(k)

)
∨A , (4)

where the matrix product is over the Boolean semiring

and ∨ denotes element-wise logical or.

Corollary 16. For directed graphs, the girth can be

computed in Õ(nρ) rounds.

Proof. It suffices to find smallest ` such that there is

v ∈ V with B
(`)
vv = 1; clearly ` is then the girth of graph

G. We first compute A = B(1), B(2), B(4), B(8), . . . using

(4) with j = k = i/2 until we find i such that B
(i)
vv =

1 for some v ∈ V . We then know that the girth is

between i and i/2; we can perform binary search on

this interval to find the girth, using (4) to evaluate the

intermediate matrices. This requires O(log n) calls to

the matrix multiplication algorithm.

3.3 Routing and Shortest Paths

In this section, we present algorithms for variants of

the all-pairs shortest paths (APSP) problem. In the

congested clique model, the local input for a node u ∈ V
in the APSP problem is a vector containing the local

edge weights W (u, v) for v ∈ V . The output for u ∈ V is
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the actual shortest path distances d(u, v) for each other

node v ∈ V , along with the routing table entries R[u, v],

where each entry R[u, v] = w ∈ V is a node such that

(u,w) ∈ V and w lies on a shortest path from u to w. For

convenience, we use the same notation for directed and

undirected graphs, assume W (u, v) = ∞ if (u, v) /∈ E,

and for unweighted graphs, we set W (u, v) = 1 for each

(u, v) ∈ E.

For a graph G = (V,E) with edge weights W , we

define the weight matrix W as

Wuv =

{
W (u, v) if u 6= v ,

0 if u = v .

Our APSP algorithms are mostly based on the manipu-

lation of the weight matrix W and the adjacency matrix

A, as defined in Section 3.1.

Distance product and iterated squaring. Matrix multi-

plication can be used to compute the shortest path

distances via iterated squaring of the weight matrix

over the min-plus semiring [28, 33, 59]. That is, the
matrix product is the distance product, also known as

the min-plus product or tropical product, defined as

(S ? T )uv = min
w

(
Suw + Twv

)
.

Given a graphG = (V,E) with weight matrixW , the nth

distance product power Wn gives the actual distances

in G as d(v, u) = Wn
vu. Computing Wn can be done

with dlog ne distance products by iteratively squaring

W , that is, we compute

W 2 = W ?W ,

W 4 = W 2 ? W 2

. . .

Wn = Wn/2 ? Wn/2 .

Moreover, sending integer weights in {0,±1, . . . ,±M}
takes O(dlogM/ log ne) rounds, and so does sending a

sum of at most n such values. Combining these observa-

tion with the semiring algorithm from Theorem 1, we

immediately obtain a simple APSP algorithm for the

congested clique.

Corollary 6. For directed graphs with edge weights in

{0,±1, . . . ,±M} and for undirected graphs with edge

weights in {0, 1, . . . ,M}, all-pairs shortest paths can be

computed in O(n1/3 log ndlogM/ log ne) communication

rounds.

The subsequent APSP algorithms we discuss in this

section are, for the most part, similarly based on the iter-

ated squaring of the weight matrix; the main difference

is that we replace the semiring matrix multiplication

with distance product algorithms derived from the fast

matrix multiplication algorithm.

Constructing routing tables. The iterated squaring al-

gorithm of Corollary 6 can be adapted to also compute

a routing table R as follows. Assume that our distance

product algorithm also provides for the distance prod-

uct S ? T a witness matrix Q such that if Quv = w,

then (S ? T )uv = Suw + Twv. With this information,

we can compute the routing table R during the iter-

ated squaring algorithm; when we compute the product

W 2i = W i ?W i, we also obtain a witness matrix Q, and

update the routing table by setting

R[u, v] = R[u,Quv]

for each u, v ∈ V with W 2i
uv < W i

uv.

The semiring matrix multiplication can be easily

modified to produce witnesses, but for the subsequent

distance product algorithms based on fast matrix multi-

plication this is not directly possible. However, we can

apply known techniques from the centralised setting to
obtain witnesses also in these cases [4, 68, 79]; we refer

to Section 3.4 for details.

Unweighted undirected APSP. In the case of unweighted

undirected graphs, we can obtain exact all-pairs shortest

paths via a technique of Seidel [68]. Specifically, let G =

(V,E) an unweighted undirected graph with adjacency
matrix A; the kth power Gk of G is a graph with node

set V and edge set {{u, v} : d(u, v) ≤ k}. In particular,

the square graph G2 can be constructed in O(nρ) rounds

from G, as the adjacency matrix of G2 is A2 ∨A, where

the product is over the Boolean semiring and ∨ denotes

element-wise logical or.
The following lemma of Seidel allows us to compute

distances in G if we already know distances in the square

graph G2; to avoid ambiguity, we write in this subsection

dG(u, v) for the distances in a graph G.

Lemma 17 ([68]). Let G = (V,E) be an unweighted

undirected graph with adjacency matrix A, and let D

be a distance matrix for G2, that is, a matrix with the

entries Duv = dG2(u, v). Let S = DA, where the product

is computed over integers. Then

dG(u, v)=

{
2dG2(u, v) if Suv≥ dG2(u, v) degG(v),

2dG2(u, v)−1 if Suv< dG2(u, v) degG(v).

We can now recover all-pairs shortest distances in

an undirected unweighted graph by recursively applying

Lemma 17.

Corollary 7. For undirected, unweighted graphs, all-

pairs shortest paths can be computed in Õ(nρ) rounds.

Proof. Let G = (V,E) be an unweighted undirected

graph with adjacency matrix A. We first compute the

adjacency matrix for G2; as noted above, this can be
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done in O(nρ) rounds. There are now two cases to con-

sider.

1. If G = G2, then dG(u, v) = 1 if u and v are adjacent

in G, and dG(u, v) =∞ otherwise; thus, we are done.

2. Otherwise, we compute all-pairs shortest path dis-

tances in the graph G2; since we have already con-

structed the adjacency matrix for G2, we can do the

distance computation in G2 by recursively calling

this algorithm with input graph G2. Then, we con-

struct the matrix D with entries Duv = dG2(u, v) as

in Lemma 17 and compute S = DA. We can recover
distances in G using Lemma 17, as each node can

transmit its degree in G to each other node in a

single round and then check the conditions of the

lemma locally.

The recursion terminates in O(log n) calls, as the graph

Gn consists of disjoint cliques.

Weighted APSP with small weights. By embedding the

distance product of two matrices into a suitable ring,

we can use fast ring matrix multiplication to compute

all-pairs shortest distances [77]; however, this is only

practical for very small weights, as the ring embedding

exponentially increases the amount of bits required to

transmit the matrix entries. The following lemma en-

capsulates this idea.

Lemma 18. Given n×n matrices S and T with entries

in {0, 1, . . . ,M} ∪ {∞}, the distance product S ? T can

be computed in O(Mnρ) rounds.

Proof. We encode the distance product into a product of

matrices whose entries are polynomials in the polynomial

ring Z[X], where X is a formal variable, and use fast

matrix multiplication to compute the matrix product in

the polynomial ring. That is, we construct new matrices

S∗ and T ∗ by replacing each matrix entry w with the

polynomial Xw; values ∞ are replaced by 0. We then

compute the product S∗ · T ∗ over Z[X]; all polynomials

involved in the computation have degree at most 2M

and their coefficients are integers of absolute value at

most nO(1), so this computation can be done in O(Mnρ)

rounds. Finally, we can recover each matrix entry (S ?

T )uv in the original distance product by taking the

degree of the lowest-degree monomial in (S∗ ·T ∗)uv.

Using iterated squaring together with Lemma 18,

we can compute all-pairs shortest paths up to a small

distance M quickly; that is, we want to compute a

matrix B such that

Buv =

{
d(u, v) if d(u, v) ≤M ,

∞ if d(u, v) > M .

This can be done by replacing all weights over M with

∞ before each squaring operation to ensure that we do

not operate with too large values, giving us the following

lemma.

Lemma 19. Given a directed, weighted graph with non-

negative integer weights, all-pairs shortest paths up to

distance M can be computed in O(Mnρ) rounds.

The above lemma can be used to compute all-pairs

shortest paths quickly assuming that the weighted di-

ameter of the graph is small; recall that the weighted

diameter of a weighted graph is the maximum distance

between any pair of nodes.

Corollary 8. For directed and undirected graphs with

positive integer edge weights and weighted diameter

U , all-pairs shortest paths can be computed in Õ(Unρ)

rounds.

Proof. If we know that the weighted diameter is U , we
can simply apply Lemma 19 with M = U . However, if

we do not know U beforehand, we can (1) first compute

the reachability matrix R with Ruv = 1 if there is a

path from u to v, and Ruv = 0 otherwise, using iter-

ated squaring of the adjacency matrix over the Boolean

semiring as in the directed girth algorithm in Section 3.2,

(2) guess U = 1 and compute all-pairs shortest paths up

to distance U , and (3) check if we obtained distances for

all pairs that are reachable according to the reachability

matrix; if not, then we double our guess for U and repeat

steps (2) and (3).

Approximate weighted APSP. We can leverage the above

result and a rounding technique to obtain a fast (1 +

o(1))-approximation algorithm for the weighted directed

APSP problem. Similar rounding-based approaches were

previously used by Zwick [79] in the centralised setting

and by Nanongkai [60] in the distributed setting; how-

ever, the idea can be traced back much further [66].

We first consider the computation of a (1 + δ)-

approximate distance product over integers for a given

δ > 0; the following lemma is an analogue of one given

by Zwick [79] in a centralised setting.

Lemma 20. Given two n × n matrices S and T with

entries in {0, 1, . . . ,M} ∪ {∞}, a matrix P̃ satisfying

Puv ≤ P̃uv ≤ (1 + δ)Puv for u, v ∈ V ,

where P = S ?T is the distance product of S and T , can

be computed in O
(
nρ(log1+δM)/δ

)
rounds.

Proof. For i ∈ {0, . . . , dlog1+δMe}, let S(i) be the ma-

trix defined as

S(i)
uv =

{
dSuv/(1 + δ)ie if Suv ≤ 2(1 + δ)i+1/δ,

∞ otherwise,
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and let T (i) be defined similarly for T . Furthermore, let

us define P (i) = S(i) ? T (i). We now claim that selecting

P̃uv = min
i

{
b(1 + δ)iP (i)

uv c
}

gives a matrix P̃ with the desired properties.

It follows directly from the definitions that Puv ≤
P̃uv, so it remains to prove the other inequality. Thus,

let us fix u, v ∈ V , and let w ∈ V be such that

Puv = Suw + Twv .

Let j = blog1+δ(δPuv/2)c; this choice of j means that

2(1 + δ)j/δ ≤ Puv ≤ 2(1 + δ)j+1/δ. Since Suw and Twv
are both bounded from above by Puv, the entries S

(j)
uw

and T
(j)
wv are finite. It follows that we have

(1 + δ)jS(j)
uw ≤ Suw + (1 + δ)j ,

(1 + δ)jT (j)
wv ≤ Twv + (1 + δ)j ,

and therefore

(1 + δ)jP (j)
uv ≤ (1 + δ)j

(
S(j)
uw + T (j)

wv

)
≤ Suw + Twv + 2(1 + δ)j

≤ Puv + δPuv = (1 + δ)Puv .

Finally, we have P̃uv ≤ b(1 + δ)jP
(j)
uv c ≤ (1 + δ)Puv.

To see that we can compute the matrix P̃ in the

claimed time, we first note that each of the matrices

S(i) and T (i) can be constructed locally by the nodes.

The product P (i) = S(i) ? T (i) can be computed in

O(nρ/δ) rounds for a single index i by Lemma 18, as

the entries of S(i) and T (i) are integers bounded from

above by O(1/δ); this is repeated for each index i, and

the number of iterations is thus O(log1+δM). Finally,

the matrix P̃ can be constructed from matrices P (i)

locally.

Using Lemma 20, we obtain a (1+o(1))-approximate
APSP algorithm.

Theorem 9. For directed and undirected graphs with

edge weights in {0, 1, . . . , 2no(1)}, all-pairs shortest paths

can be (1 + o(1))-approximated in O(nρ+o(1)) rounds.

Proof. Let G = (V,E) be a directed weighted graph

with edge weights in {0, 1, . . . ,M}, where M = 2n
o(1)

.

To compute the approximate shortest paths, we ap-

ply iterated squaring over the min-plus semiring to the

weight matrix W of G, but use the approximate dis-

tance product algorithm of Lemma 20 to compute the
products. After dlog ne iterations, we obtain a matrix

D̃; by induction we have for u, v ∈ V that

d(u, v) ≤ D̃uv ≤ (1 + δ)dlogned(u, v) .

Selecting δ = o(1/ log n), this gives a (1 + o(1))-approxi-

mation for the shortest distances.

To analyse the running time, we observe that we

call the algorithm of Lemma 20 dlog ne times; as the

maximum distance between nodes in G is nM = 2n
o(1)

,

the running time of each call is bounded by

O

(
nρ log1+δ(nM)

δ

)
= O

(
nρ+o(1)

δ log(1 + δ)

)
.

For sufficiently small δ, we have 1/
(
δ log(1 + δ)

)
=

O(1/δ2). Thus, for, e.g., δ = 1/ log2 n = o(1/ log n), the

total running time is O(nρ+o(1)), as the polylogarithmic

factors are subsumed by no(1).

3.4 Witness Detection for Distance Product

Witness problem for the distance product. As noted in

Section 3.3, to recover the routing table in the APSP

algorithms based on fast matrix multiplication in addi-

tion to computing the shortest path lengths, we need

the ability to compute a witness matrix for the distance

product S ?T . That is, we need to find a matrix Q such

that if Quv = w, then (S ? T )uv = Suw + Twv; in this

case, the index w is called a witness for the pair (u, v).

While one can easily modify the semiring matrix

multiplication algorithm to provide witnesses, this is

not directly possible with the fast matrix multiplication

algorithms. However, known techniques from centralised

algorithms [4, 68, 79] can be adapted to the congested

clique to bridge this gap.

Lemma 21. If the distance product for two n× n ma-

trices S and T can be computed in M rounds, then a

witness matrix for S?T can be computed inM polylog(n)

rounds.

The rest of this section outlines the proof of this

lemma. While we have stated it for the distance product,

it should be noted that the same techniques also work

for the Boolean semiring matrix product.

Preliminaries. For matrix S and index subsets U,W ⊆
V , we define the matrix S(U,W ) as

S(U,W )uw =

{
Suw if u ∈ U and w ∈W ,

∞ otherwise.

That is, we set all rows and columns not indexed by U

and W to∞. As before, we use ∗ as a shorthand for the

whole index set V .
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Finding unique witnesses. As a first step, we compute

witnesses for all (u, v) that have a unique witness, that

is, there is exactly one index w such that (S ?T )[u, v] =

S[u,w] + T [w, v]. To construct a candidate witness ma-

trix Q, let V (i) ⊆ V be the set of indices v such that

bit i in the binary presentation of v is 1. For i =

1, 2, . . . , dlog ne, we compute the distance product P (i) =

S(∗, Vi) ? T (Vi, ∗). If P
(i)
uv = (S ? T )uv, then we set the

ith bit of Quv to 1, and otherwise we set it to 0.

If there is a unique witness for (u, v), then Quv
is correct, and we can check if the candidate witness

Quv = w is correct by computing Suw + Twv; see Zwick

[79, §. 3]. The algorithm clearly uses O(log n) matrix

multiplications.

Finding witnesses in the general case. To find witnesses

for all indices (u, v), we reduce the general case to the

case of unique witnesses. For simplicity, we only present

a randomised version of this algorithm; for derandomi-

sation see Zwick [79] and Alon and Naor [4].

Let i ∈ {0, 1, . . . , dlog ne − 1}. We use the following

procedure to attempt to find witnesses for all (u, v) that

have exactly r witnesses for n/2i+1 ≤ r < n/2i:

1. Let m = dc log ne for a sufficiently large constant c.

For j = 1, 2, . . . ,m, construct a subset Vj ⊆ V by

picking 2i values v1, v2, . . . , v2i from V with replace-

ment, and let Vj = {v1, v2, . . . , v2i}.
2. For each Vj , use the unique witness detection for the

product S(∗, Vj)?T (Vj , ∗) to find candidate witnesses

Quv for all pairs (u, v), and keep those Quv that are

witnesses for S ? T .

Let (u, v) be a pair with r witnesses for n/2i+1 ≤ r <

n/2i. For each j = 1, 2, . . . ,m, the probability that

Vj contains exactly one witness for (u, v) is at least

(2e)−1 (see Seidel [68, Claim 8]). Thus, the probability

that we do not find a witness for (u, v) is bounded by

(1− (2e)−1)dc logne = n−Ω(c).

Repeating the above procedure for i = 0, 1, . . . ,

dlog ne − 1 ensures that the probability of not finding
a witness for any fixed (u, v) is at most n−Ω(c). By the

union bound, the probability that there is any pair of

indices (u, v) for which no witness is found is n−Ω(c),

i.e., with high probability the algorithm succeeds. More-

over, the total number of calls to the distance product

is O
(
(log n)3

)
, giving Lemma 21.

4 Lower Bounds

Lower bounds for matrix multiplication implementations.

While proving unconditional lower bounds for matrix

multiplication in the congested clique model seems to

be beyond the reach of current techniques, as discussed

in Section 1.4, it can be shown that the results given

in Theorem 1 are essentially optimal distributed imple-

mentations of the corresponding centralised algorithms.

To be more formal, let C be an arithmetic circuit for

matrix multiplication; we say that an implementation

of C in the congested clique model is a mapping of the

gates of C to the nodes of the congested clique. This

naturally defines a congested clique algorithm for ma-

trix multiplication, with the wires in C between gates

assigned to different nodes defining the communication
cost of the algorithm.

Various authors, considering different parallel mod-

els, have shown that in any implementation of the trivial

Θ(n3) matrix multiplication on a parallel machine with

P processors there is at least one processor that has to

send or receive Ω(n2/P 2/3) matrix entries [2, 42, 72].

As these models can simulate the congested clique, a

similar lower bound holds for congested clique imple-
mentations of the trivial O(n3) matrix multiplication. In

the congested clique, each processor sends and receives

n messages per round (up to logarithmic factors) and
P = n, yielding a lower bound of Ω̃(n1/3) rounds.

The trivial Θ(n3) matrix multiplication is optimal

for circuits using only semiring addition and multiplica-

tion [44]. The task of n× n matrix multiplication over

the min-plus semiring can be reduced to APSP with

a constant blowup [3, pp. 202–205], hence the above

bound applies also to any APSP algorithm that only

uses minimum and addition operations. This means

that current techniques for similar problems, like the
one used in the fast MST algorithm of Lotker et al [54]

cannot be extended to solve APSP.

Corollary 22. Any implementation of the trivial Θ(n3)

matrix multiplication, and any APSP algorithm which

only sums weights and takes the minimum of such sums,

require Ω̃(n1/3) communication rounds in the congested

clique model.

However, known results on centralised APSP and

distance product computation give reasons to suspect

that this bound can be broken if we allow subtraction; in
particular, translating the recent result of Williams [76]

might allow for running time of order n1/3/2Ω(
√
logn)

for APSP in the congested clique.

Concerning fast matrix multiplication algorithms,

Ballard et al [8] have proven lower bounds for parallel

implementations of Strassen-like algorithms. Their sem-

inal work is based on building a DAG representing the

linear combinations of the inputs before the block multi-

plications, and the linear combinations of the results of

the multiplications (“decoding”) as the output matrix.

The parallel computation induces an assignment of the
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graph vertices to the processes, and the edges crossing

the partition represent the communication. Using an

expansion argument, Ballard et al show that in any par-

tition a graph representing an Ω(nσ) algorithm there is

a process communicating Ω(n2−2/σ) values. See also [9]

for a concise account of the technique.

The lower bound holds for Strassen’s algorithm, and

for a family of similar algorithms, but not for any ma-

trix multiplication algorithm (See [8, §. 5.1.1]). A matrix

multiplication algorithm is said to be Strassen-like if it

is recursive, its decoding graph discussed above is con-
nected, and it computes no scalar multiplication twice.

As each process communicates at most O(n) values in

a round, the implementation of an Ω(nσ) strassen-like

algorithm must take Ω(n1−2/σ) rounds.

Corollary 23. Any implementation of a Strassen-like

matrix multiplication algorithm using Ω(nσ) element

multiplications requires Ω̃(n1−2/σ) rounds in the con-
gested clique model.

Lower bound for broadcast congested clique. Recall that

the broadcast congested clique is a version of the con-

gested clique model with the additional constraint that

all n− 1 messages sent by a node in a round must be

identical.

Frischknecht et al [32] have shown that approximat-

ing the diameter of an unweighted graph any better

than factor 3/2 requires Ω̃(n) rounds in the CONGEST

model; the same can be applied to the broadcast con-

gested clique. A variation of the approach was recently

used by Holzer and Pinsker [39] to show that comput-

ing any approximation better than factor 2 to all-pairs

shortest paths in weighted graphs takes Ω̃(n) rounds as

well. As discussed in Section 3.3, õ(n)-round matrix mul-

tiplication algorithms imply õ(n)-round algorithms for

exact unweighted and (1 + o(1))-approximate weighted

APSP. Together, this immediately implies that matrix

multiplication on the broadcast congested clique is hard.

Corollary 24. In the broadcast congested clique model,

matrix multiplication algorithms that are applicable to

matrices over the Boolean semiring and APSP algo-

rithms require Ω̃(n) communication rounds.

We remark that the phrase “that is applicable to

matrices over the Boolean semiring” refers to the issue

that, in principle, it is possible that matrix multiplica-

tion exponents may be different for different underlying

semirings. However, at the very least the lower bound

applies for matrix multiplication over Booleans, integers,

and rationals, as well as the min-plus semiring. We stress

that, unlike the lower bounds presented beforehand, this

bound holds without any assumptions on the algorithm

itself.

5 Conclusions

In this work, we demonstrate that algebraic methods –
especially fast matrix multiplication – can be used to

design efficient algorithms in the congested clique model,

resulting in algorithms that outperform the previous

combinatorial algorithms; moreover, we have certainly

not exhausted the known centralised literature of algo-

rithms based on matrix multiplication, so similar tech-

niques should also give improvements for other problems.

Likewise, it seems likely that matrix multiplication al-

gorithms themselves can be generalised in various ways;

for example, the algorithms presented in Section 2 can

be easily adapted to multiply m × m matrices on a

clique of n nodes in O(m2/n1+2/3) rounds over semir-

ings and O(m2/n1+2/ω) rounds over rings [58, 73]. It

also remains open whether corresponding lower bounds

exist; however, it increasingly looks like lower bounds

for the congested clique would imply lower bounds for
centralised algorithms, and are thus significantly more

difficult to prove than for the CONGEST model.

While the present work focuses on a fully connected

communication topology (clique), we expect that the

same techniques can be applied more generally in the

usual CONGEST model. For example, fast triangle de-
tection in the CONGEST model is trivial in those areas

of the network that are sparse. Only dense areas of the

network are non-trivial, and in those areas we may have

enough overall bandwidth for fast matrix multiplication

algorithms. On the other hand, there are non-trivial

lower bounds for distance computation problems in the
CONGEST model [24], though significant gaps still re-

main [60].
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